
Reconstruction of Trees from Jumbled and
Weighted Subtrees
Dénes Bartha1, Péter Burcsi2, and Zsuzsanna Lipták3

1 Dept. of Computer Algebra, Eötvös Loránd University, Budapest, Hungary
denesb@gmail.com

2 Dept. of Computer Algebra, Eötvös Loránd University, Budapest, Hungary
bupe@compalg.inf.elte.hu

3 Dip. di Informatica, University of Verona, Italy
zsuzsanna.liptak@univr.it

Abstract
Let T be an edge-labeled graph, where the labels are from a finite alphabet Σ. For a subtree U of
T , the Parikh vector of U is a vector of length |Σ| which specifies the multiplicity of each label in
U . We ask when T can be reconstructed from the multiset of Parikh vectors of all of its subtrees,
or all of its paths, or all of its maximal paths. We consider the analogous problems for weighted
trees. We show how several well-known reconstruction problems on labeled strings, weighted
strings and point sets on a line can be included in this framework. We present reconstruction
algorithms and non-reconstructibility results, and extend the polynomial method, previously
applied to jumbled strings [Acharya et al, SIAM J on Discr. Math, 2015] and weighted strings
[Bansal et al, CPM 2004], to deal with general trees and special tree classes.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Computations
on discrete structures, G.2.2 [Graph Theory] Graph labeling, Trees

Keywords and phrases trees, paths, Parikh vectors, reconstruction problems, homometric sets,
polynomial method, jumbled strings, weighted strings

Digital Object Identifier 10.4230/LIPIcs.CPM.2016.10

1 Introduction

Let T be an unrooted tree T with labeled edges, where the labels come from a finite ordered
alphabet Σ. For a subtree U of T , the Parikh vector of U is a vector of length |Σ| which
specifies the multiplicity of each label in U . If the labels are positive reals or integers, we
refer to them as weights, and define the weight of U as the sum of weights of the edges in
U . (It is common to refer to a subtree as jumbled if only its Parikh vector is known, and as
weighted if only its weight is known.) Given a subtree property A, we refer to the multiset of
Parikh vectors of all subtrees with property A as MPA(T), and to the multiset of weights of
all subtrees with property A as MWA(T). For example, MWpath(T) is the multiset of path
weights in a weighted tree T .

Consider the two edge-labeled trees in Fig. 1, with labels from the alphabet Σ = {a, b}.
The two trees are non-isomorphic, but the multisets of Parikh vectors of their subtrees are
the same, MPsubtree(T1) = MPsubtree(T2), as can be easily checked. At the same time, the
multisets of Parikh vectors of their paths are not the same, MPpath(T1) 6= MPpath(T2), since,
for instance, T2 has a path with Parikh vector (1, 3) and T1 does not.

These multisets can be described with the help of polynomials. Let variable x represent
label a, and variable y label b. Then the polynomial describing the subtrees of both T1 and T2

© Dénes Bartha, Péter Burcsi, and Zsuzsanna Lipták;
licensed under Creative Commons License CC-BY

27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016).
Editors: Roberto Grossi and Moshe Lewenstein; Article No. 10; pp. 10:1–10:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Catalogo dei prodotti della ricerca

https://core.ac.uk/display/217560006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.CPM.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Reconstruction of Trees from Jumbled and Weighted Subtrees

T1 T2

b a

a b b

a b

b b a

Figure 1 Two MPsubtree-equivalent trees.

is 2x+ 3y+ 4xy+ y2 + x2y+ 3xy2 + 2x2y2 + xy3 + x2y3, where the interpretation e.g. of the
term 3xy2 is that there are 3 (the coefficient) subtrees that contain 1 letter a and 2 letters b
(the exponents). In a similar way, polynomials can be used to describe the multisets of paths
or of maximal paths. Moreover, they can be used to describe the weights of certain subtrees
when the edges are labeled with positive integers. We will give more precise definitions later.

In this paper, we are interested in the following questions:

Computation: How can we compute the polynomials describing the jumbled or weighted
subtrees, paths, or maximal paths?
Reconstruction: Can trees be uniquely reconstructed from the multiset of jumbled or
weighted subtrees, paths, or maximal paths? I.e. are there non-isomorphic trees with the
same multisets? – We split this problem into two sub-problems:
1. Large Unjumble: Is the unlabeled tree (i.e., its topology) uniquely determined by the

multiset of jumbled or weighted subtrees, paths, or maximal paths?
2. Small Unjumble: Given the topology of the tree, is the labeling uniquely determined

by the multiset of jumbled or weighted subtrees, paths, or maximal paths?

The method of using polynomials to describe multisets of Parikh vectors or of weights has
been successfully applied in the past to strings. In [8] polynomials were used for representing
the multiset of weights of substrings (there called submasses) of a weighted string, i.e. where
each character is assigned a positive integer weight. Fast Fourier Transform was employed to
compute this polynomial, and several algorithms were proposed for finding substrings with a
given query weight, using this polynomial.

In [2] the authors describe a similar polynomial representation of the multiset of Parikh
vectors of substrings, and study the class of strings having the same multiset (there called
confusable), using algebraic methods based on this polynomial. The method was originally
employed in [28] for the related turnpike problem: Given n unknown points on a line,
reconstruct the positions of these points from the multiset of interpoint distances. Indeed,
in [1], an algorithm was given for reconstruction of all confusable strings from the multiset
of Parikh vectors of substrings, an adaptation of an algorithm given in [28]. Note that the
turnpike problem itself can be viewed as a problem on an edge-weighted tree (a path), where
the vertices are the points, the edges are weighted by the distances between consecutive
points, and the input is the multiset of path weights.

In this paper, we show how the polynomial method can be extended to trees. But
generalizing the substructure of substring to trees can result either in subtrees, or in paths.
We show that the method works for both types of substructures, as well as for maximal paths
(i.e. paths between leaves). Note that equivalence w.r.t. one does not imply equivalence w.r.t.
the other.

In the case of strings, both for jumbled and for weighted substrings, the polynomial can
be computed via convolution from a very easily computable polynomial with 0/1 coefficients

D. Bartha, P. Burcsi, and Zs. Lipták 10:3

(called generating polynomial in [2] and prefix polynomial in [8]), essentially using the fact
that the Parikh vector (resp. weight) of a substring is the difference of the Parikh vectors
(resp. weights) of two prefixes. We show how to compute the polynomials for trees in a
similar manner, recursively from the polynomials of subtrees, but using both multiplication
and addition of polynomials. Since strings can be represented as edge-labeled paths, our
framework encompasses the known results on strings. Of course, if the tree T is a path, then
the multisets of subtrees and of paths coincide.

The related problem of jumbled pattern matching, finding one or all occurrences of
substructures with a given Parikh vector, has been studied recently extensively on strings,
most recently in [13, 5, 25, 4, 15, 22, 24, 7, 21, 27, 29, 12, 11]; and also on vertex-colored
graphs and trees [20, 14, 17]. On graphs, the problem is also called motif search, and it is
NP-hard to decide whether a match exists, even when G is a tree [26]. When the number of
colors is constant, the problem is fixed-parameter tractable w.r.t. treewidth [20].

Note that the variant of our problem where the subtrees are restricted to maximal paths
is closely related to the problem of distance-based phylogenetic reconstruction, see e.g. [16],
where a distance matrix between the leaves of a tree is given, and the task is to reconstruct
the tree. The problem there is well-understood: such a tree exists if the input matrix has a
certain property (called additivity), and an efficient algorithm exists for reconstructing the
tree [30], which runs in cubic time in the number of leaves. The difference here is that we
are given the input numbers without assignment to the pairs of leaves.

Following [28], we call two weighted trees T1 and T2 homometric if the multisets of
pairwise distances between vertices is the same for both trees, or equivalently in our terms,
MWpath(T1) = MWpath(T2). We note that even though trees, and more generally, graphs,
do appear in the literature on homometric sets [19, 6], those papers consider homometric
vertex sets within one tree rather than homometric pairs of trees, while the papers [18, 3]
treat quite different problems from the present ones.

Most proofs are omitted due to space limitations, and will be included in the full version.

2 The polynomial representation of Parikh multisets and weight
multisets

Let Σ be a finite alphabet with elements a1, a2, . . . , aσ. Consider the polynomial ring over
the integers in σ indeterminates, i.e. Z[x1, x2, . . . , xσ]. When the alphabet is binary, we will
denote the indeterminates by x and y.

If we interpret a Parikh vector (k1, k2, . . . , kσ) as a multidegree, we can assign to it the
monomial xk1

1 x
k2
2 · · ·xkσσ . Note that the total degree of the polynomial equals the sum of

entries of the Parikh vector. A multiset of Parikh vectors can then be represented as the
sum of the monomials of its elements; multiplicities become coefficients. The power of
this viewpoint is that disjoint union of (multi)sets corresponds to the product of the two
monomials associated to the sets.

If we work with weights rather than arbitrary labels, then a single indeterminate suffices:
to a weighted edge e with weight w(e), we associate the polynomial xw(e). If we have a set
U of edges and take the product of the monomials corresponding to the elements, then we
get x

∑
e∈U

w(e). The primary focus of the present paper are Parikh multisets and weight
multisets of a tree T obtained by taking Parikh vectors or weights of subtrees of T satisfying
some condition.

I Definition 1. Let T be a tree and A be a property of subtrees. Let the edges of T be
labeled by an σ-element alphabet Σ. The MPA-polynomial of T , denoted by fA(T) is

CPM 2016

10:4 Reconstruction of Trees from Jumbled and Weighted Subtrees

the σ-variable polynomial associated to the multiset of Parikh vectors of all subtrees of T
satisfying condition A.

I Definition 2. Let T be a tree and A be a property of subtrees. Let the edges of T be
weighted by positive integers. TheMWA-polynomial of T , denoted by gA(T) is the 1-variable
polynomial associated to the multiset of weights of all subtrees of T satisfying condition A.

The main reason for using polynomials to represent multisets is that we have additional
algebraic structure, while all information about the multiset is still preserved. This is a
crucial property used throughout (sometimes implicitly), so we state it as an observation.

I Observation 3. Let T1, T2 be trees and A a subtree property. Then MPA(T1) = MPA(T2)
if and only if fA(T1) = fA(T2). Similarly MWA(T1) = MWA(T2) if and only if gA(T1) =
gA(T2).

The following observation is also straightforward and means that MPA(T) contains all
the information for computing MWA(T).

I Observation 4. If the letters of the alphabets are positive integers, then they can be
interpreted as weights. Then the MWA-polynomial of a tree can be calculated from the
MPA-polynomial by substituting xai into the variable xi.

I Example 1. Let A = PATH. Let Σ = {a, b} and let the indeterminate x correspond to a,
and y to b. The tree T1 in Figure 1 has theMPpath-polynomial 2x+3y+4xy+y2+x2y+2xy2+
2x2y2, while theMPpath-polynomial of T2 is 2x+3y+4xy+y2+x2y+2xy2+x2y2+xy3. If we
let a = 3 and b = 2, then the MWpath-polynomial of T1 is 3t2 + 2t3 + t4 + 4t5 + 2t7 + t8 + 2t10.
This is obtained from its MPpath-polynomial by letting x = t3 and y = t2. (We used a new
letter t to avoid confusion.)

In what follows, we discuss how MPA-polynomials and MWA-polynomials of a tree can
be computed. We will restrict our attention to the case of A = SUBTREE, where all subtrees
are considered, A = PATH, where only paths between pairs of vertices are considered and
A = MAXPATH, where only maximal paths are considered. The theorems will be stated for
MPA-polynomials, but are valid in the same form for MWA-polynomials.

Unless otherwise specified, the labels or weights are always on the edges rather than
the vertices. The computation methods for vertex labeled and vertex weighted graphs are
obtained by adapting the computations, which we will not state as separate theorems. Our
examples of MPA-equivalent families are proved using the polynomial method. We present
recursive computation methods for the three kinds of subtree properties in the following
sections (the base cases for the recursion are left to the reader).

To conclude this section, we propose a new algorithmic application of MPA-polynomials
(resp.MWA-polynomials) for randomized testing ofMPA-equivalence (resp.MWA-equivalence)
of trees. The method is based on randomized equality testing for polynomials using the
Schwartz-Zippel lemma [32, 34]. The computation methods presented later all allow an
efficient substitution into the polynomials, even in the case when we consider subtrees, where
the size of the MPsubtree-set and thus the number of coefficients of the polynomial can be
exponential in the input. For the substitution we do not need the sequence of coefficients,
we can use the recursive methods for evaluating the polynomial. Finally note that using
modular arithmetic, calculations can be further sped up.

D. Bartha, P. Burcsi, and Zs. Lipták 10:5

3 Subtrees

3.1 Computation of fSUBTREE(T)
We first consider the case when all subtrees are considered in the Parikh multiset or the
weight multiset. Although we work on free trees (i.e. unrooted trees), for the computations
it is convenient to consider rooted trees. We root the tree T in an arbitrary vertex v and
define an auxiliary polynomial r(T, v), called the rooted MP -polynomial of T with root v,
as the polynomial representing the Parikh multiset of all subtrees containing v. We have the
following theorem.

I Theorem 5. Let T be a rooted tree with root v. Let v1, v2, . . . , vk be the children of v.
Denote the subtrees rooted at vi by Ti for i = 1, . . . , k. Denote the index in Σ of the label on
the edge connecting v and vj by lj. We have the following equations.

r(T, v) =
k∏
j=1

(1 + xlj · r(Tj , vj)) and f(T) = r(T, v) +
k∑
j=1

f(Tj)

Note that Theorem 5 generalizes the computation ofMP -polynomials orMW -polynomials
of strings presented in e.g. [8, 28, 2] since a string can be interpreted as an edge-labeled path.
The theorem also generalizes the subtree size multiset presented in [9].

3.2 Reconstructibility – Large Unjumble
For a general labeled tree T , one can ask if the unlabeled version of the tree (the topology)
can be uniquely reconstructed from MPsubtree(T) or MWsubtree(T). This is already impos-
sible from MPsubtree(T) for a trivial (i.e. one-element) alphabet, which also implies that
MWsubtree(T) does not determine the isomorphism class of the unlabeled tree either.

If one puts the same label (resp. weight) on each edge, then the Parikh vector (resp.
weight) of a subtree simply counts the number of edges in that subtree. It was proved in [9]
that knowing the number of subtrees with k edges for all k, that is, in our terms, knowing
MPsubtree(T) for one-letter alphabets is not generally enough for unique reconstruction of
the tree up to isomorphism.

I Proposition 6 ([9]). Let Σ = {1}. There exist infinitely many pairs of trees T1, T2, such
that if we label each edge with the only element of Σ, then MPsubtree(T1) = MPsubtree(T2)
and MWsubtree(T1) = MWsubtree(T2).

In the positive direction, we mention the following reconstructibility result from the same
paper. A spider is a tree with one vertex of degree at least 3 and all others with degree at
most 2 (called star-like trees in that paper).

I Theorem 7 ([9]). Let |Σ| = 1, and T1, T2 be two edge-labeled spiders with labels from Σ.
If MPsubtree(T1) = MPsubtree(T2), then T1 and T2 are isomorphic.

3.3 Reconstructibility – Small Unjumble
When the alphabet is non-trivial, there are several non-isomorphic labelings of a typical tree.
We consider reconstructibility of the labels for a fixed unlabeled tree. Note that the problem
of reconstructing a string from its substring compositions [2] is a special case: a string can
be represented as a path of equal length where the edge labels correspond to individual
characters in the string.

CPM 2016

10:6 Reconstruction of Trees from Jumbled and Weighted Subtrees

The problem of reconstructing a 1-dimensional point set from interpoint distances consid-
ered in [28] is also a special case of the reconstruction of a tree from MW (T): the weights
are the distances between neighboring points on a line. Since every subtree of a path is
a (sub)path, this remark also applies for reconstructibility from path Parikh vectors (resp
weights), addressed in the following section. The above two problems can also be reduced to
the case of vertex labeled paths.

We give non-reconstructibility examples for trees that are not a path. The smallest pair
of non-isomorphic MPsubtree-equivalent edge labeled trees are on six vertices.

I Example 2. Let P be a path of length 4, whose vertices are called v1, v2, . . . , v5 and the
edges v1v2, . . . are labeled with a, b, a, b. Construct T1 by attaching a 6th vertex v6 to v4 with
an edge labeled by b. Construct T2 from P by attaching a 6th vertex to v2 with an edge labeled
by b. See the example in Fig. 1.

It is also possible to attach a larger tree instead of the sixth vertex, which gives larger
examples of MPsubtree-equivalent pairs. We remark that the smallest such example for
vertex labeled trees is on 7 vertices. We also give a construction that yields an infinite family
of MPsubtree-equivalent examples (similar constructions work for vertex labeled trees).

I Proposition 8. Let s1 and s2 be two MPsubtree-equivalent strings of length k over a binary
alphabet Σ1. Create two MPsubtree-equivalent edge-labeled paths P1, P2 by using characters
of the strings as labels. Let U be an edge labeled rooted tree with labels from a disjoint alphabet
Σ2. Create Tj (j = 1, 2) from Pj by joining k+ 1 copies of U to each vertex of Pj , identifying
the vertex on the path and the root of U . Then T1 and T2 are not isomorphic as labeled trees,
but MPsubtree(T1) = MPsubtree(T2).

Finally, we present a result stating that, unsurprisingly,MP -equivalence does not generally
follow from MW -equivalence, already for 2-letter alphabets. We have an infinite family
already for paths.

I Proposition 9. Let k ≤ n an integer, Σ = {1, 2}. Let P1 be a path of length 14 + 5k, edge
labeled with elements of the sequence s1 = 21211112222122(12122)k. Let P2 be a path of
length 14, edge labeled with elements of the sequence s2 = 22111121222212(12212)k. Then
MPsubtree(P1) 6= MPsubtree(P2), but MWsubtree(P1) = MWsubtree(P2).

4 Paths

4.1 Computation of fPATH(T)

Let f(T) = fPATH(T) be the MPpath-polynomial of T . Root T is an arbitrary vertex v. We
denote by r(T, v) the polynomial corresponding to all paths at least one of whose endpoints
is v. We include 0-length paths in the computation, since it makes the formulae simpler, this
adds a constant n (the number of vertices) to the polynomial.

I Theorem 10. Let T be a rooted tree with root v. Let v1, v2, . . . vk be the children of v in
T . Denote the subtrees rooted at v1 (resp. v2 etc.) by T1 (resp. T2 etc.). Denote the index
in Σ of the label on the edge connecting v and vj by lj. We have the following equalities:

r(T, v) = 1 +
∑

(xlj · r(Tj , vj)), f(T) = r(T, v) +
k∑
j=1

f(Tj) +
∑

1≤i<j≤k
(xlixljr(Ti, vi)r(Tj , vj))

D. Bartha, P. Burcsi, and Zs. Lipták 10:7

Proof. For the statement on r note that a path starting in v either stops there immediately,
or contains exactly one of the vj and thus a path from vj to a vertex of Tj as a subpath.
To understand the identity for f , observe that a path in T either contains v as one of its
endpoints or is entirely contained in one of the Tj , or else it is the union of two paths which
both have v as one endpoint and their respective other endpoints in distinct Ti and Tj . J

4.2 Reconstructibility – Large Unjumble

For a general labeled tree T , one can ask if the unlabeled version of the tree can be uniquely
reconstructed from MPpath(T) or MWpath(T). We show that this is already impossible
from MPpath(T) for a one-element alphabet, which also implies that MWpath(T) does not
determine the isomorphism class of the unlabeled tree either.

In the following, we give infinitely many examples of pairs of unlabeled trees that are
homometric. This can be considered as a special case of MPpath-equivalence (resp. MWpath-
equivalence) when |Σ| = 1 (resp. we use the same weight everywhere).

I Proposition 11. For n ≥ 11 and odd, let T1 be a tree constructed from a 5-star by adding
respectively 1, 1, (n− 5)/2 and (n− 9)/2 new vertices joined to the star’s leaves, obtaining
a tree on n vertices. Construct T2 similarly, by adding 0, 2, (n− 7)/2 and (n− 7)/2 new
vertices adjacent to the star’s leaves. Then T1 and T2 are homometric but are not isomorphic.

For n ≥ 12 and even, let T1 be a tree constructed from a 6-star by adding respectively
1, 1, 1, (n − 6)/2 and (n − 10)/2 new vertices to the star’s leaves, obtaining a tree on n

vertices. Construct T2 similarly, but add 0, 1, 2, (n− 8)/2 and (n− 8)/2 new vertices. Then
T1 and T2 are homometric but are not isomorphic.

We remark that all one has to do is check the number of paths of length 1, 2, 3 and 4
since the constructed trees have diameter 4. The calculation is straightforward, and the idea
behind it is that if we add k1, k2, k3 and k4 vertices to the 5-star as above, then the number
of 1-paths (resp. 2-paths, 3-paths and 4-paths) is already determined by their sum and the
sum of their squares, and these values are identical for the two trees. One can compose such
trees by solving instances of the Prouhet-Tarry-Escott problem, see e.g. [10], Chap. 11.

4.3 Reconstructibility – Small Unjumble

We now turn to the problem of unique reconstructibility of the labeling, once the unlabeled
version of the tree is known. Again, if we take the viewpoint of strings being (either edge
or vertex) labeled graphs, then this problem contains as a special case the problem of
string reconstructibility from MWpath or MPpath. We thus focus on reconstructibilty for
other trees. First remark that the contruction in Proposition 8 also yields infinitely many
MPpath-equivalent pairs of non-isomorphic trees.

We now give a family of pairs that are vertex labeled PM-equivalent trees.

I Proposition 12. Let k ≥ 1 an integer. Let Pbase be a path of length 3 with alternating
vertex labels 0, 1, 0, 1, and Pk−1 be a path on k vertices, al labeled by 0. Construct T1 by
attaching two copies of Pk−1 to Pbase with two edges: one is attached to the leaf with 0 label,
and the other to the neighboring vertex on Pbase. We get a tree on 2k + 4 vertices. The
construction of T2 is similar, but Pbase is reversed. Then T1 and T2 are two different labelings
of the same tree, and MPpath(T1) = MPpath(T2).

CPM 2016

10:8 Reconstruction of Trees from Jumbled and Weighted Subtrees

Class sizes for MP-equivalence. For paths, the size of an equivalence class of MWpath-
equivalent paths (resp. MPpath-equivalent paths) is always a power of 2, as it was proved in
[28] (resp. [2]). This result no longer holds for other classes of trees, as illustrated by the
example below.

I Example 3. Let T be a spider on 11 vertices with 5 legs of length 2. Then the following 3
weightings of T form an MPpath-equivalence class of size 3 (we give the weighting as 5-tuples
of weight pairs on the legs from the center outwards). T1 : [1, 3], [2, 3], [3, 5], [4, 1], [6, 1],
T2 : [1, 3], [2, 5], [3, 1], [5, 1], [5, 3], T3 : [1, 5], [2, 1], [4, 1], [4, 3], [5, 3].

Finally note that Proposition 9 also applies for A = PATH.

5 Maximal paths

5.1 Computation of fMAXPATH(T)
Let f(T) = fMAXPATH(T) be the MPmaxpath-polynomial of T . Let r(T, v) denote the MP -
polynomial corresponding to all paths with one endpoint in v and another one in a leaf.
Finally, let t(T, v) be the MP -polynomial for all maximal paths that have v as one of their
endpoints. Note that t(T, v) = 0 if v is not a leaf in T .

I Theorem 13. Let T be a rooted tree with root v, and let v1, v2, . . . vk be the children of v
in T . Denote the subtrees rooted at v1 (resp. v2 etc.) by T1 (resp. T2 etc.). Denote the index
in Σ of the label on the edge connecting v and vj by lj. We have the following equalities:

r(T, v) =
∑

(xlj · r(Tj , vj))

f(T) = t(T, v) +
k∑
j=1

(f(Tj)− t(Tj , vj)) +
∑
i<j

(xlixljr(Ti, vi)r(Tj , vj))

t(T, v) =
{
r(T, v) if k=1
0 if k>1

5.2 Reconstructibility – Small Unjumble
We only consider reconstructibility for weighted graphs. Let us fix the topology of T as an
n-star. We have the following reconstructibility result for edge-weighted n-stars.

I Theorem 14. Let T1 and T2 be two n stars s.t. n − 1 is not a power of 2. Then
MWmaxpath(T1) = MWmaxpath(T2) implies that T1 and T2 are isomorphic as edge weighted
trees. If n = 2k + 1 for some k ≤ 0, then there are non-isomorphic edge labeled n-stars that
are MWmaxpath-equivalent.

The theorem is an easy consequence of Theorem 1 and Theorem 2 from [33], about
the reconstructibility of numbers from the multiset of their pairwise distances. These two
theorems are also proved in [23, 31] using the polynomial representation of sumsets, which
is more in the spirit of the present paper. To see how it follows, simply observe that the
weights of maximal paths are the pairwise sums of edge labels.

6 Reconstruction Algorithms

In this section, we treat reconstruction of edge-labeled trees from weighted paths, where the
topology of the tree is given (Small Unjumble). Note that we assume that S is given sorted.

D. Bartha, P. Burcsi, and Zs. Lipták 10:9

First let us note that for the case where T is a star, a simple greedy algorithm will solve
the problem exactly in time loglinear in the input size |S| =

(
n
2
)
. Denote by X the multiset

of weights of the edges, then MWpath(T) = X ∪ (X +X) (where by X +X we denote the
multiset of sums of two elements from the multiset X). Clearly, the two smallest numbers in
S are necessarily in X, which means that their sum is necessarily in X +X. The algorithm
starts with an empty X, iteratively chooses the smallest remaining number in S, adds it to
X, and eliminates it and its sums with those already in X from S. We touch each of the

(
n
2
)

input numbers exactly once; getting the next smallest one takes constant time, while finding
the corresponding elements from X +X takes logn time each.

I Example 4. Let T be a 6-star, i.e. |V (T)| = 6 with one vertex of degree 5 and 5 leaves, and
let S = {2, 3, 5, 5, 7, 8, 9, 10, 11, 12, 12, 13, 14, 15, 19}. Necessarily 2, 3 ∈ X, and this eliminates
also 5 = 2 + 3 from the input set. The next remaining smallest number is 5: this must
again be an edge label, thus 5 ∈ X, eliminating 7 = 5 + 2 and 8 = 5 + 3 from our input set.
Continuing, we get that 9 ∈ X, eliminating 11, 12, 14, and finally, that 10 ∈ X, eliminating
12, 13, 15, 19. So we see that the 5 edges are labeled with 2, 3, 5, 9, and 10 respectively.

In particular, if T is a star, then if there is a solution, it is necessarily unique. Thus we
have proved the following:

I Proposition 15. If T is a star, then the Greedy Algorithm correctly reconstructs its labeling
from MWpath(T) in time O(n2 logn). Moreover, for any instance S, either S is uniquely
reconstructable, or there is no solution.

Now let’s turn to a general tree topology. In the following we will generalize the algorithm
given in [28] for the turnpike problem to any tree. To this end, we define the path poset
of a tree T as the set of all paths in T , together with the inclusion order. We give an
example below (Ex. 5). Note that the input MWpath(T) consists precisely of the weights of
all elements of the path poset. So the task is to fill in the values from S into the path poset.
The following is immediate:

I Lemma 16. For any tree T , the path poset of T is exactly the union of the path posets of
its maximal paths.

I Example 5. Let T be as in Fig. 2, input S = {1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 11}. In the
same figure, we show the three pyramids with the unique solution (up to exchanging the labels
of d and e).

Following [28], we will refer to the above representation of the values of the path poset of
a maximal path as a pyramid. If π = (v1, . . . , vs) is a maximal path in T , then in its pyramid
∆, row k will hold all values of subpaths of π of length k. Let us refer to dij as the sum of
the weights on the path from vi to vj . As was shown in [28], the following relationships hold
within one pyramid:

I Lemma 17 ([28]). dij + dk` = di` + dkj for 1 ≤ i ≤ k ≤ ` ≤ j.

This property is then used in [28] for a backtracking algorithm which takes the next
largest remaining value, guesses its position in the pyramid, and fills in all other values which
are implied by it. When a choice implies a value not present in the input, the algorithm
backtracks. We, however, need to fill in all pyramids concurrently. For this, the following
lemma will be useful. We omit the proof for lack of space.

CPM 2016

10:10 Reconstruction of Trees from Jumbled and Weighted Subtrees

⌘

⌘

a b c d e

ab bc cd ce
de

abc bcd bce

abcd abce

8
7 6

5 5 3
2 3 2 1
a b c d

11
7 9

5 5 6
2 3 2 4
a b c e

5
1 4
d e

Figure 2 Example 5: A tree, its path poset, and the path posets of its three maximal paths (in
the latter we omit the edges for clarity), with the values of the input set filled in.

I Lemma 18. Let π = (v1, . . . , vr) and π′ = (u1, . . . , ur′) be two maximal paths in T with
non-empty intersection ρ. Let ∆ be the pyramid for π, with entries dij , and ∆′ the pyramid for
π′, with entries d′ij. If ρ = (vi, . . . , vi+`) = (ui′ , . . . , ui′+`), then the following relationships
hold between ∆ and ∆′:
1. for k ≤ i, k′ ≤ i′: dk,i+s − d′k′,i′+s = dk,i+t − d′k′,i′+t for all 0 ≤ s, t ≤ `, and
2. for k ≥ i+ `, k′ ≥ i′ + `: di+s,k − d′i′+s,k′ = di+t,k − d′i′+t,k′ for all 0 ≤ s, t ≤ `.

Our algorithm proceeds as follows. In each step, it takes the next largest value still in S
and places it in one of the maximal free places, i.e. in a free place that has no larger free
place in any of the pyramids. It then fills in all implied positions according to Lemma 17
and 18. If at some point it encounters a value not present among the yet unused values, it
backtracks. For example, in Example 5, for the first value 11 there are three possible choices,
namely the tops of the three pyramids. Say we have already placed values 11 and 9 in their
respective places as in the final solution. Now placing 8 on the top of the first pyramid will
force the difference for all values on the right sides of the first and second pyramids to be 3,
an application of Lemma 17.

I Lemma 19. Every maximal free place is either on top of a pyramid, or on the side of a
pyramid.

I Theorem 20. There is a O((2Γ)(Γ+n)n2 logn) algorithm for finding all possible labelings
of a given tree T from the multiset of

(
n
2
)
path weights, where n is the number of vertices of

T , and Γ the number of maximal paths in T .

Although the algorithm has exponential running time, it compares well to the simple
exhaustive search if the number of leaves is small, since trying all possible labelings of the
edges would give O(n2n/2n) running time. Note that parameter Γ is quadratic in the number
of leaves. So essentially the algorithm performs well on trees which are close to strings, and
badly on trees that are close to stars, i.e. have many leaves. Indeed, as can be seen, the
Greedy algorithm for stars applies the opposite strategy, namely filling in the path poset from
below; this makes sense when the higher levels are more populous than the lower levels, while
starting from above is appropriate when the form is pyramid-like. Moreover, the analysis
is very pessimistic and does not so far take advantage of the improvements given by the

D. Bartha, P. Burcsi, and Zs. Lipták 10:11

pruning due to Lemmas 17 and 18. In practice, we expect that many branches will be pruned
by these implications. For the special case of the turnpike problem, if we consider random
instances then incorrect branches are pruned almost immediately, see [28].

7 Conclusion and Open Problems

Our reconstruction algorithm is purely combinatorial, and it seems a challenging problem to
find a reconstruction algorithm based on MP -polynomials, similar to the ones presented in
[28, 2]. We would also be interested in proving further results about unique reconstructibility
with algebraic techniques.

Another intriguing task is connecting the Large Unjumble Problem for weighted maximal
paths to the distance-based phylogeny problem: Note that if we had an assignment of the
input numbers to the Γ leaf pairs, then a reconstruction, if it exists, is unique, and can be
found in O(Γ3/2) e.g. using the Neighbor Joining algorithm [30] (or it can be shown that no
such reconstruction exists).

Further open problems include the complexity status of the reconstruction problems
introduced, in particular in which of the cases Large Unjumble is computationally hard.

References
1 Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, and Shengjun Pan.

Quadratic-backtracking algorithm for string reconstruction from substring compositions.
In 2014 IEEE Int. Symp. on Information Theory (ISIT 2014), pages 1296–1300, 2014.
doi:10.1109/ISIT.2014.6875042.

2 Jayadev Acharya, Hirakendu Das, Olgica Milenkovic, Alon Orlitsky, and Shengjun Pan.
String reconstruction from substring compositions. SIAM J. Discrete Math., 29(3):1340–
1371, 2015. doi:10.1137/140962486.

3 Tatsuya Akutsu, Daiji Fukagawa, Jesper Jansson, and Kunihiko Sadakane. Inferring a
graph from path frequency. Discrete Applied Mathematics, 160(10-11):1416–1428, 2012.
doi:10.1016/j.dam.2012.02.002.

4 Amihood Amir, Ayelet Butman, and Ely Porat. On the relationship between histogram
indexing and block-mass indexing. Philosophical Transactions of The Royal Society A:
Mathematical Physical and Engineering Sciences, 372(2016), 2014. doi:10.1098/rsta.
2013.0132.

5 Amihood Amir, Timothy M. Chan, Moshe Lewenstein, and Noa Lewenstein. On hardness
of jumbled indexing. In 41st Int. Coll. on Automata, Languages, and Programming (ICALP
2014), volume 8572 of Lecture Notes in Computer Science, pages 114–125. Springer, 2014.
doi:10.1007/978-3-662-43948-7_10.

6 Maria Axenovich and Lale Özkahya. On homometric sets in graphs. Electronic Notes in
Discrete Mathematics, 38:83–86, 2011. doi:10.1016/j.endm.2011.09.014.

7 Golnaz Badkobeh, Gabriele Fici, Steve Kroon, and Zsuzsanna Lipták. Binary Jumbled
String Matching for Highly Run-Length Compressible Texts. Information Processing Let-
ters, 113:604–608, 2013. doi:10.1016/j.ipl.2013.05.007.

8 Nikhil Bansal, Mark Cieliebak, and Zsuzsanna Lipták. Efficient algorithms for finding
submasses in weighted strings. In Proc. of the 15th Ann. Symp. on Combinatorial Pattern
Matching (CPM 2004), volume 3109 of Lecture Notes in Computer Science, pages 194–204.
Springer, 2004. doi:10.1007/978-3-540-27801-6_14.

9 Dénes Bartha and Péter Burcsi. Reconstructibility of trees from subtree size frequencies.
Stud. Univ. Babeş-Bolyai Math., 59:435–442, 2014.

CPM 2016

http://dx.doi.org/10.1109/ISIT.2014.6875042
http://dx.doi.org/10.1137/140962486
http://dx.doi.org/10.1016/j.dam.2012.02.002
http://dx.doi.org/10.1098/rsta.2013.0132
http://dx.doi.org/10.1098/rsta.2013.0132
http://dx.doi.org/10.1007/978-3-662-43948-7_10
http://dx.doi.org/10.1016/j.endm.2011.09.014
http://dx.doi.org/10.1016/j.ipl.2013.05.007
http://dx.doi.org/10.1007/978-3-540-27801-6_14

10:12 Reconstruction of Trees from Jumbled and Weighted Subtrees

10 Peter B. Borwein. Computational excursions in analysis and number theory. CMS books
in mathematics. Springer, New York, Berlin, Heidelberg, 2002.

11 Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. Algorithms for
Jumbled Pattern Matching in Strings. Int. Journal of Foundations of Computer Science,
23:357–374, 2012. doi:10.1142/S0129054112400175.

12 Péter Burcsi, Ferdinando Cicalese, Gabriele Fici, and Zsuzsanna Lipták. On Approximate
Jumbled Pattern Matching in Strings. Theory of Computing Systems, 50:35–51, 2012.
doi:10.1007/s00224-011-9344-5.

13 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proc. of 47th Annual ACM Symposium on Theory of Computing (STOC 2015),
pages 31–40, 2015. doi:10.1145/2746539.2746568.

14 Ferdinando Cicalese, Travis Gagie, Emanuele Giaquinta, Eduardo Sany Laber, Zsuzsanna
Lipták, Romeo Rizzi, and Alexandru I. Tomescu. Indexes for jumbled pattern matching
in strings, trees and graphs. In 20th Int. Symp. on String Processing and Information
Retrieval (SPIRE 2013), volume 8214 of Lecture Notes in Computer Science, pages 56–63.
Springer, 2013. doi:10.1007/978-3-319-02432-5_10.

15 Ferdinando Cicalese, Eduardo Sany Laber, Oren Weimann, and Raphael Yuster. Approxi-
mating the maximum consecutive subsums of a sequence. Theoret. Comput. Sci., 525:130–
137, 2014. doi:10.1016/j.tcs.2013.05.032.

16 Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme J. Mitchison. Biological Se-
quence Analysis: Probabilistic Models of Proteins and Nucleic Acids. CUP, 1998.

17 Stephane Durocher, Robert Fraser, Travis Gagie, Debajyoti Mondal, Matthew Skala,
and Sharma V. Thankachan. Indexed geometric jumbled pattern matching. In Proc.
of the 25th Annual Symposium on Combinatorial Pattern Matching (CPM 2014), vol-
ume 8486 of Lecture Notes in Computer Science, pages 110–119. Springer, 2014. doi:
10.1007/978-3-319-07566-2_12.

18 Tomás Feder and Rajeev Motwani. On the graph turnpike problem. Inf. Process. Lett.,
109(14):774–776, 2009. doi:10.1016/j.ipl.2009.03.024.

19 Radoslav Fulek and Slobodan Mitrovic. Homometric sets in trees. Eur. J. Comb., 35:256–
263, 2014. doi:10.1016/j.ejc.2013.06.008.

20 Travis Gagie, Danny Hermelin, Gad M. Landau, and Oren Weimann. Binary jumbled
pattern matching on trees and tree-like structures. Algorithmica, 73(3):571–588, 2015.
doi:10.1007/s00453-014-9957-6.

21 Emanuele Giaquinta and Szymon Grabowski. New algorithms for binary jumbled pattern
matching. Inf. Process. Lett., 113(14–16):538–542, 2013. doi:10.1016/j.ipl.2013.04.
013.

22 Danny Hermelin, Gad M. Landau, Yuri Rabinovich, and Oren Weimann. Binary jumbled
pattern matching via all-pairs shortest paths. CoRR, abs/1401.2065, 2014. URL: http:
//arxiv.org/abs/1401.2065.

23 Ross Honsberger. In Polya’s Footsteps: Miscellaneous Problems and Essays (Dolciani
Mathematical Expositions). The Mathematical Association of America, October 1997.

24 Tomasz Kociumaka, Jakub Radoszewski, and Wojciech Rytter. Efficient indexes for jum-
bled pattern matching with constant-sized alphabet. In 21st Annual European Symposium
on Algorithms (ESA 2013), volume 8125 of Lecture Notes in Computer Science, pages
625–636. Springer, 2013. doi:10.1007/978-3-642-40450-4_53.

25 Eduardo Laber, Wilfredo Bardales, and Ferdinando Cicalese. On lower bounds for the
maximum consecutive subsums problem and the (min,+)-convolution. In Proceedings of
the 2013 IEEE Int. Symp. on Information Theory (ISIT 2013). IEEE, 2014.

http://dx.doi.org/10.1142/S0129054112400175
http://dx.doi.org/10.1007/s00224-011-9344-5
http://dx.doi.org/10.1145/2746539.2746568
http://dx.doi.org/10.1007/978-3-319-02432-5_10
http://dx.doi.org/10.1016/j.tcs.2013.05.032
http://dx.doi.org/10.1007/978-3-319-07566-2_12
http://dx.doi.org/10.1007/978-3-319-07566-2_12
http://dx.doi.org/10.1016/j.ipl.2009.03.024
http://dx.doi.org/10.1016/j.ejc.2013.06.008
http://dx.doi.org/10.1007/s00453-014-9957-6
http://dx.doi.org/10.1016/j.ipl.2013.04.013
http://dx.doi.org/10.1016/j.ipl.2013.04.013
http://arxiv.org/abs/1401.2065
http://arxiv.org/abs/1401.2065
http://dx.doi.org/10.1007/978-3-642-40450-4_53

D. Bartha, P. Burcsi, and Zs. Lipták 10:13

26 Vincent Lacroix, Cristina G. Fernandes, and Marie-France Sagot. Motif search in graphs:
Application to metabolic networks. IEEE/ACM Trans. Comput. Biology Bioinform.,
3(4):360–368, 2006. doi:10.1109/TCBB.2006.55.

27 Lap-Kei Lee, Moshe Lewenstein, and Qin Zhang. Parikh matching in the streaming model.
In 19th Int. Symp. on String Processing and Information Retrieval (SPIRE 2012), volume
7608 of Lecture Notes in Computer Science, pages 336–341. Springer, 2012. doi:10.1007/
978-3-642-34109-0_35.

28 Paul Lemke, Steven S. Skiena, and Warren D. Smith. Discrete and Computational
Geometry: The Goodman-Pollack Festschrift, chapter Reconstructing Sets From Inter-
point Distances, pages 597–631. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.
doi:10.1007/978-3-642-55566-4_27.

29 Tanaeem M. Moosa and M. Sohel Rahman. Sub-quadratic time and linear space data
structures for permutation matching in binary strings. J. Discr. Algorithms, 10:5–9, 2012.
doi:10.1016/j.jda.2011.08.003.

30 N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol Biol Evol, 4(4):406–425, 1987.

31 Svetoslav Savchev and Titu Andreescu. Mathematical Miniatures, volume 43 of Anneli Lax
New Mathematical Library. The Mathematical Association of America, 2003.

32 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980. doi:10.1145/322217.322225.

33 J. L. Selfridge and E. G. Straus. On the determination of numbers by their sums of a fixed
order. Pacific J. Math., 8(4):847–856, 1958.

34 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of Symbolic and
Algebraic Computation (EUROSAM’79), volume 72 of Lecture Notes in Computer Science,
pages 216–226. Springer, 1979.

CPM 2016

http://dx.doi.org/10.1109/TCBB.2006.55
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1007/978-3-642-34109-0_35
http://dx.doi.org/10.1007/978-3-642-55566-4_27
http://dx.doi.org/10.1016/j.jda.2011.08.003
http://dx.doi.org/10.1145/322217.322225

	Introduction
	The polynomial representation of Parikh multisets and weight multisets
	Subtrees
	Computation of f-SUBTREE(T)
	Reconstructibility – Large Unjumble
	Reconstructibility – Small Unjumble

	Paths
	Computation of f-PATH(T)
	Reconstructibility – Large Unjumble
	Reconstructibility – Small Unjumble

	Maximal paths
	Computation of f-MAXPATH(T)
	Reconstructibility – Small Unjumble

	Reconstruction Algorithms
	Conclusion and Open Problems

