10 research outputs found

    Min-Max Hamming Distance Considerations for Activation Pattern Design in Index Modulation

    Get PDF
    Index modulation (IM) has been widely studied showing promising performance over traditional communication systems. Index pattern plays an important role since its activation methodology determines bit error rate (BER), spectral efficiency (SE) and energy efficiency (EE). This work proposes efficient index activation patterns according to a min-max Hamming distance metric for both orthogonal frequency division multiplexing (OFDM) and non-orthogonal spectrally efficient FDM (SEFDM). Simulations of low-density parity-check (LDPC) coded IM systems in both additive white Gaussian noise (AWGN) and frequency selective channels are provided. Results reveal that the proposed index activation patterns in IM systems lead to improved BER and SE compared to that in traditional OFDM systems. Moreover, peak-to-average power ratio (PAPR) distribution results are presented to demonstrate the EE advantage of the proposed IM systems over OFDM systems

    A novel index modulation for dimming in LiFi systems

    Get PDF
    This paper introduces a novel dimming method for Light Fidelity (LiFi) based on index modulation (IM). A time-domain sample-index modulation (TIM) is proposed for indexed dimming (iDim). The aim is to maintain a high communication performance measured in signal to noise ratio (SNR) and a high transmission rate for a wide light emitting diode (LED) brightness range. Direct current optical orthogonal frequency division multiplexing (DCO-OFDM) is used. The system performance is experimentally validated by an implementation on a National Instruments (NI) PXIe-1085 and NI-7966R Field Programmable Gate Array (FPGA). The proposed iDim offers a wider dimming range and an improved SNR/symbol when compared to amplitude-modulation dimming (AM dimming). In particular, the iDim system provides a SNR/symbol of 22.5 dB for all brightness levels. The lowest optical power is measured at 20 \muW which is 10 times lower than the measured limit of AM dimming. This reduces the cost of the optical power per bit. Therefore, iDim is a promising dimming method for applications targeting extremely low illumination levels

    Generalization of Space-Time Block Coded-Spatial Modulation for High Data Rate VLC Systems (Invited Paper)

    Get PDF
    Visible light communication (VLC) is a promising solution to the current congestion in radio frequency (RF) spectrum. It achieves that by exploiting the huge unregulated visible light portion of the electromagnetic spectrum in order to enable high-speed short range wireless communications, as well as, providing an sufficient lighting. This new solution is envisioned to provide a considerably wider bandwidth that can accommodate ubiquitous broadband connectivity to indoor users and further offload data traffic from overloaded cellular networks. However, VLC suffers from several limitations, such as the limited modulation bandwidth of light-emitting diodes (LEDs) that degrades the overall system spectral efficiency. In this respect, several interesting solutions have been proposed in the recent literature to overcome this limitation, such as the implementation of efficient optical modulation and multipleinput-multiple-output (MIMO) schemes. In this paper, we investigate the performance of multiple active spatial modulation (MASM) integrated with orthogonal space time block codes (STBC) for indoor VLC systems. Additionally, in ordered to reduce the receiver complexity, a simplified version of the joint maximum likelihood (ML) detector is proposed which has a linear complexity with respect to the number of transmit LEDs and the constellation size. Extensive computer simulations demonstrate that STBC-MASM improves the overall system performance compared to MASM with a considerably simplified detection.acceptedVersionPeer reviewe

    Antenna Selection For Receive Spatial Modulation System Empowered By Reconfigurable Intelligent Surface

    Full text link
    Reconfigurable intelligent surface (RIS) enhances signal quality by adjusting the phase of electromagnetic waves in wireless communication. Spatial modulation (SM), a prominent index modulation (IM) technique, provides high spectral efficiency and low energy consumption. In this article, a new wireless communication system is proposed by combining capacity-optimized antenna selection (COAS), antenna correlation antenna selection (ACAS), and Euclidean distance-optimized antenna selection (EDAS)-supported RIS-empowered receive SM (RIS-RSM) system (AS-RIS-RSM) in a single-input multiple-output (SIMO) structure. The proposed AS-RIS-RSM schemes (COAS-RIS-RSM, ACAS-RIS-RSM, and EDAS-RIS-RSM) have superior features such as high spectral efficiency, high energy efficiency, and low error data transmission. Integrating COAS, ACAS, and EDAS techniques into the system enables the selection of the channel with the best conditions, thus increasing the error performance of the proposed system. Also, using RIS increases the error performance of the system by controlling the transmitted signal to a certain extent. The analytical ABER results of the proposed AS-RIS-RSM systems are derived and shown to overlap with simulation results. For the proposed systems, an optimal maximum likelihood (ML) detector and a sub-optimal low-complexity greedy detector (GD) are offered. Also, capacity analyses of the proposed AS-RIS-RSM systems are derived and it is observed that they have higher capacity compared to RIS-QAM/PSK and RIS-RSM systems. Then, computational complexity analyses of the proposed COAS-RIS-RSM, ACAS-RIS-RSM, and EDAS-RIS-RSM systems are presented. The proposed systems have been compared to counterpart wireless communication systems including RIS-RSM, RIS-QAM, and RIS-PSK under equivalent conditions, demonstrating that the proposed systems achieve better error performance.Comment: 10 pages, 3 Tables, 6 Figur

    OFDM with hybrid number and Index modulation

    Get PDF
    A novel transmission scheme is introduced for efficient data transmission by conveying additional information bits through jointly changing the index and number of active subcarriers within each orthogonal frequency division multiplexing (OFDM) subblock. The proposed scheme is different from the conventional OFDM-subcarrier number modulation (OFDM-SNM) and OFDM-index modulation (OFDM-IM), in which data bits are transmitted using either number or index of active subcarriers. The proposed modulation technique offers superior spectral and energy efficiency compared to its counterparts OFDM-SNM and OFDM-IM, especially at low modulation orders such as binary phase shift keying (BPSK) that can provide high reliability and low complexity, thus making it very suitable for meeting the requirements of Internet of things (IoT) applications. Bit error rate (BER) performance analysis is provided for the proposed scheme, and Monte Carlo simulations are presented to prove the consistency of the simulated BER with the analyzed one. More importantly, it is demonstrated that the proposed scheme can offer much superior BER performance compared to that of OFDM-IM and classical OFDM under equivalent power and spectral efficiency values.No sponso

    Index Modulation Pattern Design for Non-Orthogonal Multicarrier Signal Waveforms

    Get PDF
    Spectral efficiency improvement is a key focus in most wireless communication systems and achieved by various means such as using large antenna arrays and/or advanced modulation schemes and signal formats. This work proposes to further improve spectral efficiency through combining non-orthogonal spectrally efficient frequency division multiplexing (SEFDM) systems with index modulation (IM), which can efficiently make use of the indices of activated subcarriers as communication information. Recent research has verified that IM may be used with SEFDM to alleviate inter-carrier interference (ICI) and improve error performance. This work proposes new SEFDM signal formats based on novel activation pattern designs, which limit the locations of activated subcarriers and enable a variable number of activated subcarriers in each SEFDM subblock. SEFDM-IM system designs are developed by jointly considering activation patterns, modulation schemes and signal waveform formats, with a set of solutions evaluated under different spectral efficiency scenarios. Detailed modelling of coded systems and simulation studies reveal that the proposed designs not only lead to better bit error rate (BER) but also lower peak-to-average power ratio (PAPR) and reduced computational complexity relative to other reported index-modulated systems

    Modulation options for OFDM-based waveforms: classification, comparison, and future directions

    Get PDF
    This paper provides a comparative study on the performance of different modulation options for orthogonal frequency division multiplexing (OFDM) in terms of their spectral efficiency, reliability, peak-to-average power ratio, power efficiency, out-of-band emission, and computational complexity. The modulation candidates are classified into two main categories based on the signal plane dimension they exploit. These categories are: 1) 2-D signal plane category including conventional OFDM with classical fixed or adaptive QAM modulation and OFDM with differential modulation, where information is conveyed in changes between two successive symbols in the same subcarrier or between two consecutive subcarriers in the same OFDM symbol and 2) 3-D signal plane category encompassing: a) index-based OFDM modulation schemes which include: i) spatial modulation OFDM, where information is sent by the indices of antennas along with conventional modulated symbols and ii) OFDM with index modulation, where the subcarriers’ indices are used to send additional information; b) number-based OFDM modulation schemes which include OFDM with subcarrier number modulation, in which number of subcarriers is exploited to convey additional information; and c) shape-based OFDM modulation schemes which include OFDM with pulse superposition modulation, where the shape of pulses is introduced as a third new dimension to convey additional information. Based on the provided comparative study, the relationship and interaction between these different modulation options and the requirements of future 5G networks are discussed and explained. This paper is then concluded with some recommendations and future research directions.This work was supported in part by the Scientific and Technological Research Council of Turkey (TUBITAK), under Grant 215E316

    Spread OFDM-IM with precoding matrix and low-complexity detection designs

    Get PDF
    We propose a new spread orthogonal frequency division multiplexing with index modulation (S-OFDM-IM), which employs precoding matrices such as Walsh-Hadamard (WH) and Zadoff-Chu (ZC) to spread both non-zero data symbols of active sub-carriers and their indices, and then compress them into all available sub-carriers. This aims to increase the transmit diversity, exploiting both multipath and index diversities. As for the performance analysis, we derive the bit error probability (BEP) to provide an insight into the diversity and coding gains, and especially impacts of selecting various spreading matrices on these gains. This interestingly reveals an opportunity of using rotated versions of original WH and ZC matrices to further improve the BEP performance. More specifically, rotated matrices can enable S-OFDM-IM to harvest the maximum diversity gain, which is the number of sub-carriers, while benchmark schemes have diversity gains limited by two. Moreover, we propose three low-complexity detectors, namely minimum mean square error log-likelihood ratio, index pattern MMSE (IP-MMSE), and enhanced IP-MMSE, which achieve different levels of complexity and reliability. Simulation results are presented to prove the superiority of S-OFDM-IM over the benchmarks

    The generalization of orthogonal frequency division multiplexing with subcarrier power modulation to quadrature signal constellations

    Get PDF
    A novel modulation technique termed as orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM) has been proposed for achieving spectral-efficient data transmission in wireless communication systems. OFDM-SPM utilizes the power of each subcarrier in an OFDM block as an extra degree of freedom to convey extra information bits besides the bits transmitted by conventional signal modulation. OFDM-SPM has originally been introduced with binary phase shift keying (BPSK) symbol modulation, and was shown to provide great gains and various merits such as doubling the spectral efficiency, reducing transmission power and transmission times by half. Displaying its capabilities as a scheme to be adopted for future wireless communication systems, a question detrimental to the adoption of OFDM-SPM has yet to be answered. This is whether the gains that OFDM-SPM brings persist when paired with higher order modulation schemes, especially two dimensional signal constellation schemes such as M-ary PSK. In this paper, OFDM-SPM is paired with quadrature phase shift keying (QPSK) symbol modulation as an example of a higher order two dimensional modulation scheme. The performance analysis of this scheme along with its numerical simulations are carried out where the bit error rate (BER) and throughput performances of the scheme are given in both an additive white Gaussian noise (AWGN), and multipath Rayleigh fading channels. These simulations are done for different power allocation policies. Unlike other 3D modulation methods, the results show that OFDM-SPM can be used with higher order modulation schemes while maintaining all the gains exhibited in OFDM-SPM with BPSK. This gives OFDM-SPM a unique advantage when compared to other 3D modulation schemes such as OFDM-IM and OFDM-SNM, which lose the gain in spectral efficiency as the modulation order becomes higher. Furthermore, the results of OFDM-SPM with QPSK were compared to that of conventional OFDM with 16-QAM symbol modulation. OFDM-SPM displayed superiority both in terms of BER and throughput achieving a gain of approximately 2.5-3 dB. These findings clearly point out that OFDM-SPM is a promising modulation scheme, which should be investigated more vigorously and considered as a strong candidate for adoption in future 6G and beyond wireless communication systems.This research was partly funded by TUBITAK under Grant/Award Number: 119E408
    corecore