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Spread OFDM-IM with Precoding Matrix and

Low-Complexity Detection Designs
Thien Van Luong, Student Member, IEEE, and Youngwook Ko, Senior Member, IEEE

Abstract—We propose a new spread Orthogonal Frequency
Division Multiplexing with Index Modulation (S-OFDM-IM),
which employs precoding matrices such as Walsh-Hadamard
(WH) and Zadoff-Chu (ZC) to spread both non-zero data symbols
of active sub-carriers and their indices, and then compress them
into all available sub-carriers. This aims to increase the transmit
diversity, exploiting both multipath and index diversities. As for
the performance analysis, we derive the bit error probability
(BEP) to provide an insight into the diversity and coding gains,
and especially impacts of selecting various spreading matrices
on these gains. This interestingly reveals an opportunity of using
rotated versions of original WH and ZC matrices to further im-
prove the BEP performance. More specifically, rotated matrices
can enable S-OFDM-IM to harvest the maximum diversity gain
which is the number of sub-carriers, while benchmark schemes
have diversity gains limited by two. Moreover, we propose three
low-complexity detectors, namely minimum mean square error
log-likelihood ratio (MMSE-LLR), index pattern MMSE (IP-
MMSE), and enhanced IP-MMSE, which achieve different levels
of complexity and reliability. Simulation results are presented to
prove the superiority of S-OFDM-IM over the benchmarks.

Index Terms—OFDM-IM, index modulation, spreading, pre-
coding, Zadoff-Chu, Walsh-Hadamard, MMSE-based detectors.

I. INTRODUCTION

Index modulation (IM) is an emerging technique that ex-

ploits indices of active channels to convey information in

addition to conventional M -ary modulation symbols. The idea

of IM is first proposed to code division multiplexing access

systems in [1], where the index set of spread sequences is used

to convey extra bits. Then, the IM concept is applied to the

orthogonal frequency division multiplexing (OFDM) [2], [3],

which results in a novel scheme termed as OFDM with index

modulation (OFDM-IM). In particular, OFDM-IM activates

only a subset of sub-carriers to carry data bits via both M -ary

complex data symbols and active sub-carrier indices. Thus,

this scheme provides a balanced trade-off between spectral

efficiency (SE) and reliability, just by adjusting the number of

active sub-carriers. Besides, OFDM-IM achieves higher energy

efficiency (EE) and reliability than classical OFDM.

Recently, OFDM-IM has attracted a great deal of attention

from researchers as shown in recent surveys [4], [5]. For

example, in [6], the number of active sub-carriers is relaxed
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to increase index bits. The greedy detector for OFDM-IM is

proposed in [7] and its bit error rate (BER) under uncertain

channel state information (CSI) is analyzed in [8]. In [9], the

achievable rate is investigated, while a tight bound on the BER

of the maximum likelihood (ML) detector is derived in [10].

The application of OFDM-IM in multiple input multiple output

(MIMO) systems can be found in [11]. A novel framework of

analyzing the symbol error probability under CSI uncertainty

of OFDM-IM with any detection types is proposed in [12].

To improve the SE, in [6], the IM is separately applied to

inphase and quadrature components to double the number of

index bits and the resulting scheme is called as OFDM-IM-

I/Q. Dual-mode OFDM-IM and its extension to multi-mode

and transmit diversity are reported in [13], [14], which exploit

inactive sub-carriers to carry extra bits.

A variety of advanced schemes have been proposed to

increase the transmit diversity of OFDM-IM. For instance, in

[15], the coordinate interleaved OFDM-IM (CI-OFDM-IM) is

proposed to convey real and imaginary parts of each non-zero

data symbol over different sub-carriers. In [16], a compressed

sensing-aided OFDM-IM is proposed to enhance the EE and

diversity gain at the cost of higher complexity. Based on

the code index modulation [17], the index modulated OFDM

spread spectrum (IM-OFDM-SS) is introduced in [18], which

uses indices of spreading codes to convey data bits. The use

of coding and transmit diversity for OFDM-IM can be found

in [19]. The repetition code for M -ary modulated symbols

in OFDM-IM is presented in [20]. Meanwhile, the precoding

or spreading technique has been well developed for classical

OFDM. For example, the grouped linear constellation precoder

(LCP) is optimally designed for OFDM [21] to provide maxi-

mum multipath diversity gains. In [22], the spread OFDM (S-

OFDM) employs the rotated Walsh-Hadamard (WH) transform

to maximize diversity gain. Recently, the LCP is developed for

OFDM-IM-I/Q [23] in order to increase the transmit diversity

up to two. In [24], OFDM with grouped sub-carriers and the

interleaving at the real dimension level is proposed, where

the lattice-based codebook is designed to maximize the signal

space diversity. In [25], the precoding matrix is designed for

MIMO-OFDM-IM based on CSI at the transmitter. To the

best of our knowledge, potentials of a precoded OFDM-IM

to fully exploit both multipath and index diversities have been

overlooked in the literature.

In this paper, we propose a novel IM scheme, which can

maximize the transmit diversity of OFDM-IM. The contribu-

tions of this paper are summarized as follows:

• The spread OFDM-IM (S-OFDM-IM) is proposed, which

employs WH and Zadoff-Chu (ZF) precoding matrices



to spread both data symbols of active sub-carriers and

their indices, and then compress them to all available

sub-carriers. Thus, S-OFDM-IM can fully exploit both

multipath and index diversities to substantially increase

the transmit diversity.

• The bit error probability (BEP) is analyzed to provide

an insight into diversity and coding gains, and effects of

various spreading matrices on performance gains. This

particularly sheds light on an opportunity of using phase-

shifted spreading matrices of WH and ZC to possibly

maximize the diversity order.

• Three low-complexity detectors are proposed, which offer

different levels of reliability and complexity. The com-

plexity analysis and comparison among detector types

clearly show that complexities of the proposed detectors

are substantially reduced over the ML.

• Extensive simulations are provided to show the superior-

ity of S-OFDM-IM over its benchmarks. It is shown that

despite using lower complexity detectors, our scheme still

outperforms the benchmarks with the ML.

The rest of the paper is organized as follows. Section II

describes the S-OFDM-IM system model with the WH and ZC

spreading matrices. The performance analysis and the rotated

spreading matrices are performed in Section III. In Section IV,

we introduce low-complexity detectors. Simulation results are

given in Section V, while Section VI concludes the paper.1

II. SYSTEM MODEL

A. S-OFDM-IM

Consider an OFDM-IM system which has a total of Nc

sub-carriers. To ease implementation, these sub-carriers are

partitioned into G clusters of N sub-carriers, i.e., Nc = NG
and the OFDM-IM process is independently performed in each

cluster. In every transmission, only K out of N sub-carriers are

active to carry information bits via not only M -ary modulated

symbols but also active sub-carrier indices. Due to the fact that

each cluster operates independently, without loss of generality,

we present only one cluster hereinafter for simplicity.

We propose a new precoded IM scheme called as spread

OFDM-IM (S-OFDM-IM), where active sub-carrier indices

are spread and then compressed to all N available sub-carriers.

In particular, the block diagram of one S-OFDM-IM cluster is

depicted in Fig. 1. For each transmission, p incoming bits are

divided into two bit streams (p = p1+p2). The first p1 bits are

to determine a pattern of K active indices, which is denoted by

θ = {i1, ..., iK}, where ik ∈ {1, ..., N}. This mapping process

is performed using look-up table or combinatorial method

[3]. The remaining p2 bits are mapped to K complex data

symbols denoted by s = [s1, ..., sK ] with sk ∈ S , where S is

the M -ary modulation constellation. The average energy per

non-zero data symbol is normalized as E

{

|sk|2
}

= 1. Then,

1Notation: Upper-case bold and lower-case bold letters denote matrices and
vectors, respectively. (.)∗, (.)T and (.)H represent the complex conjugation,
transpose and Hermitian operators, respectively. ‖.‖ and ⊗ denote the Frobe-
nius norm and the Kronecker product, respectively. j is the unit imaginary
number. The binomial coefficient is denoted by C (, ), while the floor function
is presented by ⌊.⌋. CN (, ) denotes the complex Gaussian distribution. E {.}
and O(.) denote the average value and the Big-O notation, respectively.

Fig. 1. Block diagram of one cluster of the spread OFDM-IM.

θ and s are passed through the IM cluster creator to creat

the data symbol vector x = [x1, ..., xN ]
T

, where xi = 0 for

i /∈ θ and xik = sk for ik ∈ θ. Unlike the classical scheme,

x is multiplied by the precoding matrix G before entering

the inverse fast Fourier transform (IFFT). Notice that G is a

square matrix with the size of N ×N , which can be properly

designed to spread both θ and s, and then compress them into

N sub-carriers, harvesting significant diversity gains. We will

thoroughly present the design of various precoding matrices

afterwards. The precoded vector (denoted by z = Gx)

is transmitted to the receiver over N flat Rayleigh fading

channels. Denote by H = diag {h1, ..., hN} the frequency-

domain channel matrix whose elements hi are independently

and identically distributed and hi ∼ CN
(

0, σ2
)

. Accordingly,

the received signal in frequency domain is expressed by

y = HGx+ n, (1)

where n = [n1, ..., nN ]
T

is the noise vector with ni ∼
CN (0, N0) . Thus, the signal-to-noise ratio (SNR) can be

given as γ̄ = σ2/N0. Besides, the data rate (defined as

bits per sub-carrier) is given by R = (p1 + p2) /N with

p1 = ⌊log2 C (N,K)⌋ and p2 = K log2 M .

Activating all sub-carriers for transmission, S-OFDM-IM

suffers from higher complexity of the IFFT process compared

to classical OFDM-IM. However, the proposed scheme still

inherits benefits of OFDM-IM such as carrying p1 index

bits without additional power or bandwidth and the trade-off

between reliability and spectral efficiency by adjusting K.

The receiver can employ the optimal ML detector to esti-

mate the transmitted signal x̂, according to

x̂ = argmin
x

‖y −HGx‖2 . (2)

Utilizing x̂, active indices θ̂ and data symbols ŝ will be

recovered, which are then used to demap p bits. Although the

ML can achieve the optimal performance, its complexity expo-

nentially grows with M for given C = 2p1 , as ∼ O
(

CMK
)

,

which is impractical when K and M increase.

B. Spreading Matrices

We consider two well-known spreading matrices namely

Walsh-Hadamard (WH) and Zadoff-Chu (ZC). While the ZC

matrix is rarely mentioned in the spread OFDM, the WH is

highly popular [22], which is recursively determined by

G1 =
1√
2

[

1 1
1 −1

]

, Gk = Gk−1 ⊗G1. (3)



This reveals that the size of the WH has to be N = 2k. Due

to all elements being real-valued, this matrix is specifically

appropriate for low-complexity implementations. However, the

error performance provided by the WH is less attractive than

the ZC with complex-valued entries. Particularly, to construct

the ZC, we resort to the root ZC sequence as follow

cn =







e
− j2πm

N

(

n2

2 +qn
)

for even N

e−
j2πm

N [n(n+1)
2 +qn] for odd N

, (4)

where q is any integer, m is any integer relatively prime

to N , and n = 1, 2, ..., N . The ZC matrix considers f1 =
[c1, ..., cN ]

T
as its first column, while its other columns

are given as cyclically shifted versions of f1. For example,

when N = 4, m = 1 and q = 0, from (4) we obtain

f1 = [a,−1, a, 1]
T

, where a =
(√

2 + j
√
2
)

/2. This leads

to an 4× 4 ZC matrix as follows

G =
1

2









a 1 a −1
−1 a 1 a
a −1 a 1
1 a −1 a









, (5)

where note that the factor of 1/
√
N is to obtain ‖G‖2 = 1.

Apart from being square and invertible, both the WH and

the ZC have two other crucial features [22] as follows: (i)

Their entries have the same magnitude. As a result, each

non-zero data symbol is equally spread over N sub-carriers,

which can allow S-OFDM-IM to harvest a significant diversity

gain over existing OFDM-IM schemes; (ii) The two matrices

are orthogonal, i.e., G−1 = GH , which aims to enable

free-interference transmission and make Euclidean distances

between any pairs of x unchanged before and after spreading.

More importantly, the orthogonality of G also enables a

variety of low-complexity detectors as shown in Section IV.

Although the WH and the ZC can help S-OFDM-IM re-

markably improve the error performance of OFDM-IM sys-

tems, its achievable diversity order is not always maximized

for various N , K and M . To address this, in the next section,

we provide the BEP analysis, followed by the opportunity

to use rotated versions of the WH and the ZC, which can

maximize the diversity gain achieved by S-OFDM-IM.

III. PERFORMANCE ANALYSIS

The pairwise error probability (PEP) is evaluated to derive

the upper bound on the BEP of S-OFDM-IM. Particularly, the

diversity gain and the coding gain are also analyzed, leading

to an opportunity of using rotated versions of original WH and

ZC matrices to further reduce the BEP.

A. BEP Performance Analysis

The PEP of deciding the signal vector x̂ given that x is

transmitted, conditioned on the channel H, is given by

P (x → x̂|H) = Q





√

‖HG (x− x̂)‖2
2N0



 , (6)

where Q (.) denotes the Gaussian tail probability [26]. Let

Ω = ‖HG (x− x̂)‖2, which can be rewritten as

Ω =

N
∑

i=1

ηi |hi|2 , (7)

where ηi = |gi (x− x̂)|2 with gi is the i-th row of G. Thus,

we can represent (6), using the alternative form of Q-function

[26], as

P (x → x̂|H) =
1

π

∫ π/2

0

exp

(

− Ω

4N0 sin
2 φ

)

dφ. (8)

By averaging (8) with respect to Ω, the unconditional PEP

is obtained by P (x → x̂) = 1

π

∫ π/2

0
MΩ

(

− 1

4N0 sin2 φ

)

dφ,

where MΩ (t) is the moment generating function (MGF) of

Ω. Due to the channel model, the MGF of Λi = ηi |hi|2 in

(7) is MΛi
(t) =

(

1− ηiσ
2t
)−1

, which leads to MΩ (t) =
∏N

i=1

(

1− ηiσ
2t
)−1

, thus we obtain

P (x → x̂) =
1

π

∫ π/2

0

N
∏

i=1

(

sin2 φ

sin2 φ+ ηiσ2

4N0

)

dφ. (9)

For a given spreading matrix G, let us define the set Gx,x̂ =
{i |ηi 6= 0} and denote its cardinality Γx,x̂ = |Gx,x̂| . Be-

cause of the fact that 0 ≤ sin2 φ ≤ 1, we can approxi-

mate sin2 φ
(

sin2 φ+ ηiσ
2/4N0

)−1 ≤
(

1 + ηiσ
2/4N0

)−1 ≈
4/ηiγ̄ at high SNRs, for i ∈ Gx,x̂. Thus, the integrand in (9)

can be approximated by

P (x → x̂) ≈ (γ̄/4)
−Γ

x,x̂

2
∏

i∈G
x,x̂

ηi
. (10)

It is seen from (10) that the diversity order of the PEP is

Γx,x̂, or equivalently, the number of non-zero elements of the

precoded vector G (x− x̂), which is strongly influenced by

the choice of G. Using (10), the diversity and coding gains

achieved by S-OFDM-IM are respectively computed as

Gd = min
x 6=x̂

Γx,x̂, (11)

Gc = min
x 6=x̂,Γ

x,x̂=Gd





∏

i∈G
x,x̂

ηi





1
Gd

. (12)

After the evaluation of P (x → x̂), using the union bound

theory, we can attain the upper bound on the BEP as follows

Pb ≤
1

pCMK

∑

x

∑

x̂

w (x, x̂) (γ̄/4)
−Γ

x,x̂

2
∏

i∈G
x,x̂

ηi
, (13)

where w (x, x̂) is number of different bits between x and x̂.

Remark 1: As shown in (11) and (12), for given system

parameters N, K and M , it is desirable to design a spreading

matrix G to maximize both the diversity gain and the coding

gain of S-OFDM-IM. For simplicity, employing the WH and

ZC matrices to the proposed scheme, we expect to remarkably

enhance the BEP performance of OFDM-IM schemes. For

example, when N = 4, K = 1 and M = 4, S-OFDM-IM

schemes using the WH and the ZC achieve the same diversity

and coding gains as Gd = 2 and Gc = 1. Hence, the diversity



TABLE I
DIVERSITY AND CODING GAIN (Gd-Gc) COMPARISON AMONG FOUR

SPREADING MATRICES, WITH VARIOUS S-OFDM-IM CONFIGURATIONS

(N,K,M) WH ZC roWH roZC

(4,1,4) 2-1 2-1 4-0.1913 4-0.2973

(4,2,4) 1-4 2-1.4142 4-0.1913 4-0.2973

(4,2,16) 1-0.08 2-0.0283 3-0.0023 3-0.0532

(8,2,4) 2-2 2-2 8-0.0373 8-0.1363

gain of S-OFDM-IM is twice larger than that of OFDM-IM.

However, increasing diversity gain may lead to the degradation

in the constrained capacity of OFDM-IM as analyzed in [9].

Remark 2: In spite of having the same diversity and coding

gains, the WH and the ZC may provide different performances.

This is because two matrices can result in distinct kissing

numbers, which are defined as the total number of pairs (x, x̂)
that have the minimum diversity and coding gains, i.e., Gd

and Gc. Particularly, the one with a smaller kissing number

is preferred to reduce the BEP. In the above example, kissing

numbers of the WH and the ZC are 24 and 8, respectively.

Thus, the ZC is expected to have a better BEP than the WH.

Remark 3: The above example also reveals that the WH

and the ZC do not always provide a maximum diversity

gain, i.e., N , for S-OFDM-IM. In other words, using the two

matrices, there may exist pairs of (x, x̂) satisfying Γx,x̂ < N .

Interestingly, this is caused by the fact that all of rows of

either the WH or the ZC have at least two elements being

the same. To illustrate this, let us consider an instance as

follows. For N = 4, the ZC matrix in (5) has the first

row of g1 =
[

ā 0.5 ā −0.5
]

, where ā = a/2.

Meanwhile, for any K < N , there always exists (x, x̂) with

x− x̂ =
[

s 0 −s 0
]T

, where s ∈ S. Thus, we obtain

|g1 (x− x̂)|2 = |ās+ ā (−s)|2 = 0, leading to Γx,x̂ < N.

B. Opportunity of Angle Rotated Spreading Matrices

As a result of Remark 3, we further investigate to rotate

each column by different angles to make each row unequal.

This simple method can increase Γx,x̂, or equivalently, enlarge

the diversity gain of S-OFDM-IM over the original WH and

ZC matrices. In particular, we propose to use rotated spreading

matrices for S-OFDM-IM, which are determined by rotating

every column of original matrices ui by distinct angles,

ūi = ui × exp

[

j2π (i− 1)

MN

]

, (14)

where ūi is the i-th column of rotated matrices for i =
1, ..., N . The above selected angles can be seen in [22], which

proposes rotated transforms of the WH and Fourier matrices

for S-OFDM. However, it is worth noting that such the rotation

method applied to the ZC has not yet been proposed in the

literature, even for the classical OFDM. This work first sheds

light on the potential of using the rotated ZC matrix in the

spread OFDM-IM over other candidates.

More precisely, Table I compares performance gains pro-

vided by four spreading matrices, namely WH, ZC and their

rotated versions (denoted as roWH and roZC), under various

Fig. 2. The proposed MMSE-LLR detector.

configurations of (N,K,M) with the M -ary QAM modu-

lation. As shown in Table I, rotated matrices can offer the

maximum diversity gain, i.e., N , thus achieve the superior

performance over original ones. Especially, the proposed roZC

always provides the best performance.

IV. LOW-COMPLEXITY DETECTORS

To implement S-OFDM-IM in practice, we now propose

three low-complexity detectors that achieve different levels of

complexity and error performance. This leads to a balanced

trade-off between complexity and performance when selecting

the detector type at the receiver. The complexity analysis and

comparison among proposed detectors are also presented.

A. MMSE-LLR Detector

The MMSE-LLR is based on the minimum mean square

error (MMSE) equalizer and the log-likelihood (LLR) method,

as illustrated in Fig. 2. Particularly, the received signal vector

y is first multiplied by the MMSE equalization matrix which

is denoted as Q = diag {q1, q2, ..., qN}, where

qi =
h∗
i

|hi|2 + γ̄−1
. (15)

The output of the channel equalizer is then multiplied by the

despreading matrix G−1(= GH) to extract the received data

symbol vector as follows

x̃ = GHQy. (16)

It is noteworthy that there are no inverse matrix operators

required in (16) due to the orthogonality of the ZF, WH

matrices and their rotated versions. As a result, a substantial

reduction in the computational complexity can be achieved.

After despreading, the LLR method is used to estimate the

data symbol vector x̂ through calculating the following LLR

for each sub-carrier (see [19] for more details)

λi = |x̃i|2 − |x̃i −D (x̃i)|2 , for i = 1, ..., N (17)

where x̃i is the i-th element of x̃, and D (x) is the digital

demodulator function that returns the M -ary symbol which

is the most likely to x. Finally, based on K largest LLRs λi

from (17), we can recover x̂, or equivalently, active indices θ̂
and corresponding K data symbols ŝ. The MMSE-LLR can

be described in Algorithm 1.

Notice from [27] that despite achieving a remarkably lower

complexity compared to the ML, there is still a notable

performance gap between the MMSE-LLR and the ML.



Algorithm 1 MMSE-LLR Detection Algorithm

Input: y, H, and G

Output: θ̂ and ŝ

1) Calculate Q according to (15).

2) Compute x̃ = GHQy.

3) Compute N LLRs: λi = |x̃i|2 − |x̃i −D (x̃i)|2 for i =
1, ..., N .

4) Estimate θ̂ and ŝ based on K largest LLRs λi.

B. IP-MMSE Detector

We now propose a novel detector termed as index pattern

MMSE (IP-MMSE), which can attain the near-optimal perfor-

mance at much lower complexity than the ML. Of course, the

IP-MMSE is more complicated than the MMSE-LLR.

Particularly, denote by F = {θ1, ..., θC} the set of all index

patterns used in S-OFDM-IM for given N and K. In the IP-

MMSE, for each index pattern θc in F , we define Hc as the

sub-matrix that contains K columns of H whose indices are

in θc, where H = HG is an N × N matrix. The MMSE

equalization matrix for the channel pattern Hc is given by

Qc =
(

HH
c Hc + γ̄−1I

)−1
HH

c , (18)

where I is the K×K identity matrix. Then, the corresponding

K data symbols is estimated using the MMSE detector, as

ŝc = D (Qcy) . (19)

Next, we calculate the distance between the received signal y

and the estimated non-zero data symbols ŝc, as follows wc =
‖y −Hcŝc‖2 . Finally, the index pattern θ̂ and K complex

M -ary sysmbols ŝ are respectively recovered by

θ̂ = θĉ, ŝ = ŝĉ, where ĉ = arg min
c=1,...,C

wc. (20)

The IP-MMSE detector can be summarized in Algorithm 2.

Notice that compared to another similar approach, named as

ordered block-MMSE (OS-MMSE) [28], IP-MMSE does not

involve an ordering algorithm of possible index patterns which

needs a termination threshold based on sphere detection. Thus,

IP-MMSE can offer better performance than OS-MMSE at a

comparable complexity. Moreover, in contrast to OS-MMSE,

our detector has the complexity not depending on the SNR.

Algorithm 2 IP-MMSE Detection Algorithm

Input: y, H, and G

Output: θ̂ and ŝ

1) Calculate H = HG.

2) for c = 1 to C do

3) Determine Hc based on θc and H.

4) Compute Qc =
(

HH
c Hc + γ̄−1I

)−1
HH

c .

5) Estimate ŝc = D {Qcy}.

6) Compute wc = ‖y −Hcŝc‖2 .
7) end for

8) Estimate ĉ = argminc=1,...,C wc

9) Generate the output θ̂ = θĉ and ŝ = ŝĉ.

C. Enhanced IP-MMSE Detector

It should be noted that the IP-MMSE encounters an K×K
matrix inverse at each for loop, which can result in a burden of

complexity, especially when K increases. To tackle this issue,

we propose an enhanced IP-MMSE (EIP-MMSE) detector

without encountering any matrix inverse computations.

In particular, for each index pattern θc, let us define the

sub-matrix Gc as K columns of G whose indices are in θc.

Unlike the IP-MMSE detector, the EIP-MMSE calculates the

equalization matrix for each index pattern simply as follows

Qc = GH
c Q, (21)

where Q is given in (15). After obtaining Qc, the rest of the

this detection algorithm is similar to that of the IP-MMSE,

except for computing wc = ‖y −HGcŝc‖2. The EIP-MMSE

detector can be demonstrated in Algorithm 3.

The difference between IP-MMSE and EIP-MMSE is in

step 4, where unlike the former, the latter does not require

any inverse matrix calculations in this step and therefore

achieves a reduced complexity. However, this can result in

the performance loss of EIP-MMSE compared to IP-MMSE.

Algorithm 3 EIP-MMSE Detection Algorithm

Input: y, H, and G

Output: θ̂ and ŝ

1) Calculate Q according to (15).

2) for c = 1 to C do

3) Determine Gc based on θc and G.

4) Compute Qc = GH
c Q.

5) Estimate ŝc = D {Qcy}.

6) Compute wc = ‖y −HGcŝc‖2 .
7) end for

8) Estimate ĉ = argminc=1,...,C wc

9) Generate the output θ̂ = θĉ and ŝ = ŝĉ.

Remark 4: By combining the IM concept and orthogonal

precoding matrices, S-OFDM-IM enables a number of low-

complexity, near-optimal detectors as presented above. How-

ever, such the benefit is not available in S-OFDM since this

scheme carries N M -ary data symbols only, and without any

index symbol. This will also be validated in simulation results.

In addition, some recent detectors based on the sequential

Monte Carlo method [29] and the sphere detection [30] can be

developed for S-OFDM-IM to attain near-ML performance.

D. Complexity Analysis and Comparison

The computational complexities of proposed detectors are

evaluated in terms of the number of floating point operations

(flops) per sub-carrier. It is assumed that a flop can be either

a real square root, a real division, a real multiplication, or a

real summation. For instance, a complex multiplication and

a complex summation are counted as 6 flops and 2 flops,

respectively. We also assume the spreading matrix G to be

complex-valued for calculations.

Based on above assumptions, the complexities of three

proposed detectors and the ML are calculated in Table II. As

shown in this table, unlike the ML, the complexities of our



TABLE II
DETECTION COMPLEXITY COMPARISONS IN TERMS OF NUMBER OF FLOPS PER SUB-CARRIER

Detector Complexity (flops/sub-carrier) Order of complexity

ML (8N + 9)CMK O
(

NCMK
)

MMSE-LLR 8N + 19 O (N)
IP-MMSE C

(

8K2 + 16K + 3
)

+ 6N + 6C
(

K3 +K2
)

/N O
(

CK2
)

EIP-MMSE 14CK + 9C + 6 O (CK)
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Fig. 3. Computational complexity comparisons between three proposed
detectors and the ML when (a) N = 8, M = 8, K = 1, ..., 7 and (b)
N = 4, K = 3, M = 2, 4, ..., 64.

detectors are all independent of M . In other words, increasing

M does not increase their computational complexities. It also

should be noted that the MMSE-LLR provides the lowest

complexity, which depends on N only. Among three proposed

detectors, the IP-MMSE offers the highest complexity which is

mainly caused by the calculation of the matrix inverse at each

iteration. By contrast, the EIP-MMSE requires significantly

less flops per sub-carrier than the IP-MMSE as expected.

To clearly illustrate above conclusions, we provide Fig.

3 that depicts computational complexities of four mentioned

detectors when increasing either K or M . This figure once

again validates the superiority of proposed detectors in terms

of complexity over the ML, especially when K and M gets

larger. For example, when (N,K,M) = (4, 3, 16), as shown in

Fig. 3(b), the ML requires 671744 flops which is substantially

larger that of the proposed MMSE-LLR, IP-MMSE and EIP-

MMSE with 51, 732 and 210 flops, respectively. Also, it is

shown from Fig. 3(a) that when K ≃ N/2, complexities of

both the IP-MMSE and the EIP-MMSE are highest. This can

be explained that the number of index patterns, i.e., C becomes

much larger when K tends to N/2.

In terms of reliability, the IP-MMSE attains the best per-

formance which is close to the ML, while the EIP-MMSE

performs much better than MMSE-LLR, as verified in Section

V. Consequently, a balanced trade-off between complexity and

reliability can be achieved just by selecting detection types.

V. SIMULATION RESULTS

We now demonstrate the BEP of S-OFDM-IM with various

spreading matrices and detector types through simulation

results. To show the superiority of the proposed scheme,

we select IM-OFDM-SS [18], CI-OFDM-IM [15], classical

OFDM-IM [3], OFDM and S-OFDM [22] as benchmark
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Fig. 4. BEP performance of S-OFDM-IM using four spreading matrices,
i.e., WH, ZC, roWH and roZC, when (a) (N,K,M) = (4, 1, 4) and (b)
(N,K,M) = (4, 2, 4), and ML detector is used.
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Fig. 5. Comparison between theoretical upper bounds on the BEP of S-
OFDM-IM and simulation results when various configurations of (N,K,M)
and spreading matrices are employed.

schemes. For simplicity, configurations of S-OFDM-IM, CI-

OFDM-IM, OFDM-IM are referred to as (N,K,M), while

that of OFDM-IM-SS and S-OFDM is (N,M), where N and

K are the number of sub-carriers and active sub-carrier per

cluster, respectively, and M is the modulation size. For all

schemes, the PSK modulation is used when M ≤ 8, whereas

we employ the QAM modulation for M > 8.

Fig. 4 depicts the BEPs of two S-OFDM-IM schemes with

four spreading matrices, namely WH, ZC, roWH and roZC,

and the ML detection. As seen from Fig. 4, rotated matrices

obviously provide the superior performance over original ones

as analyzed in Section III. For example, at the BEP of 10−4 in

Fig. 4(a), the roWH and roZC achieve SNR gains of 3 dB and

4 dB, respectively, over their original versions. Furthermore,

the ZC and its rotated version are more preferred than the WH

counterparts, which confirms Remark 2. Specifically, the roZC

always offers the best performance among four choices. Thus,

hereinafter, we will employ the roZC in S-OFDM-IM as well
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per sub-carrier. Reference schemes uses the ML, while the proposed scheme
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Fig. 7. BEP comparison between S-OFDM-IM and reference schemes at the
data rate of 1.5 bits per sub-carrier. Reference schemes uses the ML, while
the proposed scheme employs either the ML or the proposed IP-MMSE.

as S-OFDM for comparisons.

In Fig. 5, we compare the theoretical bounds on the BEP

with simulation results, under different (N,K,M) and spread-

ing matrices. As we can see, the theoretical bounds are tight

in all cases, especially at increasing SNRs and BEPs of less

than 10−3. Hence, the bound can be a useful tool to evaluate

the BEP of the proposed scheme at high SNRs.

Fig. 6 compares the BEPs between S-OFDM-IM and its

benchmarks, at 1 bit per sub-carrier. The ML is used for all

benchmark schemes, while S-OFDM-IM employs either the

ML or three proposed detectors. As seen from Fig 6, despite

employing low-complexity detectors such as IP-MMSE and

EIP-MMSE, the proposed scheme still significantly outper-

forms all benchmarks with the ML, except for S-OFDM.

For instance, at the BEP of 10−3, S-OFDM-IM with either

the ML or the IP-MMSE provides considerable SNR gains

of 5, 6, 10 and 15 dB over IM-OFDM-SS, CI-OFDM-IM,

classical OFDM-IM and OFDM, respectively. This is because

our scheme achieves diversity order of 8 as shown in Table I,

while benchmarks such as OFDM-IM or OFDM offers the unit

diversity order only. Compared to S-OFDM, S-OFDM-IM has

the similar BEP when the ML is used. However, when MMSE-

based detectors are used, S-OFDM-IM notably outperforms

S-OFDM. The reason is that our detectors, for example, IP-

MMSE exploits all possible MMSE matrices according to
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Fig. 8. BEP comparison between S-OFDM-IM and reference schemes at the
data rate of 2.5 bits per sub-carrier. Reference schemes uses the ML, while
the proposed scheme employs the IP-MMSE.

index patterns to simultaneously detect both the index and M -

ary symbols, which makes S-OFDM-IM retain the diversity

gain better than that of S-OFDM which has no IM process.

This clearly confirms the benefit of the proposed scheme in

terms of receiver design over S-OFDM presented in Remark

4. In addition, the IP-MMSE can achieve a near-optimal BEP

as the ML, while the EIP-MMSE and the MMSE-LLR suffers

slight and remarkable performance losses, respectively. Thus,

we mainly use the IP-MMSE for S-OFDM-IM, hereinafter, to

compare with other systems at higher rates.

Fig. 7 illustrates the BEP comparison between S-OFDM-

IM and benchmark schemes at 1.5 bits per sub-carrier. Our

proposed S-OFDM-IM employs either the ML or the IP-

MMSE detector, while others use the ML. Since S-OFDM

does not work at 1.5 bits per sub-carrier, we provide the curve

of S-OFDM with (N,M) = (4, 2). It can be found from this

figure that there is a slight performance loss caused by the IP-

MMSE in comparison with the ML. However, the proposed IP-

MMSE once again performs better than benchmark schemes

employing the ML. Especially, applying the MMSE-based

detector, S-OFDM-IM with 1.5 bits performs even better than

S-OFDM with 1 bit, whereas this can not be achieved when

the ML detector is used.

In Fig. 8, we compare S-OFDM-IM with reference schemes

at 2.5 bits per sub-carrier. Notice that at higher data rate, the

proposed scheme may require larger K and M as shown in

Fig. 8, which makes the ML impractical for signal detections.

Thus, we only show the BEP of the proposed IP-MMSE for

comparisons. Similarly, we include the BEP of S-OFDM with

the MMSE only in this figure. Interestingly, as seen from Fig.

8, in spite of just using the IP-MMSE detector, S-OFDM-

IM still provides a superior performance over the benchmarks

with the ML. For example, at the BEP of 10−4, the proposed

scheme of (8, 4, 16) can attain SNR gains of 5, 7, 17, 19, 14

over IM-OFDM-SS, CI-OFDM-IM, OFDM-IM, OFDM, and

S-OFDM, respectively. In addition, our scheme with 2.75 bits

has better performance than that with 2.5 bits at high SNRs.

This may be due to the different diversity gains between them.

In summary, employing the roZC and proposed detectors,

S-OFDM-IM can significantly improve the BEP over current

schemes. The proposed system also inherits a range of advan-



tages from OFDM-IM such as higher energy efficiency and

flexibility over classical OFDM. These make the proposed S-

OFDM-IM more appropriate for critical machine type commu-

nications which require very high reliability at low complexity.

VI. CONCLUSIONS

We proposed a novel S-OFDM-IM scheme to employ vari-

ous spreading matrices in the OFDM-IM framework in order

to enhance the reliability of OFDM-IM. Particularly, adopting

WH and ZC spreading matrices, S-OFDM-IM spreads both

non-zero data and index symbols to all available sub-carriers,

and then compress them into each subcarrier. The proposed

scheme was analyzed to benefit from both multipath and index

diversities, thus significantly increase the transmit diversity

of OFDM-IM. The analyzed BEP provided an insight into

impacts of various spreading matrices on achievable diversity

and coding gains. Based on this, we discovered potentials

of using rotated WH and ZC matrices to further improve

the performance over their original versions. Especially, these

rotated matrices allows S-OFDM-IM to achieve the maximum

diversity gain, in which the rotated ZC always exhibits the

best performance. We proposed three low-complexity detec-

tors, namely MMSE-LLR, IP-MMSE, and EIP-MMSE, whose

complexities are all independent of M . Simulation results

clearly show that S-OFDM-IM is superior to benchmarks

schemes, even when using lower complexity detectors.
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