18 research outputs found

    Independent doubly Adaptive Rejection Metropolis Sampling

    Get PDF
    Adaptive Rejection Metropolis Sampling (ARMS) is a wellknown MCMC scheme for generating samples from onedimensional target distributions. ARMS is widely used within Gibbs sampling, where automatic and fast samplers are often needed to draw from univariate full-conditional densities. In this work, we propose an alternative adaptive algorithm (IA2RMS) that overcomes the main drawback of ARMS (an uncomplete adaptation of the proposal in some cases), speeding up the convergence of the chain to the target. Numerical results show that IA2RMS outperforms the standard ARMS, providing a correlation among samples close to zero

    Parallel Metropolis chains with cooperative adaptation

    Get PDF
    Monte Carlo methods, such as Markov chain Monte Carlo (MCMC) algorithms, have become very popular in signal processing over the last years. In this work, we introduce a novel MCMC scheme where parallel MCMC chains interact, adapting cooperatively the parameters of their proposal functions. Furthermore, the novel algorithm distributes the computational effort adaptively, rewarding the chains which are providing better performance and, possibly even stopping other ones. These extinct chains can be reactivated if the algorithm considers necessary. Numerical simulations shows the benefits of the novel scheme

    Orthogonal parallel MCMC methods for sampling and optimization

    Full text link
    Monte Carlo (MC) methods are widely used for Bayesian inference and optimization in statistics, signal processing and machine learning. A well-known class of MC methods are Markov Chain Monte Carlo (MCMC) algorithms. In order to foster better exploration of the state space, specially in high-dimensional applications, several schemes employing multiple parallel MCMC chains have been recently introduced. In this work, we describe a novel parallel interacting MCMC scheme, called {\it orthogonal MCMC} (O-MCMC), where a set of "vertical" parallel MCMC chains share information using some "horizontal" MCMC techniques working on the entire population of current states. More specifically, the vertical chains are led by random-walk proposals, whereas the horizontal MCMC techniques employ independent proposals, thus allowing an efficient combination of global exploration and local approximation. The interaction is contained in these horizontal iterations. Within the analysis of different implementations of O-MCMC, novel schemes in order to reduce the overall computational cost of parallel multiple try Metropolis (MTM) chains are also presented. Furthermore, a modified version of O-MCMC for optimization is provided by considering parallel simulated annealing (SA) algorithms. Numerical results show the advantages of the proposed sampling scheme in terms of efficiency in the estimation, as well as robustness in terms of independence with respect to initial values and the choice of the parameters

    Metropolis Sampling

    Full text link
    Monte Carlo (MC) sampling methods are widely applied in Bayesian inference, system simulation and optimization problems. The Markov Chain Monte Carlo (MCMC) algorithms are a well-known class of MC methods which generate a Markov chain with the desired invariant distribution. In this document, we focus on the Metropolis-Hastings (MH) sampler, which can be considered as the atom of the MCMC techniques, introducing the basic notions and different properties. We describe in details all the elements involved in the MH algorithm and the most relevant variants. Several improvements and recent extensions proposed in the literature are also briefly discussed, providing a quick but exhaustive overview of the current Metropolis-based sampling's world.Comment: Wiley StatsRef-Statistics Reference Online, 201

    Effective Sample Size for Importance Sampling based on discrepancy measures

    Full text link
    The Effective Sample Size (ESS) is an important measure of efficiency of Monte Carlo methods such as Markov Chain Monte Carlo (MCMC) and Importance Sampling (IS) techniques. In the IS context, an approximation ESS^\widehat{ESS} of the theoretical ESS definition is widely applied, involving the inverse of the sum of the squares of the normalized importance weights. This formula, ESS^\widehat{ESS}, has become an essential piece within Sequential Monte Carlo (SMC) methods, to assess the convenience of a resampling step. From another perspective, the expression ESS^\widehat{ESS} is related to the Euclidean distance between the probability mass described by the normalized weights and the discrete uniform probability mass function (pmf). In this work, we derive other possible ESS functions based on different discrepancy measures between these two pmfs. Several examples are provided involving, for instance, the geometric mean of the weights, the discrete entropy (including theperplexity measure, already proposed in literature) and the Gini coefficient among others. We list five theoretical requirements which a generic ESS function should satisfy, allowing us to classify different ESS measures. We also compare the most promising ones by means of numerical simulations

    Change-point of multiple biomarkers in women with ovarian cancer

    Get PDF
    To date several algorithms for longitudinal analysis of ovarian cancer biomarkers have been proposed in the literature. An issue of specific interest is to determine whether the baseline level of a biomarker changes significantly at some time instant (change-point) prior to the clinical diagnosis of cancer. Such change-points in the serum biomarker Cancer Antigen 125 (CA125) time series data have been used in ovarian cancer screening, resulting in earlier detection with a sensitivity of 85% in the most recent trial, the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS, number ISRCTN22488978; NCT00058032). Here we propose to apply a hierarchical Bayesian change-point model to jointly study the features of time series from multiple biomarkers. For this model we have analytically derived the conditional probability distribution of every unknown parameter, thus enabling the design of efficient Markov Chain Monte Carlo methods for their estimation. We have applied these methods to the estimation of change-points in time series data of multiple biomarkers, including CA125 and others, using data from a nested case-control study of women diagnosed with ovarian cancer in UKCTOCS. In this way we assess whether any of these additional biomarkers can play a role in change-point detection and, therefore, aid in the diagnosis of the disease in patients for whom the CA125 time series does not display a change-point. We have also investigated whether the change-points for different biomarkers occur at similar times for the same patient. The main conclusion of our study is that the combined analysis of a group of specific biomarkers may possibly improve the detection of change-points in time series data (compared to the analysis of CA125 alone) which, in turn, are relevant for the early diagnosis of ovarian cancer

    Group Importance Sampling for Particle Filtering and MCMC

    Full text link
    Bayesian methods and their implementations by means of sophisticated Monte Carlo techniques have become very popular in signal processing over the last years. Importance Sampling (IS) is a well-known Monte Carlo technique that approximates integrals involving a posterior distribution by means of weighted samples. In this work, we study the assignation of a single weighted sample which compresses the information contained in a population of weighted samples. Part of the theory that we present as Group Importance Sampling (GIS) has been employed implicitly in different works in the literature. The provided analysis yields several theoretical and practical consequences. For instance, we discuss the application of GIS into the Sequential Importance Resampling framework and show that Independent Multiple Try Metropolis schemes can be interpreted as a standard Metropolis-Hastings algorithm, following the GIS approach. We also introduce two novel Markov Chain Monte Carlo (MCMC) techniques based on GIS. The first one, named Group Metropolis Sampling method, produces a Markov chain of sets of weighted samples. All these sets are then employed for obtaining a unique global estimator. The second one is the Distributed Particle Metropolis-Hastings technique, where different parallel particle filters are jointly used to drive an MCMC algorithm. Different resampled trajectories are compared and then tested with a proper acceptance probability. The novel schemes are tested in different numerical experiments such as learning the hyperparameters of Gaussian Processes, two localization problems in a wireless sensor network (with synthetic and real data) and the tracking of vegetation parameters given satellite observations, where they are compared with several benchmark Monte Carlo techniques. Three illustrative Matlab demos are also provided.Comment: To appear in Digital Signal Processing. Related Matlab demos are provided at https://github.com/lukafree/GIS.gi
    corecore