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Abstract

To date several algorithms for longitudinal analysis of ovarian cancer biomarkers have been proposed

in the literature. An issue of specific interest is to determine whether the baseline level of a biomarker

changes significantly at some time instant (change-point) prior to the clinical diagnosis of cancer. Such

change-points in the serum biomarker Cancer Antigen 125 (CA125) time series data have been used

in ovarian cancer screening, resulting in earlier detection with a sensitivity of 85% in the most recent

trial, the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS, number ISRCTN22488978;

NCT00058032). Here we propose to apply a hierarchical Bayesian change-point model to jointly study

the features of time series from multiple biomarkers. For this model we have analytically derived the

conditional probability distribution of every unknown parameter, thus enabling the design of efficient

Markov chain Monte Carlo methods for their estimation. We have applied these methods to the estimation

of change-points in time series data of multiple biomarkers, including CA125 and others, using data from

a nested case-control study of women diagnosed with ovarian cancer in UKCTOCS. In this way we assess
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whether any of these additional biomarkers can play a role in change-point detection and, therefore, aid in

the diagnosis of the disease in patients for whom the CA125 time series does not display a change-point.

We have also investigated whether the change-points for different biomarkers occur at similar times for

the same patient. The main conclusion of our study is that the combined analysis of a group of specific

biomarkers may possibly improve the detection of change-points in time series data (compared to the

analysis of CA125 alone) which, in turn, are relevant for the early diagnosis of ovarian cancer.

1 Introduction 1

Cancer of the ovary is the fifth most common cause of cancer-related deaths among women, with more 2

than 140,000 deaths worldwide each year. Most cases occur in post-menopausal women (75%), with an 3

incidence of 40 per 100,000 per year in women aged over 50. Diagnosis of ovarian cancer at Stage I, when 4

the tumour is confined to the ovary, results in a 5-year survival of 90% [1]. However, the 5-year survival 5

decreases sharply when cancer diagnosis occurs at later stages such as Stage III (20%) and Stage IV (3%). 6

This suggests that the development of new approaches for longitudinal multi-marker analysis that result 7

in earlier detection of ovarian cancer may significantly impact on mortality [2–4]. 8

One of the most successful methods of detection of ovarian cancer in a screening context to date is 9

the statistical inference technique for the longitudinal analysis of ovarian cancer biomarkers developed by 10

Skates et al. [5–7], where the main assumption is the existence of a change-point in the serum CA125 11

time series as the tumour develops. In particular, the level of CA125 is assumed to remain approximately 12

constant until, at some time instant, it begins to increase significantly. The latter time point is referred to 13

as a change-point. The algorithm proposed in [5] is based on a hierarchical Bayesian model that includes 14

the change-point as one of the random parameters to be estimated. 15

In this paper, we jointly analyse time series data from multiple biomarkers to determine whether the 16

level of these markers changes significantly and coherently at specific time instants. The detection of 17

such a change-point may contribute to the earlier diagnosis of the disease. Although the serum CA125 18

is the most useful biomarker in the screening of ovarian cancer, multiple serum biomarkers have been 19

reported to be associated with the development of ovarian cancer and to possibly improve the performance 20

of CA125 when used in combination [8–17]. The biomarker that has received more attention is the 21

Human Epididymis Protein 4 (HE4), which has been used in the ROMA (Risk of Ovarian Malignancy 22
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Algorithm) to discriminate ovarian cancer from benign diseases [8, 18] as well as in different panels for the 23

purpose of early detection [9–11]. In a study within the Prostate Lung Colorectal and Ovarian (PLCO) 24

cancer screening trial [19], HE4 was the second best marker after CA125 with a sensitivity of 73% (95% 25

confidence interval 0.60 – 0.86) compared to 86% (95% confidence interval 0.76 – 0.97) for CA125 [12, 20]. 26

Another serum biomarker glycodelin has also shown promising performance in the detection of ovarian 27

cancer [13, 14, 21]. Other markers that appear to be promising when used in multi-marker panels include 28

matrix metalloproteinase-7 (MMP7) [13, 20, 22], cytokeratin 19 fragment (CYFRA 21-1) [15, 20] and 29

mesothelin (MSLN) [11,16]. 30

In order to incorporate this information we assume a hierarchical Bayesian change-point model for 31

different biomarkers in addition to serum CA125. Statistical inference in this model can be carried out 32

using Markov chain Monte Carlo (MCMC) methods [23]. In particular, we have analytically obtained 33

the full conditional probability distributions for all the unknown parameters in the model, thus enabling 34

the design of an efficient Metropolis-within-Gibbs algorithm [24] for their Bayesian estimation. We apply 35

this technique to the estimation of change-points in time series data, including CA125 and the other 36

biomarkers in patients diagnosed with ovarian cancer and in a control group of healthy individuals. We 37

assess whether any of these additional biomarkers can play a role in ovarian cancer diagnosis by either 38

detecting a change-point in any of the available biomarkers earlier than in CA125 or by detecting a 39

change-point in women in whom the CA125 does not display a change-point. We also investigate whether 40

the change-points for different biomarkers occur at similar time points. 41

The Bayesian estimation approach advocated in this paper aims at producing a full statistical 42

characterisation of the unknown model parameters, given in the form of their posterior probability 43

distribution conditional on the available data. The proposed Metropolis-within-Gibbs algorithm yields a 44

Monte Carlo approximation of this posterior distribution, which enables the implementation of a variety 45

of estimators for the parameters and provides the means to evaluate their accuracy and reliability as well. 46

While in this paper we keep the change-point estimation process relatively simple, the framework and 47

algorithms described in Sections 2 and 3 lends itself to potentially advantageous extensions. 48

The rest of this paper is organised as follows. Section 2 is devoted to the description of the dataset 49

and the hierarchical Bayesian model used to represent it. The inference algorithm for the detection and 50

estimation of change-points in biomarker time series is introduced in Section 3. The results obtained for 51

the available dataset are shown and discussed in Section 4. Section 5 is devoted to the conclusions. 52
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2 Data model 53

2.1 Dataset 54

In this study we have used a dataset from the multimodal arm of the UK Collaborative Trial of Ovarian 55

Cancer Screening (UKCTOCS) [25], where women underwent annual screening using the blood tumour 56

marker CA125. HE4, MMP7, CYFRA 21-1, Glycodelin and MSLN assays were performed on stored 57

serial samples from a subset of women in the multimodal arm diagnosed with ovarian cancer. The dataset 58

included 179 controls (healthy subjects) and 44 cases (diagnosed patients): 35 invasive epithelial ovarian 59

cancer (iEOC), 3 fallopian tube cancer and 6 peritoneal cancer. Out of these 44 cases, 16 are early stage 60

(FIGO [26] stages I and II) and 28 are late stage (FIGO stages III and IV). In terms of histology, there are 61

27 serous cancers, 2 papillary, 3 endometrioid, 2 clear cell, 3 carcinosarcoma, and 7 not specified cancers. 62

Each control has 4 to 5 serial samples available (177 controls with 5 samples and 2 controls with 4 samples) 63

and each case has 2 to 5 serial samples available (24 cases with 5 samples, 10 cases with 3 samples and 10 64

cases with 2 samples). The range of ages for the healthy subjects (controls) is 50.3–78.8 years and the 65

average age over all the subjects and samples is 63.6 years. The range of ages for the diagnosed patients 66

(cases) is 52–77.4 years and the average age over all patients and samples is 65.5 years. 67

It should be noted here that all the biomarker measurements have been modified via a logarithmic 68

transformation, as detailed in [5, 14], in the form of Y = log(Z + 4), where Z is the value of a particular 69

marker. For most patients with ovarian cancer prior to disease diagnosis, serum CA125 rises exponentially. 70

This transformation allows us to observe a linear change in time. 71

2.2 Model 72

Figure 1 shows the scheme of the hierarchical Bayesian model for patients diagnosed with ovarian cancer. 73

Let Yij denote the log-transformed measurement of the biomarker Z (where Z can be any of CA125, 74

HE4, Glycodelin, MSLN, MMP7 or CYFRA 21-1) for the i-th patient in the study at age tij , where 75

j = 1, . . . , ki represents the ordinal of the observation for patient i (i.e., the first observation, the second 76

observation, and so on), being ki the total number of measurements for patient i. The values of the 77

biomarkers are collected at time points tij , which can depend on previous values Yij′ , j
′ < j. For this 78

model, an unobserved binary indicator Ii is included to distinguish subjects whose ovarian cancer does 79

(Ii = 1), or does not (Ii = 0), produce an increased biomarker level. Notice that for patients with Ii = 0 80
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there is no way to tell them from healthy individuals by looking at that biomarker alone. Within the 81

proposed hierarchical model, separation of cases that do not produce a change-point from those that 82

do produce it enables a more precise estimation of individual change-points and rates of change. The 83

indicator Ii for each case is assumed to follow, a priori, a Bernoulli distribution with success probability 84

π, where π represents the proportion of cases that produce an increased biomarker level. As in [5], in 85

light of the observation of Kabawat et al. [27] that approximately 15% of ovarian cancer cases do not 86

produce an excess of biomarker CA125, a Beta(42.5,7.5) prior distribution with mean 0.85 and standard 87

deviation 0.05 is adopted as the prior distribution of π. We assume the same prior distribution of π for all 88

the biomarkers studied in this paper. 89

γ

ij I=0

θµ 2
θσ

θi
2σ

Yij

Yij I=1

τ iI i

π µγ σ 2
γ

i

Y

Fig 1. Scheme of the hierarchical model for women with cancer.

When the binary indicator is null, Ii = 0, the transformed marker level Yij is assumed to have a 90

constant mean, denoted E(Yij |tij , Ii = 0) = θi. Because the biomarkers are measured with some error, 91

variations around the expected level are modelled by a normal distribution with zero mean and variance 92

σ2. Thus, the marker level is conditionally distributed as Yij |{Ii = 0} ∼ N (θi, σ
2), where N (a, b) denotes 93

a normal distribution with mean a and variance b. For σ2, we have chosen an inverse gamma distribution, 94

namely σ2 ∼ IG(2.05, 0.1) (where IG(a, b) denotes the inverse gamma distribution with mean b/(a− 1) 95

and variance b2/[(a− 1)2(a− 2)]), instead of the improper Jeffreys’ prior used in [5]. We have specifically 96

selected prior distributions which are flexible (note the large variances of the IG distributions of choice, 97

which makes them hardly informative) yet proper1. An independent normal distribution is a priori 98

assumed for the individual’s mean biomarker level, thus θi ∼ N (µθ, σ
2
θ), where we have chosen the same 99

1The selection of proper priors is important. Under improper priors, such as the Jeffrey’s priors utilised in [5], it becomes
necessary to verify whether the posterior distributions are proper or not. If they are not, any computational inference
methods applied to approximate the posterior distributions may become numerically unstable and yield unreliable estimates
of the quantities of interest.
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priors as in [5] for µθ and σθ, that is, µθ ∼ N (2.75, 1) and σ2
θ ∼ IG(2.04, 0.065). 100

When the binary indicator is Ii = 1, the log-transformed biomarker level starts increasing at a 101

positive rate γi after the unobserved time instant τi, which is modelled as random and referred to as the 102

change-point of the time series. As a consequence, the mean of the biomarker level is represented by way 103

of the piecewise linear function 104

E(Yij |tij , Ii = 1) = θi + γi(tij − τi)+, (1)

where (·)+ denotes the positive part of the expression between brackets and θi is random and modelled 105

in the same way as described above. A normal distribution with constant variance σ2 is again specified 106

to model variations around the expected level. Thus, the marker level is conditionally distributed as 107

Yij |{Ii = 1} ∼ N (θi + γi(tij − τi)+, σ2), where the prior for σ2 has been chosen the same as before, i.e., 108

σ2 ∼ IG(2.05, 0.1). Independent normal distributions are assumed for the individual random effects, 109

thus log γi ∼ N (µγ , σ
2
γ), where µγ ∼ N (1.1, 0.1) as in [5] and the prior for σ2

γ has been chosen as 110

σ2
γ ∼ IG(2.2, 0.12). Finally, di denotes the age of patient i at the time of the last measurement, i.e. the age 111

at the time of clinical detection of the disease. The distribution of the preclinical duration δi = di − τi in 112

years has been estimated from the ratio of prevalence to incidence in a series of screening trials [28–30] to 113

be normal with mean 2.0 and standard error 0.75, truncated to the interval [0, 5]. This yields independent 114

truncated normal models for each change-point, τi, with mean age di − 2.0 and standard deviation 0.75, 115

truncated to the interval [di − 5, di], denoted T N (di − 2, 0.752, di − 5, di). 116

3 Inference algorithm 117

3.1 Metropolis-within-Gibbs sampling 118

We propose to compute Bayesian estimates of the unknown parameters in the model using a Gibbs 119

sampling scheme [23]. To implement this kind of method, it is necessary to obtain the full conditional 120

distributions of all the parameters in the model. These distributions have been explicitly derived and are 121

given in Appendix A, together with the joint density of all the parameters and the observed data, being one 122

of the contributions of this work. Notice that the conditional distributions of τi and log γi are not standard 123

and therefore it is not possible to draw samples from them directly. To circumvent this difficulty, we run 124
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several steps of a Metropolis-Hastings (MH) algorithm for each one of the parameters τi and log γi (and 125

for each patient i) at each iteration of the Gibbs sampler (see Section 3.1). The resulting sampling scheme 126

is often termed Metropolis-within-Gibbs (MwG) [24] or Component-wise Metropolis-Hastings [31–33]. The 127

need to generate a relatively long chain of samples in the embedded MH algorithms has been discussed in 128

the literature [41–43]. In this paper, we generate a chain of 200 samples for each of the variables τi and 129

log γi at each iteration of the MwG algorithm. 130

The proposed MwG algorithm iteratively generates samples from the distribution of each parameter 131

conditional on the current values of the other parameters. It can be shown that the resulting sequence of 132

samples yields a Markov chain, and the stationary distribution of that Markov chain is the joint posterior 133

probability distribution [24]. 134

In order to describe the proposed MwG sampling algorithm let us introduce the sets 135

C = {µθ, µγ , σ2
θ , σ

2
γ , σ

2, π} = {c1, c2, c3, c4, c5, c6}, (2)

that contains the model parameters which are common to all subjects, and Si = {θi, Ii, τi, log γi}, that 136

contains the parameters which are specific to the i-th subject. If we study a dataset including series 137

from m subjects, then the complete set of parameters is A =
⋃m
i=1 Si

⋃
C, that contains n = 6 + 4m 138

parameters to be estimated. Besides, we use the shorthand x ∼ MHG(σ2
1 , J, x0) to indicate that the 139

sample x is generated by running a Metropolis-Hastings algorithm with a Gaussian kernel (of variance σ2
1) 140

that produces a Markov chain of J elements with initial condition x0. In our case, x may refer to τi or 141

log γi. Complete details are given in Appendix B. 142

We use an argument-wise notation for probability density functions (pdf’s) and probability mass 143

functions (pmf’s). If x and y are two continuous random variables (r.v.), then p(x) and p(y) denote the 144

pdf’s of x and y, respectively. These pdf’s are possibly different. Similarly, p(x, y) denotes the joint pdf of 145

x and y and p(x|y) is the conditional pd of x given y. The same notation is used for pmf’s, e.g., if z is a 146

discrete r.v. then p(z) is its pmf. In our model the only discrete r.v.’s are the indicators Ii, i = 1, . . . ,m. 147

The proposed MwG algorithm can now be outlined as follows. 148

Initialisation. For each parameter in C, draw an initial sample from its a priori pdf, i.e., draw µ
(0)
θ ∼ 149

N (2.75, 1), (σ2
θ)

(0) ∼ IG(2.04, 0.065), (σ2)(0) ∼ IG(2.05, 0.1), µ
(0)
γ ∼ N (1.1, 0.1), (σ2

γ)(0) ∼ IG(2.2, 0.12) 150

and π(0) ∼ Beta(42.5, 7.5). For each subject i = 1, . . . ,m and each parameter in Si, draw an initial 151
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sample from the corresponding prior pdf/pmf, i.e., draw θ
(0)
i ∼ N (µ

(0)
θ , (σ2

θ)
(0)), I

(0)
i ∼ Bernoulli(π(0)), 152

τ
(0)
i ∼ T N (di − 2, 0.752, di − 5, di) and log γ

(0)
i ∼ N (µ

(0)
γ , (σ2

γ)(0)). 153

Iteration. For k = 1, 2, . . . ,K; 154

• Draw new samples for the common parameters 155

c
(k)
j ∼ p(cj |c(k)1 , . . . , c

(k)
j−1, c

(k)
j , c

(k−1)
j+1 , . . . , c

(k−1)
6 , Y ), j = 1, . . . , 6, (3)

where Y denotes the full dataset. These conditional pdf’s are given explicitly in Appendix A. 156

• Draw new samples from the subject specific parameters: for i = 1, . . . ,m 157

θ
(k)
i ∼ p(θi|c(k)1 , . . . , c

(k)
6 , I

(k−1)
i , τ

(k−1)
i , log γ

(k−1)
i , Y )

I
(k)
i ∼ p(Ii|c(k)1 , . . . , c

(k)
6 , θ

(k)
i , τ

(k−1)
i , log γ

(k−1)
i , Y )

τ
(k)
i ∼ MH(0.02, 200, τ

(k−1)
i )

log γ
(k)
i ∼ MH(0.1, 200, log γ

(k−1)
i ). (4)

The conditional pdf’s for θi, Ii,τi and log γi are given explicitly in Appendix A as well. Running 158

the MH algorithm to generate the new samples τ
(k)
i and log γ

(k)
i obviously involves the data and the 159

remaining parameters generated at the k-th iteration. Other alternatives for the efficient implementation 160

of Gibbs-based samplers have been explored in the literature [34–40] and can also be applied within the 161

proposed framework. 162

3.2 Change-point detection 163

The MwG algorithm is run to generate a Markov chain of K = 10000 samples for each unknown parameter 164

in the set A. We allow a burn-in period [23] of L = 5000 samples, which are discarded. The remaining 165

K − L = 5000 samples in the Markov chain can be used for estimation. 166

The estimate of the probability p(Ii = 1|Y ) is used to detect the presence of a change-point in the time 167

series of patient i. We can estimate p(Ii = 1|Y ) ≈ p̂(Ii = 1|Y ) = 1
K−L

∑K
j=L+1 I

(j)
i . If p̂(Ii = 1|Y ) > 0.5 168

we detect a change-point for the time series of the i-th subject. We can estimate the position (time 169

instant) of this change-point as τ̂i = 1
K−L

∑K
j=L+1 τ

(j)
i . Note that this estimate is only meaningful when 170
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p̂(Ii = 1|Y ) > 0.5. We may compute τ̂i when p̂(Ii = 1|Y ) < 0.5 as well, but in this case we do not detect 171

a change-point so this value of τ̂i is not relevant. 172

It is also of interest to determine whether the change-points for different biomarkers obtained from 173

the same patient can be expected, a priori, to occur at similar time instants. (Note that biomarker 174

change-points are not guaranteed to exist for all biomarkers in all patients). We have analysed the available 175

data in terms of the interval between measurements where the change-point is detected for the different 176

biomarkers and patients in the dataset. 177

Let ti,0, . . . , ti,ki be the times at which measurements are collected for patient i. For a given biomarker, 178

we say that the change-point is detected at interval 0 when our estimate τ̂i is less than ti,0; we say that 179

the change-point is detected at interval 1 when our estimate τ̂i is between ti,0 and ti,1, etc.. In general, a 180

change-point for subject i is detected at the j − th interval when p̂(Ii = 1|Y ) > 0.5 and ti(j−1) ≤ τ̂i < tij , 181

for j = 1, . . . , ki. Thus, with ki measurements, the change-point for the given biomarker can be detected 182

within ki different time slots, labeled 0, 1, 2, . . . , ki − 1. 183

Once the change-points for the available biomarkers have been assigned a time slot each, it is possible to 184

compare them in pairs and see whether the change-points occur in the same slot or whether one biomarker 185

precedes the other. As this comparison is carried out for all patients and for each pair of biomarkers, 186

it is possible to estimate the probability of coincidences (i.e., how likely it is that change-points of two 187

biomarkers are detected in the same slot) as well as the probability of the change-point of one biomarker 188

being detected in an earlier slot (e.g., slot 1 for the first biomarker versus slot 2 for the second biomarker). 189

These summary statistics are easy to compute, robust to change-point estimation errors and provide useful 190

information to assess the diagnosis. Our numerical results are presented and discussed in the following 191

section. 192

4 Results and Discussion 193

We have first studied the outcome of applying the proposed method for change-point detection to a control 194

dataset containing time series of 179 healthy subjects and the 6 biomarkers of interest. Each series consists 195

of 4 or 5 sequential samples available for each biomarker. As expected, the probability that a change-point 196

occurs for the control group is small, less than 2.5% for all biomarkers, as shown in Table 1). 197

Next we discuss the results for the dataset of patients with ovarian cancer described in Section 2.1. 198
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Table 1. Change-point detection probabilities for the control dataset.

Biomarkers detection probability
CA125 0.011
HE4 0.022

Glycodelin 0.017
MSLN 0.011
MMP7 0

CYFRA 21-1 0.022

CA125, HE4, MMP7, CYFRA 21-1, glycodelin and MSLN were assayed on 2 to 5 serial samples collected 199

up to 2.5 years prior to diagnosis of iEOC from 44 UKCTOCS patients. As CA125 is the only biomarker 200

currently used in ovarian cancer screening, we investigate here whether taking into account additional 201

biomarkers can improve detection. Table 2 shows the probability that a change-point occurs (at any time 202

slot) for the different biomarkers. We can see that for CA125, HE4 and Glycodelin the probability is 203

relatively high (more than 84%) whereas for MSLN, MMP7 and CYFRA 21-1 this probability is quite 204

low, specially for the last (20%). This suggests that while the latter biomarkers do not provide significant 205

information for cancer detection, the former could play a significant role. We therefore focus on the first 206

three biomarkers, namely CA125, HE4 and Glycodelin in the rest of our study.

Table 2. Change-point detection probabilities for patients.

Biomarkers detection probability
CA125 0.89
HE4 0.84

Glycodelin 0.84
MSLN 0.50
MMP7 0.41

CYFRA 21-1 0.20

207

A change-point was not detected with CA125 in 11% of patients (and we refer to these cases as false 208

negatives). Therefore HE4 and/or Glycodelin data was analysed to determine whether they could be used 209

to improve detection. We detected a change-point in the HE4 data in 80% of the CA125 false negatives 210

and in the Glycodelin data in 60% of the CA125 false negatives. This suggests that use of two biomarkers 211

together, CA125 plus HE4 or CA125 plus Glycodelin, instead of CA125 alone, can reduce the number of 212

false negatives from 11% to 2% or 4%, respectively. 213

We then analysed the data from women for whom a change-point was observed in CA125 to determine 214
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whether the HE4 and/or Glycodelin data also showed a change-point and, if so, whether there was 215

coincidence and precedence of the change-points in the same interval of time. Table 3 shows the 216

numerically estimated probabilities of coincidence and precedence of the change-points in these intervals 217

by comparing all combinations of pairs for these three biomarkers. Coincidence of time slots was the most 218

likely event for all pairs, but where there was no coincidence, the change-point of HE4 and Glycodelin 219

compared to CA125 had a higher probability (0.30 versus 0.06 when comparing CA125-HE4 and 0.44 versus 220

0.03 when comparing CA125-Glycodelin) of occurring earlier. Thus, another advantage of combining two 221

biomarkers (CA125 plus HE4 or Glycodelin) instead of CA125 alone is the potential for earlier detection 222

of the disease. 223

Table 3. Probabilities of coincidence and precedence of change-points.

Pairs of biomarkers coincidence first earlier first later
CA125 - HE4 0.64 0.06 0.30

CA125 - Glycodelin 0.53 0.03 0.44
HE4 - Glycodelin 0.74 0.06 0.21

In order to corroborate these results, we have plotted histograms related to the change-point estimates 224

obtained with the CA125, HE4 and Glycodelin data, respectively, for every woman. To be specific, 225

let τ̂
(i)
CA125, τ̂

(i)
HE4 and τ̂

(i)
Glycodelin be the change-point estimates, measured in years, obtained from the 226

corresponding time series data for the i-th patient (and, as there are 44 individuals in the dataset, 227

i = 1, 2, . . . , 44). Fig. 2 shows the histograms for the differences between all three possible pairs of 228

estimates: 229

• plot (a) displays the histogram for the CA125-HE4 differences, i.e., τ̂
(i)
CA125 − τ̂

(i)
HE4; 230

• plot (b) displays the histogram for the CA125-Glycodelin differences, i.e., τ̂
(i)
CA125 − τ̂

(i)
Glycodelin; and 231

• plot (c) displays the histogram for the HE4-Glycodelin differences, i.e., τ̂
(i)
HE4 − τ̂

(i)
Glycodelin. 232

Note that these differences can only be computed for those patients for whom a change-point has been 233

detected for the two biomarkers in the pair (e.g., the histogram in Fig. 2(a) includes the time differences 234

for individuals for whom a change-point was detected both in the CA125 data and in the HE4 data). 235

We can observe that all histograms are approximately centered around zero, since all biomarkers tend 236

to estimate the change-point in the same time interval with high probability, but a closer look actually 237

shows that the histograms of Figs. 2 (a)-(b) are slightly shifted to the right, which is consistent with with 238
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the observation in Table 3 that, when there is no coincidence in the same time slot, the change-points 239

detected in the HE4 and Glycodelin data appear earlier than the change-point detected in CA125 data 240

with high probability. 241
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Fig 2. Histograms for the differences in time measured in years between change-point
estimates for the following pairs of biomarkers: (a) CA125-HE4, (b) CA125-Glycodelin, (c)
HE4-Glycodelin.

5 Conclusions 242

We have designed a Bayesian change-point (BCP) model, based on the approach of Skates et al. [5], that 243

may be used in the analysis of biomarker time-series data, as an aid to the diagnosis of ovarian cancer. It 244

is known that, in approximately 85% of women who go on to be diagnosed with ovarian cancer, CA125 245

data display a change-point (turning from stationary to a linearly increasing trend in the transformed 246

measurements) prior to diagnosis. The detection of such change-points has been used to diagnose the 247

disease earlier. The contribution of this paper is twofold: 248

• For the proposed BCP model we have explicitly computed the conditional probability distributions 249

of all the model parameters. The availability of the conditional probability distribution of all model 250

parameters may have wide theoretical and practical advantages. In particular, it enables the design 251

of efficient and stable computational estimation algorithms for these parameters and, specially, for 252

the change-points. 253

• In a real time-series dataset of samples preceding diagnosis of ovarian cancer, we have applied the 254

proposed BCP model and a Gibbs-sampling based estimation algorithm to detect and estimate 255

change-points in the tumour markers CA125, HE4, MMP7, CYFRA 21-1, MSLN and Glycodelin. In 256
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this dataset, diagnosis based on CA125 alone yields ≈ 11% false negatives, i.e., diagnosed patients 257

for whom the CA125 data does not display a change-point. We have shown that by jointly analysing 258

the CA125 and Glycodelin data, the rate of false negatives is reduced to 4%, while the analysis of 259

CA125 together with HE4 further reduces this rate to a mere 2%. 260

Our results suggest that the change-point approach with combined assay of HE4 or Glycodelin along with 261

CA125 can lead to an earlier diagnosis compared to an approach based on CA125 alone. In particular, we 262

found that for those patients for whom change-points are detected both with CA125 and HE4/Glycodelin, 263

the change-point occurs earlier in the HE4/Glycodelin data in a significant proportion of cases. 264

The proposed Bayesian detection and estimation scheme admits several extensions that can be 265

implemented with limited additional computations. In particular, given the approximate posterior 266

distribution produced by the MwG sampler, it is possible to assess the credibility of the detected change- 267

points as well as the accuracy of the estimated times where the change takes place. This capability may 268

lead to further improvements in the reliability of the change-point detection scheme. 269

A Appendix: Conditional distributions 270

The conditional distribution for each parameter in the proposed Bayesian hierarchical model can 271

be found analytically. Let A =
⋃m
i=1 Si

⋃
C represent the complete set of parameters, where C = 272

{µθ, µγ , σ2
θ , σ

2
γ , σ

2, π} denotes the parameters common to every subject, Si = {θi, Ii, τi, log γi}, contains 273

the parameters which are specific to the i-th subject and m represents the number of subjects. Notice 274

that 6 + 4m is the number of parameters to be estimated. 275
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The full conditional distributions for the common parameters are: 276

p(µθ|A\{µθ}, Y ) = N (m̂0, v̂
2) where

 m̂0 =
m0σ

2
θ+v

2 ∑m
i=1 θi

mv2+σ2
θ

v̂2 =
v2σ2

θ

mv2+σ2
θ

p(µγ |A\{µγ}, Y ) = N (m̂0, v̂
2) where

 m̂0 =
m0σ

2
γ+v

2 ∑m
i=1 log γi

mv2+σ2
γ

v̂2 =
v2σ2

γ

mv2+σ2
γ

p(σ2
θ |A\{σ2

θ}, Y ) = IG(α̂, β̂) where

 α̂ = α+m/2

β̂ = β + 1
2

∑m
i=1(θi − µθ)2

p(σ2
γ |A\{σ2

γ}, Y ) = IG(α̂, β̂) where

 α̂ = α+m/2

β̂ = β + 1
2

∑m
i=1(log γi − µγ)2

p(σ2|A\{σ2}, Y ) = IG(α̂, β̂) where


α̂ = α+ 1

2

∑m
i=1 ki

β̂ = β + 1
2

∑m
i=1(

∑ki
j=1(Yij − Eij)2)

being Eij = θi + Iiγi(tij − τi)+

p(π|A\{π}, Y ) = Beta(â, b̂) where

 â = a+
∑m
i=1 Ii

b̂ = b+m−
∑m
i=1 Ii

(5)

where ki is the number of observations for the i-th patient, m0 and v2 generically represent the mean 277

and the variance, respectively, of the prior Gaussian distributions of the corresponding parameters (in an 278

abuse of notation, since these prior means and variances can be different for different parameters) and 279

m̂0 and v̂2 represent the same magnitudes for the posterior Gaussian distributions of the corresponding 280

parameters. The parameters α and β are used for the prior inverse gamma distribution, IG(α, β), which 281

has mean β/(α− 1) and variance β2/[(α− 1)2(α− 2)], while we denote as α̂ and β̂ the parameters of the 282

conjugate posterior inverse gamma distribution, IG(α̂, β̂). We have IG(·, ·) priors and posteriors for the 283

variance parameters σ2
θ , σ2

γ and σ2. For each one of these parameters, the prior parameters α and β can 284

be different. Similarly, we use a and b for the prior Beta distribution of the model parameter π, and â 285

and b̂ for the parameters of the corresponding posterior Beta function. 286
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The full conditional distributions for the model parameters which are specific to each subject are 287

p(θi|A\{θi}, Y ) = N (m̂i, v̂
2
i ), where


m̂i =

µθσ
2+σ2

θ

∑ki
j=1Hij

kiσ2
θ+σ

2

v̂2i =
σ2σ2

θ

kiσ2
θ+σ

2 being

Hij = Yij − Iiγi(tij − τi)+

p(Ii|A\{Ii}, Y ) = Bern(1, π̂), where


π̂ =

π
∏ki
j=1N (Yij ;Eij ,σ

2)

π
∏ki
j=1N (Yij ;Eij ,σ2)+(1−π)

∏ki
j=1N (Yij ;θi,σ2)

being Eij = θi + γi(tij − τi)+

p(τi|A\{τi}, Y ) ∝
ki∏
j=1

N (Yij ;Eij , σ
2)T N (τi; di − 2, 0.75, di − 5, di),

where Eij = θi + Iiγi(tij − τi)+

p(log γi|A\{log γi}, Y ) ∝
ki∏
j=1

N (Yij ;Eij , σ
2)N (log γi;µγ , σ

2
γ),

where Eij = θi + Iiγi(tij − τi)+. (6)

where i represents the subject, m̂i and v̂2i represent, respectively, the mean and the variance of the 288

posterior Gaussian distributions for the parameter θi, π and π̂ are, respectively, the success probability of 289

the prior and posterior Bernoullli distributions and Bern(1, π̂) represents a Bernoulli distribution with 290

success probability π̂. 291

It is possible seek alternative implementations of the Gibbs sampler by identifying functions proportional 292

to the full conditionals in the factors of the joint pdf of the parameters and the data. Again, let A denote 293

the set of all model parameters and let Y denote the set of all observations (for all time instants and all 294

patients). Then, the joint pdf can be written as 295

p(A, Y ) = p(Y |A)p(A) (7)

where p(Y |A) is the likelihood function and p(A) is the joint prior pdf of the parameters. The latter is 296

readily deduced from the model structure, namely 297

p(A) =

[
m∏
i=1

p(Ii|π)p(θi|µθ, σ2
θ)p(log γi|µγ , σ2

γ)p(τi)

]
p(σ2)p(µθ)p(σ

2
θ)p(π)p(µγ)p(σ2

γ), (8)

where p(σ2) = IG(2.05, 0.1), p(µθ) = N (2.75, 1), p(σ2
θ) = IG(2.04, 0.065), p(π) = Beta(42.5, 7.5), 298
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p(µγ) = N (1.1, 0.1) and p(σ2
γ) = IG(2.2, 0.12) are the prior densities of the common parameters of 299

the model and p(Ii|π) = Bern(1, π), p(θi|µθ, σ2
θ) = N (µθ, σ

2
θ), p(log γi|µγ , σ2

γ) = N (µγ , σ
2
γ) and p(τi) = 300

T N (di − 2, 0.75, di − 5, di) are the priors of the subject-specific parameters. 301

The likelihood function can be obtained in closed form using the total probability theorem, for Ii = 0 302

and Ii = 1, as 303

p(Y |A) =

m∏
i=1

ki∏
j=1

[p(Y |Ii = 0,A\{Ii})p(Ii = 0|A\{Ii}) + p(Y |Ii = 1,A\{Ii})p(Ii = 1|A\{Ii})]

=

m∏
i=1

ki∏
j=1

[
(1− π)N (Yij ; θi, σ

2) + πN (Yij ; θi + γi(tij − τi)+, σ2)
]
. (9)

The joint pdf is obtained by substituting (8) and (9) back into (7). The resulting function is proportional 304

to the full conditional of a given model parameter if we assign a fixed value to all other parameters. 305

B Appendix: Metropolis-Hastings algorithm 306

The Metropolis-Hastings algorithm can be used to draw samples from any pdf p(x), provided the value 307

of a function f(x) ∝ p(x) can be computed. It works by generating a Markov chain which has p(x) as 308

a stationary (limiting) distribution [23]. The sample xt+1 in the chain is produced using a proposal 309

conditional pdf g(xt+1|xt) followed by a random acceptance test. The Metropolis algorithm is a special 310

case of the Metropolis-Hastings algorithm where the proposal function is symmetric and it can be outlined 311

as follows. 312

Initialisation Choose an arbitrary point x0 to be the first sample, and choose an arbitrary symmetric 313

proposal pdf g(x|y) (g(x|y) = g(y|x)). In this work we have considered a Gaussian distribution centered 314

at y. 315

Iteration. For t = 1, 2, . . .: 316

• Draw a candidate x′ from the proposal pdf g(x′|xt−1). 317

• Compute the acceptance ratio α = f(x′)/f(xt−1). 318

• Draw a uniform sample u ∼ U(0, 1). If u < α then accept x′ and set xt = x′. Otherwise, set 319

xt = xt−1. 320
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In particular, in our work for each iteration in the Gibbs sampler (see Section 3.1) in order to draw 321

from the conditional distributions of parameters τi and log γi for each patient i we run a Metropolis 322

algorithm with 200 steps for each of these parameters. The proposal density has been taken Gaussian, 323

centred in the previous value of the corresponding parameter, where the variance for τi, i = 1, . . . ,m 324

is 0.02 and the variance for log γi, i = 1, . . . ,m is 0.1. The functions f(τi) ∝ p(τi|A\{τi}, Y ) and 325

f(log γi) ∝ p(log γi|A\{log γi}, Y ) are given in Appendix A. 326
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