4 research outputs found

    Incremental Topological Modeling using Sonar Gridmap in Home Environment

    Get PDF
    Abstract-This paper presents a method of topological modeling in home environments using only low-cost sonar sensors. The proposed method constructs a topological model using sonar gridmap by extracting subregions incrementally. A confidence for each occupied grid is evaluated to obtain reliable regions in a local gridmap, and a convexity measure is used to extract subregions automatically. Through these processes, the topological model is constructed without predefining the number of subregions in advance and the extracted subregions are guaranteed the convexity. Experimental results verify the performance of proposed method in real home environment

    A MYOELECTRIC PROSTHETIC ARM CONTROLLED BY A SENSOR-ACTUATOR LOOP

    Get PDF
    This paper describes new methods and systems designed for application in upper extremity prostheses. An artificial upper limb with this system is a robot arm controlled by EMG signals and a set of sensors. The new multi-sensor system is based on ultrasonic sensors, infrared sensors, Hall-effect sensors, a CO2 sensor and a relative humidity sensor. The multi-sensor system is used to update a 3D map of objects in the robot’s environment, or it directly sends information about the environment to the control system of the myoelectric arm. Occupancy grid mapping is used to build a 3D map of the robot’s environment. The multi-sensor system can identify the distance of objects in 3D space, and the information from the system is used in a 3D map to identify potential collisions or a potentially dangerous environment, which could damage the prosthesis or the user. Information from the sensors and from the 3D map is evaluated using a fuzzy expert system. The control system of the myoelectric prosthetic arm can choose an adequate reaction on the basis of information from the fuzzy expert system. The systems and methods were designed and verified using MatLab/Simulink. They are aimed for use as assistive technology for disabled people

    Exploiting graph structure in Active SLAM

    Get PDF
    Aplicando análisis provenientes de la teoría de grafos, la teoría espectral de grafos, la exploración de grafos en línea, generamos un sistema de SLAM activo que incluye la planificación de rutas bajo incertidumbre, extracción de grafos topológicos de entornos y SLAM activo \'optimo.En la planificación de trayectorias bajo incertidumbre, incluimos el análisis de la probabilidad de asociación correcta de datos. Reconociendo la naturaleza estocástica de la incertidumbre, demostramos que planificar para minimizar su valor esperado es más fiable que los actuales algoritmos de planificación de trayectorias con incertidumbre.Considerando el entorno como un conjunto de regiones convexas conectadas podemos tratar la exploración robótica como una exploración de grafos en línea. Se garantiza una cobertura total si el robot visita cada región. La mayoría de los métodos para segmentar el entorno están basados en píxeles y no garantizan que las regiones resultantes sean convexas, además pocos son algoritmos incrementales. En base a esto, modificamos un algoritmo basado en contornos en el que el entorno se representa como un conjunto de polígonos que debe segmentarse en un conjunto de polígonos pseudo convexos. El resultado es un algoritmo de segmentación que produjo regiones pseudo-convexas, robustas al ruido, estables y que obtienen un gran rendimiento en los conjuntos de datos de pruebas.La calidad de un algoritmo se puede medir en términos de cuan cercano al óptimo está su rendimiento. Con esta motivación definimos la esencia de la tarea de exploración en SLAM activo donde las únicas variables son la distancia recorrida y la calidad de la reconstrucción. Restringiendo el dominio al grafo que representa el entorno y probando la relación entre la matriz asociada a la exploración y la asociada al grafo subyacente, podemos calcular la ruta de exploración óptima.A diferencia de la mayoría de la literatura en SLAM activo, proponemos que la heurística para la exploración de grafos consiste en atravesar cada arco una vez. Demostramos que el tipo de grafos resultantes tiene un gran rendimiento con respecto a la trayectoria \'optima, con resultados superiores al 97 \% del \'optimo en algunas medidas de calidad.El algoritmo de SLAM activo TIGRE integra el algoritmo de extracción de grafos propuesto con nuestra versión del algoritmo de exploración incremental que atraviesa cada arco una vez. Nuestro algoritmo se basa en una modificación del algoritmo clásico de Tarry para la búsqueda en laberintos que logra el l\'imite inferior en la aproximación para un algoritmo incremental. Probamos nuestro sistema incremental en un escenario de exploración típico y demostramos que logra un rendimiento similar a los métodos fuera de línea y también demostramos que incluso el método \'optimo que visita todos los nodos calculado fuera de línea tiene un peor rendimiento que el nuestro.<br /
    corecore