50 research outputs found

    Study on the properties of ZrO2/HfO2 thin films grown by high temperature ALD

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์žฌ๋ฃŒ๊ณตํ•™๋ถ€, 2022.2. ํ™ฉ์ฒ ์„ฑ.DRAM์˜ Design rule์ด 10 nm ๋Œ€๋กœ ์ ‘์–ด๋“ค๋ฉด์„œ ๊ณ ์œ ์ „์œจ๊ณผ ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜ ๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์ปคํŒจ์‹œํ„ฐ ์œ ์ „๋ง‰ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•ด์กŒ๋‹ค. ZrO2์™€ HfO2๋Š” ์—ฌ๋Ÿฌ ์ƒ์„ ๊ฐ€์ง€๋Š” ๋‹คํ˜•์„ฑ ๋ฌผ์งˆ๋กœ ์ƒ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋ฌผ์งˆ์ด๋‹ค. ํŠนํžˆ ZrO2์™€ HfO2๋Š” tetragonal ๋˜๋Š” cubic ์ƒ์—์„œ ์•ฝ 30 โ€“ 40 ์‚ฌ์ด์˜ ๋†’์€ ์œ ์ „์œจ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ณ ์œ ์ „์œจ ์ƒ์˜ ์œ ์ „๋ง‰์„ ์ฆ์ฐฉํ•˜์—ฌ DRAM ์ปคํŒจ์‹œํ„ฐ ์œ ์ „๋ง‰ ๋ฌผ์งˆ๋กœ ์‚ฌ์šฉ๋˜์–ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Scaling down์ด ๊ณ„์† ์ด์–ด์ง์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ์  ๋‘๊ป˜๊ฐ€ ๋” ์–‡์€ ์œ ์ „ ๋ฐ•๋ง‰์ด ํ•„์š”ํ•ด์กŒ๊ณ , ์–‡์€ ๋‘๊ป˜์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ๋ง‰์งˆ์˜ ๊ณ ์œ ์ „์œจ ์ƒ์„ ๊ฐ–๋Š” ๋ฐ•๋ง‰์„ ์–ป๋Š” ๊ฒƒ์ด ํ•„์š”ํ•ด์กŒ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์—์„œ 300 โ„ƒ ์ด์ƒ์˜ ๊ณ ์˜จ์—์„œ ALD๋กœ ์ฆ์ฐฉํ•œ ZrO2/HfO2 ๋ฐ•๋ง‰์ด ๋†’์€ ๋ฐ€๋„์™€ ๋‚ฎ์€ ๋ถˆ์ˆœ๋ฌผ ๋†๋„๋ฅผ ๊ฐ–๊ณ  ๊ฒฐ์ •์„ฑ ๋˜ํ•œ ๊ฐœ์„ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์˜จ ์ฆ์ฐฉ์ด ๊ฐ€๋Šฅํ•œ Cp ๊ณ„์—ด์˜ ์ƒˆ๋กœ์šด ์ „๊ตฌ์ฒด Z03/H03์„ ์ด์šฉํ•ด 300 โ„ƒ ์ด์ƒ์˜ ๊ณ ์˜จ์—์„œ ZrO2์™€ HfO2 ๋ฐ•๋ง‰์„ ALD ๊ณต์ •์„ ํ†ตํ•ด TiN ๊ธฐํŒ ์œ„์—์„œ ์ฆ์ฐฉํ•˜์—ฌ ๊ฒฐ์ •์„ฑ, ๋ถˆ์ˆœ๋ฌผ ๋†๋„, ๋ฐ€๋„, ์ „๊ธฐ์  ํŠน์„ฑ ๋“ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด์•˜๊ณ  ํ–ฅํ›„ ๊ณ ์˜จ ๊ณต์ • ZrO2์™€ HfO2์˜ ์ ์šฉ ๋ฐฉํ–ฅ์— ๋Œ€ํ•ด ๋…ผํ•ด๋ณด์•˜๋‹ค.As the design rule of DRAM enters the 10 nm range, it is necessary to develop a capacitor dielectric film with high dielectric constant and low leakage current density. ZrO2 and HfO2 are polymorphic materials having multiple phases, and are materials having different dielectric constants depending on the phases. In particular, since ZrO2 and HfO2 have a high dielectric constant about 30 - 40 in the tetragonal or cubic phase, dielectric films having such high dielectric constants have been deposited and used as dielectric materials for DRAM capacitors. However, as the scaling down continued, a dielectric thin film with a thinner physical thickness was required, and it became necessary to obtain a thin film having a high dielectric constant phase with excellent film quality even at a thin thickness. In previous studies, it was confirmed that the ZrO2/HfO2 thin film deposited by ALD at a high temperature of 300 ยฐC or higher had high density and low impurity concentration and improved crystallinity. Therefore, in this study, ZrO2 and HfO2 thin films were deposited on a TiN substrate through an ALD process at a high temperature of 300 โ„ƒ or higher using Z03/H03, a new Cp-based precursor that can be deposited at a high temperature. and discussed the direction of application of ZrO2 and HfO2 films deposited on high temperature in the future.์ดˆ ๋ก iii ๋ชฉ ์ฐจ iv ํ‘œ ๋ชฉ์ฐจ v ๊ทธ๋ฆผ ๋ชฉ์ฐจ v 1. ์„œ๋ก  1 2. ๋ฌธํ—Œ ์—ฐ๊ตฌ 6 2.1. ์›์ž์ธต ์ฆ์ฐฉ๋ฒ• (Atomic Layer Deposition, ALD) 6 2.2. ๊ณ ์˜จ ์ฆ์ฐฉ ZrO2/HfO2/HZO ALD ๋ฐ•๋ง‰์˜ ํŠน์„ฑ 11 2.3. ZrO2/HfO2/HZO์˜ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™ 20 3. ์‹คํ—˜ ๋ฐฉ๋ฒ• 25 3.1. ์‹คํ—˜ ์„ค๊ณ„ 25 3.2. ALD ๋ฐ•๋ง‰ ์ฆ์ฐฉ 28 3.3. ์ธก์ • ๋ฐฉ๋ฒ• 31 4. ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 32 4.1. ALD ์ฆ์ฐฉ ๊ฑฐ๋™ 32 4.2. ๊ฒฐ์ •์„ฑ ๋น„๊ต 36 4.3. ์ „๊ธฐ์  ํŠน์„ฑ ๋น„๊ต 46 4.4. ๋ง‰์งˆ ํŠน์„ฑ 50 5. ๊ฒฐ๋ก  57 ์ฐธ๊ณ  ๋ฌธํ—Œ 58 Abstract 60์„

    ์ด์ค‘ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ์ด์šฉํ•œ ๋ฐฑํ˜ˆ๊ตฌ ๋ฐฑ๋ถ„์œจ ์ž๋™ ๋ถ„์„ ์‹œ์Šคํ…œ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› ๊ณต๊ณผ๋Œ€ํ•™ ํ˜‘๋™๊ณผ์ • ๋ฐ”์ด์˜ค์—”์ง€๋‹ˆ์–ด๋ง์ „๊ณต, 2017. 8. ๊น€ํฌ์ฐฌ.Leukocyte or white blood cell differential count is an essential examination modality of hematology laboratory in diagnosis of various blood disorders. However, it requires highly experienced hematologists for correct diagnosis from samples with inter- and intra-sample variations. Due to tedious, time and cost consuming procedure of manual differential count, there has been high demands for development of automated system. In order for it to be applicable in clinical hematology laboratories, an automated system will have to detect and classify leukocytes of different maturation stages, especially in bone marrow aspirate smears. This has been a challenging problem in computer vision, image processing, and machine learning, because of complex nature of bone marrow aspirate smear. The leukocyte has multiple maturation stages, and these maturation stages have small inter-class differences, so it is difficult to differentiate even with expert knowledge. Moreover, a problem of color, shape, and size variations among samples exists and a problem of touching cell due to high leukocyte density of bone marrow aspirate smear exists. In this dissertation, an automated leukocyte differential count system for bone marrow aspirate smear was developed to overcome problems of manual differential count and to fulfill clinically unmet needs. The system should perform the differential count with high accuracy and objectivity, and high throughput and efficiency. Moreover, it should overcome challenges of bone marrow aspirate smear. To this end, a large dataset of bone marrow smear was collected for development of a detection and a classification algorithms. Watershed transformation and saliency map were utilized for single-leukocyte detection, and the dual-stage convolutional neural network that learns global and local features of complex leukocyte maturation stages was proposed for classification. Lastly, a probability guidance algorithm was proposed for integration of detection and classification algorithms. The performance of proposed system was assessed with ten leukocyte maturation stages of myeloid and erythroid series in bone marrow aspirate smears. Total of 200 large (1388 ร— 1040) digital images of bone marrow aspirate smears and 2,323 small (96 ร— 96) single leukocyte digital images were collected. The proposed system showed a state-of-the-art performance. It achieved an average detection accuracy of 96.09% and an average classification accuracy of 97.06%, and it was able to differential count 100 leukocytes in 4 to 5 seconds. This proposes a new paradigm in diagnosis of blood disorder and showed a potential of deep learning, especially the convolutional neural network, in medical image processing. The proposed system is expected to increase the total number of analyzed leukocytes in a sample, which will provide more statistically reliable information of a patient for diagnosis.Chapter 1 Introduction 1 1.1. Introduction to Hematology 2 1.2. Introduction to Convolutional Neural Network 12 1.3. Thesis Objectives 16 Chapter 2 Leukocyte Data Collection 19 2.1. Sample Preparation and Acquisition 20 2.2. Dataset Collection and Preparation 23 Chapter 3 Leukocyte Classification 27 3.1. Introduction 28 3.2. Methods 36 3.2.1. Data Collection and Preparation 36 3.2.2. Data Oversampling and Augmentation 38 3.2.3. Convolutional Neural Network Architecture and Dual-stage Convolutional Neural Network 40 3.2.4. Convolutional Neural Network Training 43 3.2.5. Implementation 46 3.2.6. Evaluation Metrics 46 3.3. Results and Discussion 48 3.4. Conclusion 66 Chapter 4 Implementation of Automated Leukocyte Differential Count System 67 4.1. System Overview 68 4.2. Leukocyte Detection 70 4.2.1. Introduction 70 4.2.2. Detection Algorithm 75 4.2.3. Experimental Setup and Evaluation 81 4.2.4. Results and Discussion 82 4.3. Automated Leukocyte Differential Count System 92 4.3.1. Implementation of Detection and Classification Algorithms 92 4.3.2. Graphical User Interface Design 93 4.3.3. Probability Guidance Algorithm 95 4.3.4. Experimental Setup and Evaluation 97 4.3.5. Results and Discussion 98 4.4. Conclusion 102 Chapter 5 Thesis Summary and Future Work 104 5.1 Thesis Summary and Contributions 105 5.2 Future Work 109 Bibliography 115 Abstract in Korean 122Docto

    Relationship between Subjective Evaluation and Physical Image Parameters of Cone-Beam Computed Tomography Images according to Diagnostic Task

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์น˜์˜๊ณผํ•™๊ณผ, 2015. 2. ์ด์‚ผ์„ .1. ๋ชฉ ์  ๋ณธ ์—ฐ๊ตฌ๋Š” ์ฝ˜๋น”์ „์‚ฐํ™”๋‹จ์ธต์ดฌ์˜์˜์ƒ(CBCT)์˜ ์ง„๋‹จ๋ชฉ์ ์— ๋”ฐ๋ฅธ ์ฃผ๊ด€์  ํ™”์งˆ ํ‰๊ฐ€ ๊ฒฐ๊ณผ์™€ ๋ฌผ๋ฆฌ์ ์ธ ํ™”์งˆ ์š”์†Œ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์—ฐ๊ตฌํ•˜์˜€๋‹ค. 2. ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• ํ•œ ๋Œ€์˜ Dinova CBCT์žฅ๋น„๋ฅผ ์ด์šฉํ•˜์—ฌ 24๊ฐ€์ง€ ์ดฌ์˜ ์กฐ๊ฑด(60, 70, 80, 90, 100, 110kV4, 6, 8, 10mA)์—์„œ X์„  ๋‘๋ถ€ ํŒฌํ…€๊ณผ SedentexCT IQ ํŒฌํ…€์˜์ƒ์„ ํš๋“ํ•˜์˜€๋‹ค. ๋‹ค์„ฏ ๋ช…์˜ ๊ตฌ๊ฐ•์•…์•ˆ๋ฉด๋ฐฉ์‚ฌ์„  ์ „๊ณต์ž๋“ค์ด ๊ฐ ์กฐ๊ฑด์—์„œ ์ดฌ์˜๋œ X์„  ๋‘๋ถ€ ํŒฌํ…€ ์˜์ƒ์˜ ํ™”์งˆ์ด ์น˜๊ทผ๋‹จ ์งˆํ™˜์˜ ์ง„๋‹จ๊ณผ ์ž„ํ”Œ๋ž€ํŠธ ์ˆ ์ „ ํ‰๊ฐ€์— ์ ํ•ฉํ•œ์ง€ ์—ฌ๋ถ€๋ฅผ ํ‰๊ฐ€ํ•˜์—ฌ ์ ํ•ฉํ•œ ์˜์ƒ๊ณผ ๋ถ€์ ํ•ฉํ•œ ์˜์ƒ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์˜€๋‹ค. ๋ฌผ๋ฆฌ์ ์ธ ํ™”์งˆ ์š”์†Œ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด SedentexCT IQ ํŒฌํ…€์˜์ƒ์—์„œ ๋ณ€์กฐ์ „๋‹ฌํ•จ์ˆ˜(MTF), ๋Œ€์กฐ๋„ ๋Œ€ ์žก์Œ๋น„(CNR), ์˜์ƒ์˜ ๊ท ์ผ๋„๋ฅผ ์ •๋Ÿ‰์ ์œผ๋กœ ์ธก์ •ํ•˜์˜€๋‹ค. ์ฃผ๊ด€์ ์ธ ํ™”์งˆ ํ‰๊ฐ€์—์„œ ์ ํ•ฉ๊ณผ ๋ถ€์ ํ•ฉ์œผ๋กœ ๋ถ„๋ฅ˜๋œ ์˜์ƒ์˜ ๋ฌผ๋ฆฌ์ ์ธ ํ™”์งˆ ์š”์†Œ์™€ ๋…ธ์ถœ ์กฐ๊ฑด์˜ ์ฐจ์ด๋ฅผ ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ๊ฐ ์ง„๋‹จ๋ชฉ์ ์— ์ ํ•ฉํ•œ ์˜์ƒ์œผ๋กœ ๋ถ„๋ฅ˜๋œ ์˜์ƒ๋“ค ๊ฐ„์— ๋ฌผ๋ฆฌ์ ์ธ ํ™”์งˆ ์š”์†Œ์˜ ์ฐจ์ด๊ฐ€ ์žˆ๋Š”์ง€๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. 3. ๊ฒฐ ๊ณผ ๋ชจ๋“  ์ง„๋‹จ ๋ชฉ์ ์—์„œ ์ ํ•ฉํ•œ ์˜์ƒ๊ตฐ์˜ MTF์™€ CNR๊ฐ’์€ ๋ถ€์ ํ•ฉํ•œ ์˜์ƒ๊ตฐ์˜ MTF, CNR๊ฐ’๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’์€ ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค(P0.05). ํ•˜์•…์˜ ๊ฒฝ์šฐ ์น˜๊ทผ๋‹จ ์งˆํ™˜์— ์ ํ•ฉํ•œ ์˜์ƒ์˜ MTF์™€ CNR๊ฐ’์€ ์ž„ํ”Œ๋ž€ํŠธ ์ˆ ์ „ ํ‰๊ฐ€์— ์ ํ•ฉํ•œ ์˜์ƒ์—์„œ๋ณด๋‹ค ์œ ์˜ํ•˜๊ฒŒ ๋†’์•˜๋‹ค(P<0.05). 4. ๊ฒฐ ๋ก  ๋ณธ ์—ฐ๊ตฌ๋Š” CBCT์˜์ƒ์—์„œ MTF์™€ CNR๊ฐ’์ด ๋†’์„์ˆ˜๋ก ์ฃผ๊ด€์  ํ™”์งˆ ํ‰๊ฐ€ ๊ฒฐ๊ณผ๊ฐ€ ๋†’๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์ƒ์•…์—์„œ๋Š” ์ฃผ๊ด€์  ํ™”์งˆ ํ‰๊ฐ€์— ์žˆ์–ด ์ง„๋‹จ๋ชฉ์ ์ด ํฌ๊ฒŒ ์˜ํ–ฅ์„ ๋ฏธ์น˜์ง€ ์•Š์•˜์œผ๋‚˜ ํ•˜์•…์˜ ๊ฒฝ์šฐ ์น˜๊ทผ๋‹จ ์งˆํ™˜์˜ ์ง„๋‹จ์—๋Š” ์ž„ํ”Œ๋ž€ํŠธ ์ˆ ์ „ ํ‰๊ฐ€์—์„œ๋ณด๋‹ค ๋†’์€ ๋ฌผ๋ฆฌ์  ํ™”์งˆ ์š”์†Œ์™€ ๊ด€์ „์••์„ ํ•„์š”๋กœ ํ•˜์˜€๋‹ค. CBCT์˜์ƒ์„ ์ž„ํ”Œ๋ž€ํŠธ ์ˆ ์ „ ํ‰๊ฐ€์— ์ด์šฉํ•  ๊ฒฝ์šฐ ์ตœ์ ํ™”๋ฅผ ์œ„ํ•ด ๋†’์€ ๊ด€์ „์••๊ณผ ๋‚ฎ์€ ๊ด€์ „๋ฅ˜๋ฅผ ์„ค์ •ํ•˜๋Š” ๊ฒƒ์ด ๋ฐ”๋žŒ์งํ•  ๊ฒƒ์œผ๋กœ ์ƒ๊ฐ๋œ๋‹ค.I. ์„œ๋ก  ---------------------------- 1 II. ์—ญ์‚ฌ์  ๋ฐฐ๊ฒฝ --------------------- 3 III. ์—ฐ๊ตฌ์žฌ๋ฃŒ ๋ฐ ๋ฐฉ๋ฒ• ----------------- 9 IV. ์—ฐ๊ตฌ๊ฒฐ๊ณผ ------------------------ 18 V. ๊ณ ์ฐฐ --------------------------- 24 VI. ๊ฒฐ๋ก  --------------------------- 28 VII. ์ฐธ๊ณ ๋ฌธํ—Œ ----------------------- 29 AbstractDocto

    ๋‚˜๋ฌด ๋ฌผ๊ด€ ๋‚ด๋ถ€ ๊ณต๋™ ํ˜„์ƒ์— ๋Œ€ํ•œ ์œ ์ฒด์—ญํ•™์  ๋ถ„์„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2019. 8. ๊น€ํ˜ธ์˜.๊ฑด์กฐํ•œ ํ™˜๊ฒฝ์€ ์‹๋ฌผ์—๊ฒŒ ์น˜๋ช…์ ์ด๋‹ค. ๋ฌผ์ด ์ถฉ๋ถ„ํžˆ ๊ณต๊ธ‰๋˜์ง€ ๋ชปํ•˜๋ฉด ์ค„๊ธฐ ๋‚ด๋ถ€์— ๊ธฐํฌ๊ฐ€ ํ˜•์„ฑ๋˜์–ด ๋ฌผ๊ด€์„ ๋ง‰๋Š”๋‹ค. ์ด๋ฅผ ์ƒ‰์ „์ฆ์ด๋ผ๊ณ  ํ•œ๋‹ค. ์ด ๋•Œ, ์žŽ์˜ ์—ฝ์œก ์„ธํฌ๋ฅผ ์ ์‹œ์ง€ ๋ชปํ•ด ์ƒ์กดํ•  ์ˆ˜ ์—†๋‹ค. ์ƒ‰์ „์ฆ์˜ ์ง„ํ–‰ ๊ณผ์ •์€ ์ด๋ฏธ ๊ธฐ์ฒด๋กœ ๊ฐ€๋“ ์ฐฌ ๋ฌผ๊ด€ ์š”์†Œ์—์„œ ์ธ์ ‘ํ•œ ๋ฌผ๊ด€ ์š”์†Œ๋กœ ๊ธฐํฌ๊ฐ€ ์ „ํŒŒ๋˜๋Š” ๊ณผ์ •๊ณผ ์ด ๊ธฐํฌ๊ฐ€ ์„ฑ์žฅํ•˜๋ฉฐ ๋ฌผ๊ด€ ์š”์†Œ๋ฅผ ๊ฐ€๋“ ์ฑ„์šฐ๋Š” ๊ณผ์ •์œผ๋กœ ๋ถ„๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๊ณต ์‹๋ฌผ์„ ์ œ์ž‘ํ•˜์—ฌ ๊ธฐํฌ์˜ ์ „ํŒŒ ๋ฐ ์„ฑ์žฅ์„ ์‹คํ—˜์ ์œผ๋กœ ๋ถ„์„ํ•˜๊ณ , ์ด ๊ฒฐ๊ณผ๋ฅผ ์‹ค์ œ ์‹๋ฌผ์— ์ ์šฉํ•˜์˜€๋‹ค. ์ธ๊ณต ์‹๋ฌผ์ด๋ž€ ํŠน์ • ๋ถ€ํ”ผ์˜ ๋ฌผ์„ ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ๊ฐ€ ๋‘˜๋Ÿฌ์‹ธ๊ณ  ์žˆ๋Š” ํ˜•ํƒœ์ด๋‹ค. ๋‹ค๊ณต์„ฑ ๊ตฌ์กฐ ๋‚ด๋ถ€์— ๊ฑธ๋ฆฐ ๋ฌผ์˜ ๊ณ„๋ฉด์€ ์ธ๊ณต ์‹๋ฌผ ๋‚ด๋ถ€ ๋ฌผ์„ ์žก์•„๋‹น๊ธฐ๋ฉฐ ์žฅ๋ ฅ์ด ํ˜•์„ฑ๋œ๋‹ค. ์žฅ๋ ฅ์˜ ํฌ๊ธฐ๊ฐ€ ์—ญ์น˜ ์ด์ƒ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋ฉด ๊ธฐํฌ๊ฐ€ ํ˜•์„ฑ๋œ๋‹ค. ์‹คํ—˜์  ๊ฒฐ๊ณผ๋Š” 1) ์ธ๊ณต ์‹๋ฌผ ๋‚ด๋ถ€ ๋ฌผ์˜ ๋ถ€ํ”ผ๊ฐ€ ์ฆ๊ฐ€ํ• ์ˆ˜๋ก ๊ธฐํฌ๊ฐ€ ํ˜•์„ฑ๋  ๋•Œ๊นŒ์ง€ ์ธ๊ณต ์‹๋ฌผ์˜ ๋ถ€ํ”ผ ๋ณ€ํ™”๊ฐ€ ํฌ๋‹ค. ์ฆ‰ ์ธ๊ณต ์‹๋ฌผ์˜ ์บํŒจ์‹œํ„ด์Šค๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. 2) ์˜จ๋„๊ฐ€ ๊ฐ์†Œํ• ์ˆ˜๋ก ๊ธฐํฌ๊ฐ€ ํ˜•์„ฑ๋˜๋Š” ์—ญ์น˜๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ๊ทธ๋กœ ์ธํ•˜์—ฌ ์™ธ๋ถ€์™€์˜ ์••๋ ฅ์ฐจ๊ฐ€ ์ฆ๊ฐ€ํ•ด ๋ฐ•๋ง‰์˜ ํŒŒ์—ด์ด ๊ด€์ฐฐ๋œ๋‹ค. 3) ์—ญ์น˜ ์••๋ ฅ์ด 0์— ๊ฐ€๊นŒ์šด ๊ธฐํฌ๋Š” ๋Š๋ฆฌ๊ณ  ์ผ์ •ํ•œ ์†๋ ฅ์œผ๋กœ ์„ฑ์žฅํ•œ๋‹ค. 4) ์—ญ์น˜ ์••๋ ฅ์ด ํฐ ๊ธฐํฌ๋Š” ์ดˆ๊ธฐ ์†๋ ฅ์ด ๋น ๋ฅด์ง€๋งŒ ๊ฐ์†ํ•œ๋‹ค. ์‹๋ฌผ ์ค„๊ธฐ์˜ ๊ธฐํฌ ์ €ํ•ญ์„ฑ์€ ์ค„๊ธฐ์˜ ํ•ด๋ถ€ํ•™์  ๊ตฌ์กฐ์— ๋”ฐ๋ผ ๊ฒฐ์ •๋œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ค„๊ธฐ์˜ ๊ตฌ์„ฑ ์š”์†Œ๋ฅผ ๋ชฉ์งˆ, ์œ ์กฐ์ง, ๋นˆ ๊ณต๊ฐ„์œผ๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๋นˆ ๊ณต๊ฐ„์˜ ๋น„์œจ๊ณผ ๊ธฐํฌ ์ €ํ•ญ์„ฑ์— ๋Œ€ํ•˜์—ฌ ๋น„๊ต ์—ฐ๊ตฌ๋ฅผ ์ˆ˜ํ–‰ํ•œ ๊ฒฐ๊ณผ 1) ๋นˆ ๊ณต๊ฐ„์˜ ๋น„์œจ์ด ์ž‘์„์ˆ˜๋ก ์บํŒจ์‹œํ„ด์Šค๊ฐ€ ๊ฐ์†Œํ•˜์—ฌ ๊ธฐํฌ๊ฐ€ ๋น ๋ฅด๊ฒŒ ํ˜•์„ฑ๋˜์–ด ๊ธฐํฌ ์ €ํ•ญ์„ฑ์ด ๊ฐ์†Œํ•œ๋‹ค. 2) ๋นˆ ๊ณต๊ฐ„์˜ ๋น„์œจ์ด ํด์ˆ˜๋ก ๋ฌผ๊ด€๋ฒฝ์— ํŒŒ์—ด์ด ์ผ์–ด๋‚  ๊ฐ€๋Šฅ์„ฑ์ด ์ปค์ ธ์„œ ๊ธฐํฌ ์ €ํ•ญ์„ฑ์ด ๊ฐ์†Œํ•œ๋‹ค. 3) ์ด๋Ÿฌํ•œ ๋‘ ํ•œ๊ณ„๋Š” ์นจ์—ฝ์ˆ˜์™€ ํ™œ์—ฝ์ˆ˜์— ๊ตฌ๋ถ„๋˜์–ด ๋‚˜ํƒ€๋‚œ๋‹ค. ํ™œ์—ฝ์ˆ˜๋Š” ๊ณ ์˜จ์˜ ํ™˜๊ฒฝ์—์„œ ์„œ์‹ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐํฌ๊ฐ€ ๋นˆ๋ฒˆํžˆ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๊ณ , ์œ ์กฐ์ง ์„ธํฌ์˜ ๋น„์œจ์„ ๋†’์—ฌ์„œ ์ƒ‰์ „์ฆ์— ๋Œ€์‘ํ•œ๋‹ค. ์นจ์—ฝ์ˆ˜๋Š” ์ €์˜จ์˜ ํ™˜๊ฒฝ์—์„œ ์„œ์‹ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐํฌ๊ฐ€ ๋œ ํ˜•์„ฑ๋˜๋Š” ๋Œ€์‹  ํฐ ์••๋ ฅ์ฐจ๋กœ ๋ฌผ๊ด€๋ฒฝ์— ํŒŒ์—ด์ด ์ผ์–ด๋‚  ์ˆ˜ ์žˆ๋‹ค. ์นจ์—ฝ์ˆ˜๋Š” ์ด๋ฅผ ๋Œ€๋น„ํ•˜์—ฌ ๋ฌผ๊ด€๋ฒฝ์˜ ๊ฐ•๋„๋ฅผ ๋†’์ธ๋‹ค.A dry environment is fatal to plants. If water is not supplied properly, cavitation happens inside the stem and the bubble blocks the xylem. This is called embolism. When embolism occurs, roots cannot supply enough water to hydrate mesophylls in leaves. The process of embolization can be divided into two processes: the propagation of the air bubble from the gas-filled vessel element to the adjacent, and the growing of the bubble until it fills the element. In this study, synthetic tree experiments elucidated the mechanics of embolization, and the results were applied to actual biological data. The synthetic tree is the model system which contains a bulk volume of water surrounded by a porous media. In porous media, the interface of the water pulls the volume of water, so negative pressure is generated. When the magnitude of the negative pressure exceeds beyond the threshold, cavitation happens in the bulk volume of water. Experimental results show that: 1) As the volume of bulk water increases, the volumetric change of the synthetic tree until the cavitation increases. That is, the hydraulic capacitance of the synthetic tree is increased. 2) As the temperature decreases, the cavitation threshold increases. As a result, the pressure difference before cavitation with the outside can be increased, and the membrane fracture can happen. After cavitation, 3) the bubble with a low threshold pressure near zero increases its size at a slow and constant speed (Darcy expansion). 4) The bubble with a high threshold pressure has fast initial speed but it decelerates its speed (poroelastic expansion). The embolism resistance of a plant stem is determined by the anatomy of the stem. In this study, we classified its components into woods, parenchyma cells, and empty spaces (lumen). In the plane of lumen fraction and embolism resistivity, the regime of plant shows that 1) as the ratio of lumen fraction decreases, capacitance decreases, the bubble is formed rapidly, and embolism resistance decreases. 2) The larger lumen fraction, the greater the possibility of fracture on the vessel wall, thus it reduces the embolism resistance. 3) Two strategies for increasing embolism resistance are distinguished from angiosperms and gymnosperms. Since angiosperms live in a high-temperature environment, cavitation can occur frequently, and parenchyma fraction is increased to cope with embolism. Because gymnosperms live in low-temperature environments, bubbles are less likely to form and fractures can occur on the vessel wall because of a large pressure difference. Thus, gymnosperms increase the strength of the vessel wall against fracture.Abstract i Table of Contents iii List of Figures iv Chapter 1. Introduction 1 1.1. The vascular system of large organisms 1 1.2. Negative pressure driven by surface tension 4 1.3. Cavitation and embolism in xylem 5 1.4. Purpose of Research 6 Chapter 2. Synthetic tree experiments 8 2.1. Synthetic tree and its surrounding pressures 8 2.2. Fabrication of deformable synthetic tree 10 2.3. Mass change of synthetic tree 12 2.4. Hydraulic capacitance until cavitation 14 2.5. Effect of temperature on cavitation and implosion 16 2.6. Fabrication of synthetic tree with channels 17 2.7. Observation of cavitation bubble 19 2.9. Analysis of bubble expansion 21 2.10. Discussion and conclusion 25 Chapter 3. Comparative analysis 27 3.1. Physiological and anatomical traits of plant stem 27 3.2. Definition of parameters 29 3.3. Comparative analysis of plant stem 30 3.4. Embolism limit 33 3.5. Implosion limit 34 3.6. Discussion and conclusion 35 Chapter 4. Concluding remarks 37 4.1. Conclusions 37 4.2. Future works 39 Appendix A 42 References 63 ๊ตญ ๋ฌธ ์ดˆ ๋ก 70Docto

    (The)Relationship between sialographic images and clinical symptoms of inflammatory parotid gland diseases

    No full text
    Thesis(master`s)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์น˜์˜ํ•™๊ณผ ๊ตฌ๊ฐ•์•…์•ˆ๋ฉด๋ฐฉ์‚ฌ์„ ํ•™์ „๊ณต,2006.Maste

    ์œ ํ•œ์š”์†Œ๋ฒ•์— ์˜ํ•œ 3์ฐจ์› ๋ธŒ๋ ˆ์ด๋“œ ๋ณตํ•ฉ์žฌ๋ฃŒ์˜ ๊ตฌ์กฐํ•ด์„

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์„ฌ์œ ๊ณ ๋ถ„์ž๊ณตํ•™๊ณผ,1995.Maste

    Study on the roll stabilization system using fins & pod propellers for cruise ship

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์กฐ์„ ํ•ด์–‘๊ณตํ•™๊ณผ,2009.8.Maste

    Study on the properties of ZrO2/HfO2 thin films grown by high temperature ALD

    Get PDF
    DRAM์˜ Design rule์ด 10 nm ๋Œ€๋กœ ์ ‘์–ด๋“ค๋ฉด์„œ ๊ณ ์œ ์ „์œจ๊ณผ ๋‚ฎ์€ ๋ˆ„์„ค ์ „๋ฅ˜ ๋ฐ€๋„๋ฅผ ๊ฐ–๋Š” ์ปคํŒจ์‹œํ„ฐ ์œ ์ „๋ง‰ ๊ฐœ๋ฐœ์ด ํ•„์š”ํ•ด์กŒ๋‹ค. ZrO2์™€ HfO2๋Š” ์—ฌ๋Ÿฌ ์ƒ์„ ๊ฐ€์ง€๋Š” ๋‹คํ˜•์„ฑ ๋ฌผ์งˆ๋กœ ์ƒ์— ๋”ฐ๋ผ ๋‹ค๋ฅธ ์œ ์ „์œจ์„ ๊ฐ–๋Š” ๋ฌผ์งˆ์ด๋‹ค. ํŠนํžˆ ZrO2์™€ HfO2๋Š” tetragonal ๋˜๋Š” cubic ์ƒ์—์„œ ์•ฝ 30 โ€“ 40 ์‚ฌ์ด์˜ ๋†’์€ ์œ ์ „์œจ์„ ๊ฐ€์ง€๊ธฐ ๋•Œ๋ฌธ์— ์ด๋Ÿฌํ•œ ๊ณ ์œ ์ „์œจ ์ƒ์˜ ์œ ์ „๋ง‰์„ ์ฆ์ฐฉํ•˜์—ฌ DRAM ์ปคํŒจ์‹œํ„ฐ ์œ ์ „๋ง‰ ๋ฌผ์งˆ๋กœ ์‚ฌ์šฉ๋˜์–ด์™”๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ Scaling down์ด ๊ณ„์† ์ด์–ด์ง์— ๋”ฐ๋ผ ๋ฌผ๋ฆฌ์  ๋‘๊ป˜๊ฐ€ ๋” ์–‡์€ ์œ ์ „ ๋ฐ•๋ง‰์ด ํ•„์š”ํ•ด์กŒ๊ณ , ์–‡์€ ๋‘๊ป˜์—์„œ๋„ ์šฐ์ˆ˜ํ•œ ๋ง‰์งˆ์˜ ๊ณ ์œ ์ „์œจ ์ƒ์„ ๊ฐ–๋Š” ๋ฐ•๋ง‰์„ ์–ป๋Š” ๊ฒƒ์ด ํ•„์š”ํ•ด์กŒ๋‹ค. ์„ ํ–‰ ์—ฐ๊ตฌ๋“ค์—์„œ 300 โ„ƒ ์ด์ƒ์˜ ๊ณ ์˜จ์—์„œ ALD๋กœ ์ฆ์ฐฉํ•œ ZrO2/HfO2 ๋ฐ•๋ง‰์ด ๋†’์€ ๋ฐ€๋„์™€ ๋‚ฎ์€ ๋ถˆ์ˆœ๋ฌผ ๋†๋„๋ฅผ ๊ฐ–๊ณ  ๊ฒฐ์ •์„ฑ ๋˜ํ•œ ๊ฐœ์„ ๋˜๋Š” ๊ฒƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ณ ์˜จ ์ฆ์ฐฉ์ด ๊ฐ€๋Šฅํ•œ Cp ๊ณ„์—ด์˜ ์ƒˆ๋กœ์šด ์ „๊ตฌ์ฒด Z03/H03์„ ์ด์šฉํ•ด 300 โ„ƒ ์ด์ƒ์˜ ๊ณ ์˜จ์—์„œ ZrO2์™€ HfO2 ๋ฐ•๋ง‰์„ ALD ๊ณต์ •์„ ํ†ตํ•ด TiN ๊ธฐํŒ ์œ„์—์„œ ์ฆ์ฐฉํ•˜์—ฌ ๊ฒฐ์ •์„ฑ, ๋ถˆ์ˆœ๋ฌผ ๋†๋„, ๋ฐ€๋„, ์ „๊ธฐ์  ํŠน์„ฑ ๋“ฑ์— ๋Œ€ํ•˜์—ฌ ์•Œ์•„๋ณด์•˜๊ณ  ํ–ฅํ›„ ๊ณ ์˜จ ๊ณต์ • ZrO2์™€ HfO2์˜ ์ ์šฉ ๋ฐฉํ–ฅ์— ๋Œ€ํ•ด ๋…ผํ•ด๋ณด์•˜๋‹ค.As the design rule of DRAM enters the 10 nm range, it is necessary to develop a capacitor dielectric film with high dielectric constant and low leakage current density. ZrO2 and HfO2 are polymorphic materials having multiple phases, and are materials having different dielectric constants depending on the phases. In particular, since ZrO2 and HfO2 have a high dielectric constant about 30 - 40 in the tetragonal or cubic phase, dielectric films having such high dielectric constants have been deposited and used as dielectric materials for DRAM capacitors. However, as the scaling down continued, a dielectric thin film with a thinner physical thickness was required, and it became necessary to obtain a thin film having a high dielectric constant phase with excellent film quality even at a thin thickness. In previous studies, it was confirmed that the ZrO2/HfO2 thin film deposited by ALD at a high temperature of 300 ยฐC or higher had high density and low impurity concentration and improved crystallinity. Therefore, in this study, ZrO2 and HfO2 thin films were deposited on a TiN substrate through an ALD process at a high temperature of 300 โ„ƒ or higher using Z03/H03, a new Cp-based precursor that can be deposited at a high temperature. and discussed the direction of application of ZrO2 and HfO2 films deposited on high temperature in the future.์ดˆ ๋ก iii ๋ชฉ ์ฐจ iv ํ‘œ ๋ชฉ์ฐจ v ๊ทธ๋ฆผ ๋ชฉ์ฐจ v 1. ์„œ๋ก  1 2. ๋ฌธํ—Œ ์—ฐ๊ตฌ 6 2.1. ์›์ž์ธต ์ฆ์ฐฉ๋ฒ• (Atomic Layer Deposition, ALD) 6 2.2. ๊ณ ์˜จ ์ฆ์ฐฉ ZrO2/HfO2/HZO ALD ๋ฐ•๋ง‰์˜ ํŠน์„ฑ 11 2.3. ZrO2/HfO2/HZO์˜ ๊ฒฐ์ •ํ™” ๊ฑฐ๋™ 20 3. ์‹คํ—˜ ๋ฐฉ๋ฒ• 25 3.1. ์‹คํ—˜ ์„ค๊ณ„ 25 3.2. ALD ๋ฐ•๋ง‰ ์ฆ์ฐฉ 28 3.3. ์ธก์ • ๋ฐฉ๋ฒ• 31 4. ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 32 4.1. ALD ์ฆ์ฐฉ ๊ฑฐ๋™ 32 4.2. ๊ฒฐ์ •์„ฑ ๋น„๊ต 36 4.3. ์ „๊ธฐ์  ํŠน์„ฑ ๋น„๊ต 46 4.4. ๋ง‰์งˆ ํŠน์„ฑ 50 5. ๊ฒฐ๋ก  57 ์ฐธ๊ณ  ๋ฌธํ—Œ 58 Abstract 60์„

    (Ta, Ti)C-Ni๊ณ„์—์„œ์˜ ์ž…๊ณ„ ํ˜•์„ฑ์— ์˜ํ•œ ์ž…์„ฑ์žฅ ์–‘์ƒ์˜ ๋ณ€ํ™”

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๋ฌด๊ธฐ์žฌ๋ฃŒ๊ณตํ•™๊ณผ,2000.Maste

    Characterization of a Novel PPARฮณ/AMPK Dual Agonist Having Beneficial Effects on Metabolic Disorder

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ ์˜๊ณผํ•™์ „๊ณต, 2016. 2. ๋ฐ•๊ฒฝ์ˆ˜.Insulin resistance, known as a primary cause of obesity and metabolic disorder, has the close relation with type 2 diabetes, hyperlipidemia, hyperglycemia, high cholesterol, atherosclerosis and cardiovascular disease. Especially, lipid metabolite plays an important role in pathogenesis and progression of insulin resistance. Therefore, control of lipid metabolism is important to improve insulin resistance and metabolic diseases. Cleistocalyx operculatus is a plant widely distributed in southern Asia, and its water extract is commonly used to relieve heat and to prevent and treat diabetes. 2,4-dihydroxy-6-methoxy-3,5-dimethylchalcone (DMC) is a major compound of the extract and is reported to have anti-tumor, anti-oxidative, and anti-inflammatory effects. However, the underlying mechanism of improvement in diabetes and metabolic diseases has not been elucidated. To carry out this study, we isolated DMC from Cleistocalyx operculatus extract to increasing PPARฮณ activity. Compared to rosiglitazone, DMC showed a lower PPARฮณ transcriptional activity and 10 times lower binding activity to the PPARฮณ LBD. However, fatty acid oxidation rate by DMC was higher than that by rosiglitazone. Interestingly, DMC is useful to inhibit adipocyte differentiation, which is totally different from rosiglitazone. In addition, DMC increases phosphorylation of AMPK, one of the major targets of diabetes and metabolic diseases. Compared to AICAR and metformin, well-known AMPK activators, DMC could increase AMPK activity, even at much lower concentrations. Next, DMC was administrated to the high-fat fed mice, and the effects of DMC on insulin resistance were determined. DMC improves insulin resistance as effectively as pioglitazone did. Interestingly, DMC treatment reduced fat tissue and showed weight loss compared to the pioglitazone treatment. Taken together, these results indicate that, DMC will provide great help to improve lipid metabolism and insulin resistance without side effects such as obesity.Introduction 1 Materials and methods 11 Result 28 Discussion 75 References 85 ๊ตญ๋ฌธ ์ดˆ๋ก 98Docto
    corecore