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Resumen

Aplicando anélisis provenientes de la teoria de grafos, la teoria espectral de gra-
fos, la exploracion de grafos en linea, generamos un sistema de SLAM activo que
incluye la planificacion de rutas bajo incertidumbre, extraccion de grafos topolo-
gicos de entornos y SLAM activo éptimo.

En la planificacion de trayectorias bajo incertidumbre, incluimos el andlisis de
la probabilidad de asociacidn correcta de datos. Reconociendo la naturaleza esto-
castica de la incertidumbre, demostramos que planificar para minimizar su valor
esperado es mds fiable que los actuales algoritmos de planificacion de trayectorias
con incertidumbre.

Considerando el entorno como un conjunto de regiones convexas conectadas
podemos tratar la exploracion robdtica como una exploraciéon de grafos en linea.
Se garantiza una cobertura total si el robot visita cada regiéon. La mayoria de los
métodos para segmentar el entorno estdn basados en pixeles y no garantizan que
las regiones resultantes sean convexas, ademds pocos son algoritmos incremen-
tales. En base a esto, modificamos un algoritmo basado en contornos en el que
el entorno se representa como un conjunto de poligonos que debe segmentarse
en un conjunto de poligonos pseudo convexos. El resultado es un algoritmo de
segmentacion que produjo regiones pseudo-convexas, robustas al ruido, estables
y que obtienen un gran rendimiento en los conjuntos de datos de pruebas.

La calidad de un algoritmo se puede medir en términos de cuan cercano al 6p-
timo est’a su rendimiento. Con esta motivacién definimos la esencia de la tarea de
exploracion en SLAM activo donde las tnicas variables son la distancia recorrida
y la calidad de la reconstruccion. Restringiendo el dominio al grafo que represen-
ta el entorno y probando la relacion entre la matriz asociada a la exploracion y la
asociada al grafo subyacente, podemos calcular la ruta de exploracion ptima.

A diferencia de la mayoria de la literatura en SLAM activo, proponemos que
la heuristica para la exploracién de grafos consiste en atravesar cada arco una
vez. Demostramos que el tipo de grafos resultantes tiene un gran rendimiento con
respecto a la trayectoria Optima, con resultados superiores al 97 % del 6ptimo en
algunas medidas de calidad.



El algoritmo de SLAM activo TIGRE integra el algoritmo de extraccion de
grafos propuesto con nuestra version del algoritmo de exploracion incremental
que atraviesa cada arco una vez. Nuestro algoritmo se basa en una modificacién
del algoritmo cldsico de Tarry para la bisqueda en laberintos que logra el limite
inferior en la aproximacion para un algoritmo incremental. Probamos nuestro sis-
tema incremental en un escenario de exploracion tipico y demostramos que logra
un rendimiento similar a los métodos fuera de linea y también demostramos que
incluso el método 6ptimo que visita todos los nodos calculado fuera de linea tiene
un peor rendimiento que el nuestro.



Abstract

Applying analysis drawn from graph theory, spectral graph theory, on-line graph
exploration we generate a pipeline for active SLAM that includes Path Planning
under uncertainty, Topological Graph Extraction and Optimal Active SLAM.

In path planning under uncertainty we include the analysis of the probability
of correct data association. Recognizing the stochastic nature of the uncertainty
we demonstrate that planning to minimize its expected value is more reliable that
current path planning under uncertainty algorithms.

Considering the environment as a set connected convex regions we can treat
robotic exploration as an on-line graph exploration. Full coverage is guaranteed if
the robot visit every region. Most of the methods to segment the environment are
pixel based and do not guarantee that resulting regions are convex and few of them
are incremental algorithms. Based on this we modify one contour-based algorithm
in which the environment is represented as a set of polygons that needs to be
segmented into a set of pseudo convex polygons. The result was a segmentation
algorithm that produced pseudo-convex regions, robust to noise, stable and that
obtained a great performance in public datasets.

The quality of one algorithm can be measured in terms of how close to the
optimal is its performance. With this motivation we define the quintessential ex-
ploration task in active SLAM where the only variables are the traversed distance
and the quality of the reconstruction. Restricting the domain to the graph that rep-
resents the environment and proving the relation between matrix associated to the
exploration and the one associated to the underlying graph we are able to calculate
the optimal exploration path.

Unlike most of the literature in Active SLAM we propose that the heuristic for
graph exploration consist in traversing every edge once. We prove that this type of
graphs resulted in great performance with respect to the optimal path, with results
over the 97% of the optimal in some quality measures.

The Active SLAM algorithm TIGRE integrates the proposed graph extraction
algorithm with our version of the incremental exploration algorithm that traverses
every edge once. Our algorithm is based on a modification of the classic Tarry’s
algorithm for maze-searching that achieves the lower bound in approximation for



an incremental algorithm. We test our incremental system one typical exploration
scenario and show that it achieves similar performance than off-line methods and
also demonstrate that even the optimal off-line methods that visits every node have
worst performance than ours.
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Chapter 1

Introduction

Robotic arms have demonstrated their value boosting the productivity of many
manufacturing industries. Unlike their predecessor the mobile robots can move
freely thus increasing its potential applications but also increasing its complexity.

Mobile robots are currently present in application ranging from military drones
and autonomous vehicles to automated vacuum cleaner. For all of these platforms
we need to know its position in the space in order to control it. This insight reflects
why the positioning systems are the cornerstone in the robotics community.

In some robotics applications the Localization is done with respect to a manu-
ally built map consisting in a set of landmarks or beacons with known position,
the Global Positioning System (GPS) can be considered a beacon with known loc-
ation. However in environments like indoors, caves, underwater or even in space
the use of GPS is denied, furthermore in some applications like autonomous driv-
ing the GPS precision is not enough to drive safely.

Although the use of beacons is a possibility in industrial environments one of
the less invasive way of localization based on natural landmarks is preferred. It
have been proven very effective because many of the autonomous cars use this
approach. The main constraint of this approach consist in the previously built
map, by definition if the previously built map is not accurate, or nonexistent, this
approach will fail.

The Simultaneous Localization and Mapping (SLAM) approach solves the
constraint of localization using maps by simultaneously building the map in which
the robot is moving. This approach have been called the holy grail of mobile ro-
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botics [Dissanayake et al., 2001]] and nowadays there are many algorithms work-
ing with sensors as diverse as wheel odometry, ranging laser, ultrasound, mon-
ocular cameras, 3D-cameras, omnidirectional cameras and different types of ro-
botic platforms including unmanned air vehicles (UAV), autonomous underwater
vehicles (AUV), autonomous cars and even robotic spacecraft. State of the art
SLAM algorithms provide accurate information on the metric representation of
the environment. SLAM provides an appealing alternative to user-built maps,
showing that robot operation is possible in the absence of an ad-hoc localization
infrastructure.

In order to perform a task the mobile robot often requires a map, fundamental
tasks like path planning or more complex like semantic segmentation of the envir-
onment are all based on a map. In fact, for many mobile robots the task consists in
building the map, one example consist in exploring an environment ensuring full
coverage and reporting to the human, another is the structural inspection where
the 3D reconstruction is required.

In this thesis we treat the problem of building the map autonomously. Most
practical applications of mapping consist in a human operator moving a robot
through the environment, the robot gathers information passively and builds the
map according to this information. Stopping criteria and quality of the reconstruc-
tion are usually subjective to the human operator.

The task of building a map autonomously based on the SLAM algorithm is
called Active SLAM. In this thesis we first follow the classic active SLAM ap-
proach of choosing among a finite set of trajectories the one with the maximum
value in terms of our utility function, nonetheless we move into a different ap-
proach based on graph theory.

Considering the link between the SLAM problem and the underlying graph
we are able to mathematically define optimal exploration and use on-line graph
exploration technique with convergence guarantees and close to optimal perform-
ance.

1.1 Contributions

In this thesis we focus on the problem of Active SLAM. First we follow the com-
mon approach, we generate a path planning algorithm using utility functions based
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on the uncertainty, however we differ from previous works by acknowledging its
probabilistic nature by calculating its expected value. We demonstrate that this
criteria reliably avoid zones void of features, additionally when the input graph is
augmented with possible traversals it can leverage the possible savings in distance
with the safety of that path.

In order to exploit the graph properties of the environment for the Active
SLAM algorithm we transform the environment into a topological graph com-
posed of approximate convex regions. The contributions derives from using con-
tours to define the image and an incremental algorithm to deal with incremental
exploration

One important contribution results from developing a different approach for
the active SLAM task. Analyzing the topological graph structure of the environ-
ment we are able to determine the optimal exploration trajectory, using anindoor
environment dataset we observe that a path that traverses every edge once in the
topological graph achieves up to 97% of the result of the optimal trajectory in one
of the typical criteria used, therefore we propose it as an exploration policy.

The policy of traversing every edge in the topological graph can be imple-
mented using classical algorithms for on-line graph exploration, hence we can
prescind from the utility functions and still being able to claim optimality in the
exploration. Consequently we develop the TIGRE algorithm that consist in the
incremental segmentation combined with exploration policy previously described
and demonstrate its behavior in the common exploration scenario.

1.2 Thesis Outline

The remainder of the thesis is organized as follows:

e Chapter 2 (Fundamentals), We review some of the basic concepts needed
to develop this thesis. We focus in the graph SLAM technique and the
Optimality Criteria to evaluate the uncertainty.

e Chapter 3 (Expected Uncertainty based Path Planning), We consider the
random nature of the uncertainty in path planning and calculate its expected
value to evaluate the trajectories.
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e Chapter 4 (Graph Extraction), In preparation for graph based exploration
we designed an algorithm to transform the partially explored map to a graph
representation.

e Chapter 5 (Optimal Information Path) Based on a graph representation we
analyze the optimal solution for common indoors structures, based on these
observations we generate an exploration policy.

e Chapter 6 (Graph based Active SLAM) Based on the topological represent-
ation of a partially explored map and the conclusions derived from the pre-
vious chapter we proposed a new exploration policy and evaluate in typical
exploration scenario.

e Finally in chapter 7 we present the conclusions and possible research direc-
tions departing from this thesis.

1.3 Publications

The following publications have been derived from this thesis

Conferences

e L. Fermin-Leon, J. Neira, and J.A. Castellanos. “Path planning in graph
SLAM using Expected uncertainty”. In Intelligent Robots and Systems
(IROS), 2016 IEEE/RS]J International Conference on. IEEE.2016.

Ranking — CORE2017: A, h5-index : 50 in Google Scholar (Ranked 5%
in Robotics)

e L. Fermin-Leon, J. Neira, and J. A. Castellanos. “Incremental contour-
based topological segmentation for robot exploration”. Robotics and Auto-
mation (ICRA), 2017 IEEE International Conference on. IEEE, 2017.

Ranking — CORE2017: B, h5-index : 71 in Google Scholar (Ranked 1%
in Robotics)
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e L. Fermin-Leon, J. Neira, and J. A. Castellanos. “TIGRE: Topological
graph based robotic exploration”. Mobile Robots (ECMR), 2017 European
Conference on. IEEE, 2017.

Ranking — h5-index : 12 in Google Scholar

Journal Publications
e L. Fermin-Leon, J. Neira, and J.A. Castellanos. "Exploration Efficiency in
Active SLAM". Robotics and Autonomous Systems. (In Preparation).
Open Source Software

e TIGRE: Topological Graph based Robotic Exploration (https://github.
com/1lfermin77/TIGRE)

e Implementation of the Incremental Contour-Based Topological Segmenta-
tion in structured or unstructured environments (https://github.com/
lfermin77/Incremental DuDe_ROS)

e Wrapper for Dual Decomposition and ROS (https://github.com/
lfermin77/dude_ros)

e Algorithm to evaluate the Expected Uncertainty in Path Planning (https:
//github.com/lfermin77/Expected_Uncertainty


https://github.com/lfermin77/TIGRE
https://github.com/lfermin77/TIGRE
https://github.com/lfermin77/Incremental_DuDe_ROS
https://github.com/lfermin77/Incremental_DuDe_ROS
https://github.com/lfermin77/dude_ros
https://github.com/lfermin77/dude_ros
https://github.com/lfermin77/Expected_Uncertainty
https://github.com/lfermin77/Expected_Uncertainty
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Chapter 2

Fundamentals

We will discuss most of the theoretical basis we will need for the rest of the thesis

2.1 Simultaneous Localization and Mapping

Robot localization can be seen as a problem of coordinate transformation. Maps
are described in a global coordinate system, which is independent of a robot
pose [Thrun et al., 2005]]. Localizing a robot implies finding the correspondence
between these coordinate systems. In the scenario when some information about
the global coordinate system is given, whether in form of localization of land-
marks or GPS signal, and the robot localization can be done reliably with respect
to these landmarks no further refinement needs to be done [[Cadena et al., 2016].

In applications where the use of GPS is denied like indoors, underground or
underwater environments, and no landmark is localized in a prior map the local-
ization has to be done while building the map, this task is known as Simultaneous
Localization and Mapping. Because we are building the map while localizing the
robot we define the global coordinate system in our discretion and define every
measure with respect to it.

According to [Thrun et al., 2005] there are two main forms of the SLAM
problem, the online SLAM and the full SLAM problem. In the online version the
task consists in estimating the momentary pose and the map. The term online is
coined because it only involves the variables that persist at time ¢, i.e. the last pose
and the map. Typical algorithms used in this problem are the Extended Kalman
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Filter (EKF) where the variables are the poses and the Covariance matrix and the
Extended Information Filter (EIF) where the variables are the information vector
and the Information matrix (the inverse of the covariance matrix).

In contrast to the previous one the full SLAM problem consist in estimating the
entire path of the robot along with the map, this subtle difference has implications
in the type of algorithms that are typically used. One of the most commonly used
for this task is the Graph SLAM where the landmarks and the path of the robot
are modeled as nodes of the graph and the relation among them as its edges. In
this thesis we will be based almost exclusively in this type of algorithm so we will
review it in detail.

2.1.1 Graph SLAM

In graph-based SLAM, the poses of the robot are modeled by nodes in a graph and
labeled with their position in the environment. Spatial constraints between poses,
that result from observations or from odometry measurements, are encoded in the
edges between the nodes.

The spatial constraints represented by the edges is considered to be a prob-
ability distribution over the relative transformation between pair of poses. These
transformations come from either odometry measurements or the result of align-
ing observations of different robot poses. Once the graph is built the problem
consist in finding the set of robot poses that best satisfies the constraints.

In graph SLAM the problem is divided in two tasks:

1. Graph Construction, Commonly known as “Front-End", consists in con-
structing the graph from the raw measurements. It deals with the problem
of data association that consists in deciding whether two robot observations
are related or not and include the corresponding edge in consequence

2. Graph Optimization, Also known as “Back-End". In this task the problem
consists in determining the most likely configuration of robot poses given
the edges of the graph. Because it deals with an abstract representation of
the data the nature of the sensor is irrelevant.

In [Grisetti et al., 2010] they show that in graph-based SLAM the problem is
simplified by abstracting the raw measurements into “virtual measurements”, the
edges in a graph represent these measurements.
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Considering the front-end provides correct information, the graph built G =
(V,E) consists in a set of nodes (or vertices, or points) and edges (or lines, or
arcs). The set of nodes V = {vi,v,,---v,} are associated to the number n of
previous positions in the robot. Using the function x(v;) = A4 (x;,P;) we relate
the node number with its probability distribution. We will use the variable i for
numbering nodes.

The set of edges E = {e1,e2,- e, } are associated with the m number of vir-
tual measurements. Every edge is composed of a pair of nodes e; = {v;, v} where
v; and vy are the nodes it connects. Let z(e;) = .4/(z;,X;) the mean and the co-
variance of the virtual measurement. We will use the variable j for numbering
edges.

Let’s define d; = d(x;,X,Z;) as the resulting vector of the function that com-
putes the difference between the expected observation, in terms of position of the
nodes, and the real observation gathered by the robot as f(x;,X,z;), we can write
the log-likelihood /; of the measurement z; as

lj<diE;'d; 2.1)

The maximum likelihood approach consist in finding the set of robot poses that
minimizes the constraints associated to all observations. Let x = (x,Xp,---X;) be
the vector of poses of robot we can write compactly the negative log-likelihood
F(x) as

F(x) = Z flj(x)szfldj(x) (2.2)
TR
=) Fi(x) (2.3)
j=1

where we write d ;(x) to emphasize that it is a function of the vector of config-
urations X. F;(x) represent the contribution of every edge ¢; to F(x). The optimal
vector of configuration is then

X" = arg minF (x) (2.4)

X
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Linearization

Following the demonstration of [Grisetti et al., 2010] we show the derivation of
the algorithm.

Considering the function d(x) is in general non linear the common approach
to solve the optimization in equation [2.4] consist in linearizing the system. Con-
sidering a good initial guess X the term d; can be written as

d; (%4 Ax) ~ d;(X) + J jAx (2.5)
~d; +J;Ax (2.6)
where J; = % _andd; =d;(X) (2.7)

Let’s write the linearization of the maximum likelihood equation [2.3] for the
contributions of every edge j.

Fj(X+Ax) (2.8)
= d;(x+Ax)" 27 d;(X+ Ax) (2.9)
~ (d;+J;Ax) 27 (d; + JjAx) (2.10)
~d 2 2d iz T Ax - axT TR Ax @2.11)
N—— N——
b; Y
~ cj+2b;Ax + Ax" Y jAx (2.12)

Using this approximation we can write
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m
F(X+Ax) = Y Fj(X+Ax) (2.13)
j=1
~ Y (cj+2b;Ax+ Ax" Y ;Ax) (2.14)
j=1
m
~Y j+22b Ax+AxTZY i Ax (2.15)
=1 1
g A Z
c b Y
~ ¢+ 2bAx + Ax’ YAx (2.16)

The matrix Y is the Information Matrix of the system. This expression is
minimized solving the system
YAx = —b (2.17)

The solution of linearized system consist in

X" =X+ Ax (2.18)

In the Gauss-Newton algorithm this result represent the new initial guess for
the next iteration where the Jacobian matrix J; is evaluated at the new lineariz-
ation point and new x* is calculated. This iterative procedure is repeated until
convergence.

Characteristics of the Linearized System

The Jacobian matrix J; only depends on the position of nodes that e; connects, as
a consequence it is a block matrix with zeros every where else, represented by (),
except by the elements associated with the nodes v; and v.

sz(' Jj|i : Jj\k ) (2.19)

where J;; and J ;. are the partial derivatives of the difference vector d; with
respect to the poses of the nodes v; and vy.
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ad;

Jjji= _axj ) (2.20)
ad;

ik =5l (2.21)

Consequently the information matrix associated to the edge e; has a very in-
teresting structure, it is a square block matrix with zero blocks everywhere except
by the positions associated with the connecting nodes

T g—1 T y—1
Jj\izj Jji Jj\izj Jjlk
Y= . . . (2.22)
T v—1 T y—1
Jj|kzj Jji Jj|kzj Tk
and the error vector is
Ty—147.
Jj|i2‘.j d;
b; = . (2.23)

T -1
JiZ; d;

The difference vector dj depends only on the relative position of the connec-
ted nodes v; and v;. Consequently the error F(x) associated to a set of poses is
invariant under a rigid transformation of all the poses. This fact results in the equa-
tion being under determined [|Grisetti et al., 2010] [Thrun and Montemerlo,
20006].

The common solution consists in “anchoring” one of the nodes. This is done
by choosing one node (usually the first) and setting its pose to x(v;) = 07 and set-
ting its information arbitrarily high (or equivalently setting the covariance matrix
to 0). The same effect is achieved by suppressing the block row and block column
associated to the chosen node [[Kummerle et al., 2011]].
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2.2 Exploration Taxonomy

The exploration task as the problem of gathering information of the environment
have been addressed with different approaches, we can classify the exploration
according to the structure used to represent the space in Geometry Based and
Graph Based [Dessmark and Pelc, 2004]].

2.2.1 Geometry Based

In the geometry based exploration we can identify two scenarios: environment
represented as a set of polygons, or represented as a raster cells.

Polygon based

In the first scenario a mobile robot has to explore an unknown environment modeled
by a simple polygon, this type of exploration is related to the art gallery problem
and has been studied in the computer science community. The solution comes
from segmenting the polygon into convex regions. When the robot enters to a
convex region every point in it becomes visible, consequently, once every con-
vex region have been visited the whole polygon have been visited. Unfortunately,
finding the minimum set of convex regions is demonstrated that is NP-hard [Lien
and Amato, 2004].

Grid Based

The second scenario is the most common in the robotics community, in this case
the environment is represented by an occupancy grid. Every cell in the grid rep-
resent the probability of being occupied. Typical examples are the one associated
with the Active SLAM literature.

Most of the algorithms are related to the frontier-based exploration [Yamau-
chi, 1997], the frontiers are defined as border regions between the explored and
unexplored cells. Given that the environment is enclosed this algorithm is guaran-
teed to converge to full exploration. Considering the robot selects the action with
the highest utility in every instant this constitute a greedy exploration approach,
consequently no optimality guarantees are given.
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One important drawback of this algorithms is that the number of cells in the
grid depends on the level of quantization used, low resolution implies larger cells
that represent poorly the environment, high resolution implies large amount of
data.

2.2.2 Graph Based

Using the abstraction level of the graphs to represent the environment we obtain
some interesting properties. The graphs are used to represent a wide variety of
problems, therefore, any result coming from this analysis can be extrapolated to
other areas besides robotic exploration and vice-versa.

In the context of on-line graph exploration [Megow et al., 2012] the graph is
represented as G(V,E) with E the set of edges, and V the set of vertices. The
common value to optimize is the cost of traversing an edge, usually the distance,
and the behavior of the algorithm can always be compared to the optimal. The
sequence of nodes to visit is known as path, the optimal path can always be cal-
culated offline and then compared with performance of the online version. In this
context we call an algorithm c-competitive if for a positive number c, it computes
for any instance a path of total length at most ¢ times the optimal offline path.

According to the assumptions we can differentiate three scenarios:

No node is recognizable

In this case the nodes are anonymous and recognizable only by a marker placed
on them, the interest for this area is the minimum information the robot needs to
accomplish the exploration. Classical results can be found in [Fraigniaud et al.,
2005]] and more recently in [Disser et al., 2016], some applications of this methods
to real robots can be found in [Wang et al., 2014].

Node is recognizable, but edges not

Once the robot visits a node it learns the node, however the robot can only learn
the end vertex of the edge and the cost of traversing it once the robot traverses it
and recognizes the node in the other end. In this scenario the common goal is the
full graph exploration and it consists in visiting every edge, and thus every vertex.
The offline version of this problem is the polynomially solvable Chinesse Postman
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Problem (CPP). For the online solution the lower bound is known to be reached
using Depht First Search (DFS), with the worst case being traversing twice the
distance of the optimal, in the case the graph have an eulerian path [Megow et al.,
2012].

Node and Edges recognizable

Whenever a robot visits a node it learns the node and where every incident edge
is heading, for example if the vertices correspond to cities, the searcher is able to
see the road signs of routes to other cities including distance information and the
name of the city it is headed. In this scenario the goal usually consists in exploring
all the nodes. The offline solution to this task consist in one of the most studied
optimization problem the Traveling Salesman Problem (TSP), which is known to
be NP-Hard [Megow et al., 2012]. In [Miyazaki et al., 2009] they demonstrate
that for the special case that all edges have equal weight, the standard Depth First
Search (DFS) is 2-competitive. It yields a total tour not larger than twice the size
of a minimum spanning tree (MST), a lower bound on the optimal tour. In the
case of planar graphs the algorithm ShortCut proposed in [Kalyanasundaram and
Pruhs, 1994] is 16-competitive, this represented the state of the art for almost two
decades until the generalization proposed in [Megow et al., 2012] to graph with
bounded genus.

2.3 Active SLAM

So far we have discussed the SLAM when no action in the robot is controlled, in
that sense the robot perceives the world passively. Including in the problem the
commands that affect the measurement we receive from the environment defines
the Active SLAM.

In [[Cadena et al., 2016] they survey the literature on active SLAM and claim
that the popular framework for active SLAM consists in selecting the best future
action among a finite set of alternatives. They consider this framework can ex-
pressed in three steps:

1. The robot identifies possible locations to visit in its current estimate of the
map. These locations usually come from the frontier points described in
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[Yamauchi, 1997].

2. The robot computes the utility of visiting each vantage point and selects the
action with the highest utility.

3. The robot carries out the selected action and decides if it is necessary to
continue or to terminate the task.

The utility of the action is calculated using the predicted covariance matrix for
the possible locations to visit and the characteristics of the associated estimated
map. Most of the approaches calculate the utility as a linear combination of these
metrics. The cost associated to the covariance matrix have been calculated using
A-optimal [Sim and Roy, 2005]] and D-optimal criteria [Carrillo et al., 2012b].

2.3.1 Optimality Criteria in Active SLAM

In order to associate a scalar number to the quality of the covariance matrix some
optimality criteria are described in [Pukelsheim, 2006]]. These criteria are defined
for the information matrix Y.

From the perspective of the theory of optimal design of experiments [Pukelsheim,
2006, different optimality criteria (e.g. A-Opt, D-Opt, E-opt) could be computed
as different instances of the family of information functions of the information
matrix Y (i.e. the inverse of the covariance matrix). Mathematically any optimal-
ity criteria can be expressed as ||-|| : Y — R.

For an information matrix Y with size u x u , the information function ||Y||,
is defined in [Pukelsheim, 2006 as:

1 .
~trace(YP) if p#0,p<l1
1Y, = (2.24)

/det(Y) if p=0
with p an additional parameter that can be related to the optimality criteria

used. Using the properties of the trace and the determinant of a matrix we can
write equation in terms of the eigenvalues A; of the matrix Y
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(

<=

(i )Lf’) if p#0,p<l
i=1
1Y, = (2.25)

A, if p=0

L =1
The different optimality criteria are described in terms of different values for
p:

1. E-Optimal: The lowest eigenvalue A of the information matrix is the limit-
ing behavior as p decreases, lim ||Y||, = Apin
p—=—e

2. A-Optimal: The trace of the covariance matrix in the case p = —1

3. D-Optimal: The determinant of the information matrix is associated to the
value of p =0

4. T-Optimal: The trace of the information matrix is associated to the value of
p=1

Anchor Node effect

As described in [Thrun and Montemerlo, 2006] [|Grisetti et al., 2010] the inform-
ation matrix associated to the SLAM problem is rank deficient, every solution to
the system is valid up to a generic transformation. In order to find a single solution
the common strategy used by state of the art back-ends like gZo [Kummerle et al.,
2011]] consist in anchoring one node, in terms of the information matrix its effect
consist in eliminating the row and the column associated to the anchored node.

Transforming the information matrix with reference to one anchored node to
be referenced to another node can be done simply using the Jacobians associated
with the transformation

Y= 0¥ (2.26)

In linear algebra, two matrices A and B are called similar if B = P !AP,as a
consequence they share the set of eigenvalues. Because J,{i #* J,:l.l the matrices Y ;
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and Y are not similar, as a consequence the set of eigenvalues is modified and in
general every optimality criteria is different for any of the transformed matrices.
The only exception consist in the D-Optimal which is the only optimality criteria
invariant to transformations because the determinant is not modified.

det(Yy) = det(J, Y, J1) (2.27)
= det(Jy,) * det(Y;) xdet(J7) (2.28)
= I xdet(¥Y;)*1 (2.29)
= det(Y;) (2.30)

Ideally we want the optimality criteria to be independent of the choice of the
anchoring node, accordingly we propose to calculate the optimality criteria in
the information matrix in terms of the nonzero eigenvalues before anchoring any
node.



Chapter 3

Expected Uncertainty based Path
Planning

3.1 Path Planning, from continuum to graphs

The basic path planning problem is to find collision-free paths for a moving object
(robot) among stationary, completely known obstacles. This basic definition has
been generalized in terms of finding the optimal path in terms of certain paramet-
ers, like distance, power consumption among others, these parameters are com-
monly summarized in cost functions to be optimized.

One of the early approaches came from the work on artificial potential fields
[Khatib, 1986], where the robot and the obstacles are modeled as electrically
charged particles. The result is a path defined in the continuum of the space of
configurations of the robot.

This planning strategy was later improved by graph based algorithms like
Probabilistic Road Map (PRM) [Kavraki et al., 1996] and then Rapidly-exploring
Random Trees (RRT) [Kuffner and LaValle, 2000]] that remains valid nowadays.
In these algorithms the maps is built representing the space as a graph where the
set of nodes are samples of the open space and the set of edges represent the
possibility of traversing between any pair of nodes.

In PRM the nodes are sampled from the configuration space and then edges
are added if there is a possible path connecting them. In RRT the graph is built
by adding new nodes in random directions but always close to the graph currently
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being built, unlike the PRM the graph is built from the starting point outwards.
In grid based algorithms the graph is given in terms of the connectivity to the
neighbourhood in the grid.

Once the problem is transformed into a graph we can use graph based search
algorithms. The graph traversal refers to the process of visiting each vertex in a
graph, in graph search once the goal is reached it stops traversing the graph.

The classic algorithms for graph search are the Depth-first search (DFS) and
Breadth-first search (BFS) [Diestel, 2000] which differ in the order the nodes
are visited. In robotics community one of the most known is the Dijkstra’s al-
gorithm [Dijkstra, 1959], which can be seen as a generalization of the BFS for
weighted graphs. The A* algorithm [Hart et al., 1968]] is a variation of the Dijk-
stra’s algorithm where a heuristic term is used to improve performance.

3.2 Planning under Uncertainty

The most general formulation of the problem of path planning under uncertainty
is choosing the optimal action in partially observable stochastic domain. This
problem is known as the Partially Observable Markov Decision Process (POMDP)
[Kaelbling et al., 1998]]. Kaelbling et al. use techniques from operations research
to solve the problem in these terms. In [Prentice and Roy, 2009] Prentice claims
that this approach has limited success in addressing large real-world problem.
They propose the Belief Road Map (BRM), a variation of the Probabilistic Road
Map (PRM) to include the uncertainty when searching in the belie fspace (term
quoted from operations research).

In PRM, a graph is constructed in which the nodes are a set of poses sampled
in the free space and the edges are added between any pair of nodes as long as
there exist a sequence of controls that allows the robot to move between them.

The BRM additionally simulates these controls in order to obtain the para-
meters to update the covariance when searching for the path with smallest final
uncertainty using a BF'S algorithm. For the experimental setup, the localization
is achieved by placing RF beacons in a known map. The final position, and its
uncertainty, are modeled using the combination of beacons and odometry signals.
In this setup there’s no place recognition and the expected uncertainty can be cal-
culated more efficiently than [Kaelbling et al., 1998|] from the expected received
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signal from the beacons.

Agha-mohammadi et al [Agha-mohammadi et al., 2014] claim that they break
the curse of history in this POMDP (the optimal action depends on the traversed
nodes, actions and observations previous to the current node) by including a feed
back controller, which stabilizes the belief, thus solving the problem with standard
Dynamic Programing (DP), like Dijkstra’s [Dijkstra, 1959] algorithm. Without
using local controllers Indelman et al [Indelman et al., 2015] limits the effects
of the history using a model predictive control (MPC) scheme: at each time step
the robot plans a suitable motion strategy over a time horizon. This algorithm is
tested in different time horizon lags resulting in prohibitive large planning time
when this horizon reaches 20 look-ahead steps (9000 secs).

In [Valencia et al., 201 1] the problem is posed as finding the sequence of nodes
to traverse in the graph coming from a Graph SLAM system. In this work the
authors consider that the probability of getting lost (i.e. no loop closure) is directly
related to the increments in uncertainty, under the assumption that better paths are
the ones that keep the robot well localized throughout the whole trajectory. They
propose a path planning algorithm that finds a sequence of nodes that minimizes
the sum of the positive increments in uncertainty. This work uses a loop closure
probability heuristic for path planning, including the following simplifications:

1. The loop closure probability heuristic does not consider the environment.

2. The decision of using only positive increments biases the solution into nodes
with big loop closures even if the path is not reliable.

3. It only considers the uncertainty with the following node in the list, thus
the cost function is associated to the probability of relocalizing with every
node in the path, which can be substantially smaller than the probability of
missing some nodes and still being able to relocalize in the end.

Like [[Valencia et al., 2011], in [Carrillo et al., 2012a] they propose to find the
path that keeps the robot well localized during the whole trajectory but using a
different metric, the Sum of the D-Optimal criteria for the nodes in the path. They
argue that D-Optimal gives the most accurate representation of the uncertainty
enclosed in the covariance matrix and thus it should result in less uncertain paths.
The problem is that the least uncertain path does not necessarily coincide with
the most reliable path, because the probability of getting lost is related to the
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increments in uncertainty [Valencia et al., 2011]] not to the absolute uncertainty of
the nodes.

In [Kim and Eustice, 2014]] an Active Visual SLAM is constructed with iSAM
[Kaess et al., 2008|] as back-end. A path is proposed that revisits some nodes and
estimate the probabilities of tracking the features. The probability is estimated
with a precalculated table that relates the saliency of the feature to the probability
of tracking. The precalculated table of probability allows an accurate calculation
of the expected uncertainty effectively considering the environment and improves
its performance, getting a good trade off between uncertainty and path length, thus
encouraging its use. However the probability estimated is restricted to its specific
domain and the analysis does not consider the probability of missing some nodes
and still being able to localize in the end.

In this thesis the expected value of the uncertainty is proposed, therefore the
probability of the transition is needed. This probability is calculated using not
only the distance dependence like [[Valencia et al., 201 1] when increasing the con-
nectivity, but also the node dependence. This dependency is estimated through
Monte Carlo simulations that can be extended to any matching algorithm.

Due to the non monotonicity of the evolution of the expected value, algorithms
like Dijkstra’s cannot be used so the search has to be done in the complete space.
The number of trajectories in the complete space is exponential, however when
the search is done in the reduced graph like [Carrillo et al., 2012a], the number of
possible paths to evaluate becomes tractable.

3.3 Expected Uncertainty

In probabilistic SLAM, the uncertainty of a path can be determined with the co-
variance matrix associated to each pose, always calculated with respect to a base
reference frame. The first node of the graph, or the starting point of the trajectory
are usually used as base reference (although any node can be actually used).
Intuitively, the expected value of the covariance matrix of a destination point
that we propose here is calculated by weighting the covariance resulting from the
relocalization of the robot at every point of the trajectory, with the probability
of this relocalization being successful. The more structure or texture in a given
area, the higher this probability. If at a given point there is insufficient structure
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or texture, the covariance of the localization will be given mostly by odometry,
so its corresponding covariance is weighted with the probability of relocalization
failing.

Whenever a new node is reached, two hypotheses are produced (successful and
failed relocalization) effectively doubling the number of hypotheses for every new
node in the path. The main contribution of this chapter consists in considering the
effects of the relocalization event in the covariance matrix to reduce the number
of alternative hypotheses from 2" to n.

3.3.1 Derivation

In graph SLAM the map is represented using a graph G = (V, E) formed by a set
of nodes V = {vy,v;---v,} and a set of edges E = {ej,e2--e, }. Once the graph
is optimized with respect to a base reference the nodes v; contains the informa-
tion of the previous poses of the robot, it includes the position x;, the associated
covariance X; and the readings z; in that pose.

In the graph based settings the trajectory is defined as T = {ng,ny,---n,}
where the elements 7, contains the node v; in the graph that needs to be visited in
sequence. When the robot traverses from the node in n;_; to the node in n, there
are two possible outcomes,

1. Succesful Relocalization (), when the robot is able to relocalize, its covari-
ance is the one of the node in n; in the optimized graph.

2. Failed Relocalization (7), in this case the new covariance of the robot pose
comes from the propagation of its previous one with the odometry covari-
ance O of traversing from n;_ to n;.

Because we have two possible outcomes we handle two hypothetical covari-
ance matrices for every transition, as a consequence for a path with “m” nodes we
obtain 2~ ! hypothetical covariance matrices.

Let H = {ho,h;,---} be the set of the hypothesis, where every term h; =
(Cy, probCy,idy) contains one of the hypothetical covariance Cy and “probC;” is
the probability of getting it, the term “id}” is the sequence of relocalization events
that defines unequivocally the hypothesis, for example id; = r,7 is the hypothesis
of getting a successful localization with the node in n; and failed relocalization
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with the node in ny, correspondingly we can write C,.7 as the covariance associ-
ated with this hypothesis.

The exponential growth of the number of hypothesis can be greatly reduced
if we consider that every successful relocalization produces the same covariance.
In figure [3.1) we observe the way the redundant hypotheses that produce the same
covariance can be merged to produce a number of hypotheses equal to the number
of nodes in the trajectory.
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Figure 3.1: Relocalization Process: theoretically whenever a new node is reached,
two hypotheses of covariance (C) are produced (the successful C... , and failed
relocalization C... 7) aparently resulting in exponential growth in number of hy-
potheses. However successful relocalization at each step result in the same hy-
pothesis (C;, = C,,, = C», in the next step Cr 7, = C; ., = C,.;, = C,.., = C3),
therefore the actual number of alternative hypotheses is linear
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Considering the number of alternative hypotheses is the same that the number
of nodes in trajectory we index the set of hypothesis H with the index of the last n;
with successful localization, for example, hypothesis /4, is the hypothesis of hav-
ing a successful relocalization with the node in n,, and failing every relocalization
afterwards, consequently Cj is the covariance associated to this hypothesis.

Let C) be the covariance matrix associated to the robot pose when visiting
the node n;, this matrix is a random variable and can be characterized using its ex-
pected value. The expected uncertainty is calculated weighting every hypothetical
covariance with its corresponding probability. Let’s define, C,(f) the robot pose

(1)

covariance when visiting the node n; according to the hypothesis /; and probC,
its probability, with these definitions we can write

=Y ¢ probc!! 3.1)

hieH

We need to calculate the covariance of every hypothetical realization and its
corresponding probability.
The covariance C,(f) is the result of the composition of the covariance from
the last node with successful relocalization with the odometry of traversing every
further node, consequently r > k. Let X, be the pose covariance of the node in n;

in the optimized graph and O the covariance of the odometry we can write

o _ X fort =k
“ _{f(Z,,O) fort =k+1 (3.2)

where the function f is the uncertainty propagation function. In this work we
use the uncertainty propagation technique resulting from the linearization of the
odometry equation [Kelly, 2004], in our case this equation is

c =3¢V + 3,017 (3.3)

where J| and J, are the Jacobians of the transformation from the node in n,_;
to the node in n,. For the generic case ¢ > k+ 1 we have the recursive equation

¢’ =r(c{™",0) (3.4)



26 3. Expected Uncertainty based Path Planning

(1)

The probability associated to C;” implies considering every connection to the
node n; and every posterior unsuccessful localization afterwards. Using the con-
ditional probability and defining p; (and its complement p;) as the probability of
getting a successful localization with the node in n;, the equation can be written
as:

t
prob(C) = prob(s;) ] pe fort > k (3.5)

The estimation of p; depends on the set of successful or failed localizations of
every hypothesis and it will be described in the next section. The term prob(%;)
can be calculated using the fact that in every n,, the probabilities add up to 1.
Thus, the probability of the relocalization in node n; can be calculated recursively
with:

t
Y prob(C) =1 (3.6)
k=0
t—1
Y prob(C) + prob(C") = 1 (3.7)
k=0
t—1
prob(Z,) =1-Y. prob(C\) (3.8)
k=0

where C,(t) = X, comes from the equation

3.3.2 Algorithm

We can now bundle up all of these equation in the algorithm [I} Summing up, we
start with two inputs

1. Optimized SLAM Graph G = (V, E), with set of nodes V = {v|,va,---v,}
containing the information of the nodes of the graph where every node con-
tains the pose and covariance matrix of every pose v; = (x;,X;).
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2. Trajectory T = {no,---n,}, The elements of n, this set contains the nodes
v; that should be visited in the graph G.

We begin in the node in ny and with covariance ¥, from there on we define
every alternative set of events in the variable hypothesis every time we visit a new
node

e Hypothesis H") = {h) h{")...}, the elements A\ = (C, probC\") of this
set contains every possible covariance and its corresponding probability
when visiting the node in n,;. The number of hypothesis is |H (e )| =tr+1.

Every time the node in 7, is visited from the node in n,_; we update the set of
hypothesis using the recursive equations

c" = r(ci, o) (3.9)
prob(C,(f)) = prob(C,(f_]))ﬁt (3.10)

where “f” is the function that propagates the uncertainty of the hypothesis and
p: its probability of relocalization with the node in ;. Visiting a new node implies
generating a new hypothesis /, and the components are

c =%, (3.11)
Oy __ v (1)
prob(C,”) =1-Y prob(C,”) (3.12)
k=0

This process is repeated every time we visit a new node till we reach the final
node. The whole algorithm is represented in the figure

The final step consist in calculating the expected uncertainty once the final
node in n,, is visited.

ZC . probC\"™ (3.13)

In this algorithm we update the whole set of hypotheses in every step. Because
the number of hypotheses only grows linearly with the number of steps we can
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Trajectory
N

— 3 Succesful Relocalization ' '
»  Failed Relocalization @ o

Figure 3.2: Evaluation of Hypotheses: Whenever there is a successful relocaliza-
tion, the new uncertainty is the Graph’s ¥; , otherwise the previous uncertainty is
propagated from the last relocalization C;

conclude that the computational complexity of the algorithm is (’)(mz) with m
the size of the evaluated trajectory, this represents a major improvement from the
O(m-2™) of the naive implementation.

3.4 Relocalization Probability

The relocalization probability is estimated considering two different events: the
localization event and the place recognition event. The localization is related to the
uncertainty in the relative position between the robot and the node being evaluated.
Place recognition deals with the ability to determine the correct position (relative
to the node) based only on the sensor readings.

Considering these two events independent, the relocalization probability p; to
do a correct detection from the robot position x; of the node in n; is calculated
using:
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Algorithm 1: Expected Uncertainty

Input  : Trajectory T={ng,n1, - -n,}
ni = (x;,%,2;)
Output : Node_Expected_Uncertainty
Variables: H={hg,h; ---}
hi = (proby, Cy)
Initialization;
O = Odometry_Covariance(ng,n)
p = Relocalization_Probability (O,n;)
ho = (proby, Co) = (1 —p,0)

hy = (prob,Cy) = (p,X1)

H = {ho,h}
foric {2---m} do
—prob; =0

for every hypothesis h € H do
O = Odometry_Covariance (n;_1,n;)

C = update_covariance (Cp,0,n;_1,n;)

p = Relocalization_Probability (Cy,n;, T)
h = (prob,-(1-p),C)

—prob; = —prob; + proby,

prob; = (1 — —prob;)
/+* add new Hypothesis

]’ll' = (probi,Z,-)
H =HU{h;}

CExpected = Z Ph 'Ch
heH

Return (CExpected)

*/
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Pt = Drecognition * Plocalization (3.14)

where precognirion 18 the place recognition probability and pjocatization 18 the
localization probability.

3.4.1 Localization Probability

The purpose of the navigation system is to make the position of the robot xi be
the position of the destination node x;. This relative position Xq = ©xk @ X; can be
estimated as a new random variable with a Gaussian Distribution [Valencia et al.,
2011] [Ila et al., 2010] with mean p 4 and covariance Cq.

Xd ™~ JV([.ld,Cd) (3.15)
Hyg=CU DU; (3.16)
Y L

where & and & are the composition and inversion operators of transformations,
Ja is the Jacobian of the transformation and X;;, X, X;; and Xy are the marginal
covariances. The probability of the robot being within a neighborhood € of the
node x;, can be calculated integrating the Gaussian distribution.

Plocalization = p(xd € Q) - /Q‘/V(I'ldacd)dxd (318)

In [Valencia et al., 2011] this expression is simplified using the marginals. The
experiments suggest that this approximation is consistent because Cy is close to
diagonal. This enables to approximate equation [3.18] with the product of inde-
pendent variables.

3.4.2 Place Recognition Probability

In order to estimate the probability of relocatization or place recognition at every
step of a trajectory, a Monte Carlo algorithm is performed. Location node is
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randomly sampled with additive Gaussian noise. From the sampled position, a
matching algorithm (ICP in our case) is used to compare the laser measurements
with the map and try to recover the true position. If the error of the resulting
location with the node’s estimated location is under a threshold, relocalization or
place recognition is considered a success, otherwise a failure. The corresponding
probability of relocalization is then simply the proportion of successful tries.

Random noise is also added to simulate dynamic environments (Fig[3.3)). Parts
of information are removed from the laser scan in order to simulate occlusions.

This algorithm was tested with the laser scan readings from the Rawseeds Data
Set [Ceriani et al., 2009]. In Fig. [3.3]it can be seen the results in two situations, a
corridor and a corner.

ICP result ICP result
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(a) Narrow Distribution (b) Spread Distribution

Figure 3.3: ICP results in XY plane: The Monte Carlo simulations of the ICP
produces a distribution of the error (Red), the samples inside the box (Black) are
considered success, the rest failures.
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3.5 Path Planning in Explored Environments

Based on the expected uncertainty of a path we can evaluate every trajectory. In
the case of Explored Environments the graph representing the map is considered
known and every possible path is represented in it. In this case we consider the
safest path given between two given nodes considering all possible paths.

We perform an exhaustive search for every possible path and evaluate its ex-
pected uncertainty. In order to keep the tractability of the algorithm we perform
the search in a reduced graph similar to [Carrillo et al., 2012al] where the redund-
ant information is removed.

The graph reduction is done considering that nodes with only 2 edges represent
consecutive nodes, these nodes do not produce any new paths, therefore they are
not included in the reduced graph (their edges are inherited by its neighbours).
Additionally in graph SLAM, any edge beyond the second one represent loop
closures. Some algorithms recognize loop closures in consecutive nodes produce
a set of consecutive nodes with more than two edges. In terms of possible paths
these consecutive nodes produce cycles and multiple paths that are essentially the
same. To avoid these multiple alias of the same path, whenever a node with 3 or
more edges is found it is checked against its neighbours. If it is associated with a
loop closure previously represented in the reduced map, the additional edge is not
included.

The reduced graph is formed almost exclusively by nodes in the crossroads,
thus producing a limited number of paths. The complete search is implemented
with a recursive search for all the simple paths in the reduced graph.

3.5.1 Experiments

In order to test the algorithm in a realistic environment, we use the Rawseeds
Dataset [Ceriani et al., 2009]. It belongs to the University of Milano-Bicocca and
it contains conventional office-like features where a robot traverse it, the robot is
equipped with Ultrasound sensor, Inertial Measurement Unit (/MU), several vis-
ion components and Laser Range Finder (LRF). In our experiments we consider
exclusively the scans coming from the LRF.

The algorithm includes the parameters to calculated the probability of local-
ization and probability of recognition. The localization probability is considered
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using the probability that the position of the robot be within a window of 60cm
in x- and y-axis and 60° in angle of the node to be localized. Place recognition
probability was estimated sampling from the same window using the node’s 360°
laser scan.

Unreliable Path Avoidance

The experiment was done to compare the avoidance of unreliable paths. For this
purpose, all scans from a certain area of the environment are ignored for all pur-
poses, as if the region was outdoors or completely void of features within the
sensor range. Thus the links connecting nodes in this area are based only on
wheel odometry.

In order to test the effect on the position of the unreliable zone two different
regions void of features are simulated (Fig[3.4]). The effect of the magnitude of
the uncertainty is simulated multiplying the covariance matrix associated to the
links in this zone by 10 and by 100. Namely the scenarios are:
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(a) Scenario A and B (b) Scenario C and D

Figure 3.4: Fully Explored Scenarios: Information is removed from the regions
inside the blue square to simulate regions void of features are within the sensor
range, to simulate wheel odometry the covariance matrix associated to the links
in this zone is multiplied by 10,(A and C) and by 100 (B and D)

1. Scenario A: The North East wing in the main building is removed and the
covariance matrix of the corresponding links are multiplied by 10
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2. Scenario B: The North East wing in the main building is removed and the
covariance matrix of the corresponding links are multiplied by 100

3. Scenario C: The South West wing in the main building is removed and the
covariance matrix of the corresponding links are multiplied by 10

4. Scenario D: The South West wing in the main building is removed and the
covariance matrix of the corresponding links are multiplied by 100

There were a total of 879 sets of start and goal points represented among
different scenarios. All possible paths between them are obtained and evaluated
according the following criteria:

1. Expected Uncertainty (Our Proposal)

The criteria to be evaluated consisting in the expected value of the final
covariance

Cost =E[C] = Y Cy-prob(Cy) (3.19)
thH

we drop indices in equation [3.13 knowing the sum is in the final node over
all of the whole set of hypothesis H. In order to assign an scalar to this
expected matrix we use its determinant det (E[C]).

2. Mechanical Work

The mechanical work criteria the cost function implemented was presented
in [Valencia et al., 2013]]

Cost="Y AU/ (3.20)
nodes
AU, if AU, >0
+ k k =
AUy _{ 0 otherwise (3:21)

AU, = Uy — Uy (3.22)



3.5. Path Planning in Explored Environments

35

1

Uy=——
—1 -1
O~ +X,/|

(3.23)

where O is related to the odometric uncertainty between nodes and X;; is

the marginal covariance of the nodes.

3. The sum of the D-Optimal

This criteria was proposed in [Carrillo et al., 2012a]] 1s implemented with:

Cost = Z det(Xj;)

nodes

4. Distance

The shortest path between the given nodes.

(3.24)

The success is measured considering the the avoidance of the unreliable zone.
For every criteria the path that minimize its cost is chosen, the path that minimizes
the cost but traverse the unreliable zone is considered an error. The Error Rate in
the table[3.1]is the fraction of the total number of paths where minimizing a criteria

implies traversing the unreliable zone.

Scenario | Expected Uncertainty Work Sum of D-Optimal Distance
A 0 0 0 15.1%
B 0 0 0 15.1%
C 0 12.1% 47.1% 28.5%
D 0 0 44.1% 28.5%

Table 3.1: Error Rate of the four path planning algorithms analyzed in this work,

for the four different scenarios considered.

In the first two scenarios, (Table [3.1)) the size and the position allowed every
criteria to avoid the unreliable zone. This simulation allowed to establish a baseline

where every algorithm worked.

In scenarios C and D, the probability of getting the loop closure with the sim-
ulated magnitude of the uncertainty was negligible, however the error rate for
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(a) Path with Minimal Work (b) Path with Minimum in the rest of Criteria

Figure 3.5: Error Example: The minimal work criteria tend to choose paths that
return to low uncertainty nodes and then go to the goal even if this means going
trough the zone void of features (a). The expected uncertainty increases wildly
when traversing it, so the other path is chosen (b)

methods was bigger. In the case of the “Sum of D-Optimal" criteria the position
effect is clear.

Based on the observations we can described some characteristics of the criteria
for choosing the safest path. The distance is used as a baseline because sometimes
the algorithms choose longest path even when the shortest avoid the unreliable
zone.

For the “Sum of D-Optimal” the effect of the origin node is prominent, the
nodes located at the farthest distance of the origin have associated the biggest
covariance matrices, consequently the paths that minimize this criteria tend to
avoid these regions even when it traverses the unreliable zone or a longer path.

In The “Mechanical Work™ criteria the cost of traversing from one node to
another with lower uncertainty is essentially “0” (equation[3.21]) as a consequence
the paths that minimize this cost are the one that traverse to low uncertainty nodes
and then go to the goal, even when this means traversing the unreliable zone or a
longer path. This situation occurred in the experiment described in figure[3.5]

The “Expected Uncertainty” of the paths that traverse the unreliable zone are
very high. After accumulating uncertainty during the traversal of the zone void
of features, the probability of getting a loop closure is very low, consequently
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the probability of getting a large uncertainty is also large and thus the expected
uncertainty. The paths that avoids the unreliable zone always minimize this cost.

3.6 Path Planning in Partially Explored Environments

In partially explored environments the graph is considered incomplete, consequently
potential paths are missing from the graph. In [Valencia et al., 2011]] the authors
consider the need for increasing the connectivity of the graph from the SLAM
algorithm to find the optimal path. They proposed connecting the nodes whose
probability of being closer than a predefined distance is above a threshold. The
solution we propose is based on the Generalized Voronoi Graph (GVG), this tech-
nique solves the problem of connectivity between nodes close by. Additionally,
in partially explored environments it can identify potential connections between
nodes before the zone is fully explored as long as the sensors perceive free space
in front of the vehicle connecting them.

The (GVG have been used in [Thrun, 1998] in the construction of topological
maps, it is based on the generalized Voronoi Diagram of a shape. Points that lie
at the same maximum distance of the contour of the shape form a diagram that
condenses the information of the shape. The resulting diagram is transformed
into a graph where nodes are the branch points and end points of the diagram and
the edges are the paths that connect them.

Once we obtain the GVG we fuse it with the graph result from the graph SLAM
algorithm. The edges from the Voronoi graph are mapped as a sequence of nodes
in the SLAM based graph by choosing the closest node within a neighbourhood,
if none is found no correspondence is made. The resulting graph includes the
edges coming from the GVG and the covariance associated to these edges is the
one associated to the odometry between them.

In this scenario a minimal increase in uncertainty can be compensated by a
major reduction in distance, pondering this alternative we propose a cost function
that weights the final expected uncertainty with the traversed distance. We use
the product as cost function because the weight in the percentage increment is the
same for both, i.e. a minimal increase in uncertainty is compensated by a major
reduction in distance. The easiest way of doing this is using the product as cost
function
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Cost(T;) = Distance(T;) * Expected_Uncertainty(T;) (3.25)

where T; is the trajectory been evaluated. This parameter-free cost function
avoids the necessity of tuning constants, thus increasing its robustness.

3.6.1 Experiment

In this experiment we test the feasibility of traversing unexplored areas than can
result in shorter but still reliable paths. Similar to experiment in fully explored
environments we use the rawseed dataset [Ceriani et al., 2009] with the same
parameters for the probability estimation.

To simulate partial exploration, only part of the provided graph map is used.
Because laser sensors can see forward several meters, a potential path can be
obtained using the Voronoi Graph of the Occupancy Grid. Paths distances were
extracted from the Voronoi Diagram in pixels and then transformed into meters.

The implementation of the GVG is based on the Matlab ® implementation
of the thinning algorithm described in [Lam et al., 1992] applied to the image
representing the occupancy grid.

In this scenario two alternative trajectories are evaluated, as it can be seen in
fig. The first one along the available graph and the second considering the
unexplored area.

As a consequence of connection with the Voronoi graph a new path connecting
the last position of the robot with the goal position appears, after setting the cov-
ariance matrix associated to the odometry of connecting these node the calculation
are represented in table[3.2]

| Distance | Expected Uncertainty | Cost
Graph SLAM 31.7m 2.97 94.15
Traversing Unexplored | 15.0m 3.11 46.65

Table 3.2: Path Comparison

The expected uncertainty of the traversing path reveals that with a small in-
crease in uncertainty of 4,7%, the distance is greatly reduced, in a 52 %, these
values are clearly represented in the cost function comparing the 94.15 versus
46.65.
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Last
Position

Figure 3.6: Paths in a partially explored map, traversing the unexplored (GREEN
or light gray) there is a great reduction in distance with a negligible increase in the
expected uncertainty compared to regular path traversing (BLUE or dark gray)

With this experiment we demonstrate that the topological decomposition of
the environment increases the capabilities of our algorithm, it solves the problem
of lack of connectivity reported in [[Valencia et al., 2011]] and it also determines
when the risk of traversing unexplored regions is compensated with the savings in
the distance traversed.

3.7 Conclusions

The path planning algorithm proposed evaluates alternative paths by estimating
the final expected uncertainty. As can be seen in the experiments, this metric
robustly avoids unreliable paths by quantifying not only the amount of uncertainty
between in the links composing it, but also the probability of getting relocalized
within the neighbourhood of each node.
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Results presented in this work suggest that our criteria consistently avoids
unreliable paths, unlike alternative metrics evaluated in this work.

This algorithm is generalized to partially explored environment expanding the
graph with the edges coming from the Generalized Voronoi Graph and the defin-
ition of a cost function effectively including shorter paths as long as it contains
only loop closures with low relative uncertainty.

This work was publish in the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2016 [Fermin-Leon et al., 2016].



Chapter 4

Graph Extraction from Grid based
Maps

4.1 From Maps to Graphs

When the problem of autonomous exploration is remapped as a graph problem
most of the graph theory can be used to solve it efficiently, we have already seen
this of the new approach in previous chapters with the graph SLAM formulation
and the graph based path planning. The graph we have been using so far consist in
the set of positions to be optimized as nodes and the measurements as the edges,
however we observe that the augmented version of this graph that includes travers-
able edges not present in the original graph improves path planning algorithm.

The quality of the solution depends on how accurate the problem is repres-
ented by the graph. Because we are interested in mapping it is very important
that the graph represents the map accurately. Given a map we seek to divide it
into meaningful pieces connected among others in pairs. These regions will be-
come the nodes in the graph and the edges will represent their connections to the
neighbouring regions.

The maps divided this way are known as “topological maps", whose name is
derived from fopology, the branch of mathematics that studies the properties of
objects invariant to deformations, in this case the connection between regions is
the property preserved.

The problem of producing topological maps based on regular maps is known
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as “Topological segmentation". In the general case the number and characteristics
of the regions are usually not well defined, the same space can have different
topological representations. Usually the number of regions and its characteristics
is defined by the application. In the topological maps of rooms, also known as
“Room Segmentation" [Bormann et al., 2016], the regions can be narrowed to
rooms and corridors and thus properly segmented.

In preparation for autonomous exploration we first seek for a segmentation in
convex regions, this property guarantees that once the robot traverse it every ele-
ment in it becomes visible. Secondly we need the segmentation to be incremental
and stable, because we only have access to a partially explored map during ex-
ploration and we need this incremental segmentation to be similar to the final one.

4.2 Related Work

One interesting approach is proposed in [Bhattacharya et al., 2012] because it
represents an important advance into mathematical guarantees, they represent the
trajectories from the given source point to the destiny point in topological classes,
the number of classes is defined by the number of obstacles and the ways to nav-
igate around it. However this criteria fails if there are not trajectories or even in
indoors spaces with several rooms but not obstacles. A similar approach to the
graph extraction is presented in [Urcola et al., 2015] where the set of possible
paths is clustered into topological classes, these classes are then represented with
a discrete set of nodes and edges that constitutes the topological graph.

The most popular approach consist in beginning with the map represented as
an occupancy grid and transforming it into an image. In this representation the
image processing techniques are used to extract the topological graph.

In particular, according to the survey presented in [Bormann et al., 2016]], the
most popular image based approach to segment floor plans is the one based on
the Generalized Voronoi Graph. Additionally, when they compare it with meth-
ods based on features, distance transform or mathematical morphology in their
dataset, the Voronoi segmentation is the best approximation of the ground truth
segmentation in most of the cases.
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4.2.1 Voronoi-based Segmentation

The Generalized Voronoi Diagram can be defined as the centers of the maximal
disks inscribed in the free cells image. These points form a set of intersecting
lines. The Generalized Voronoi Graph (GVG) is built defining the intersecting
points as nodes and the lines connecting them as edges.

The original formulation for segmentation based on Generalized Voronoi Graph
comes from [Thrun, 1998]. In this work Thrun defined the critical points as the
points on the Voronoi diagram that minimize clearance locally, i.e. doors. The
regions are defined by the nodes in the GVG and extends until the critical points
are reached.

Several heuristics can be introduced to improve GVG based segmentation.
In [Bormann et al., 2016]] Bormann ef al. prune the extracted GVG collapsing
the leave edges into the node points of their origins. Next, they define a set of
critical point candidates, and then some heuristics in point selection, as well as
merging, are applied. They classify the traditional approaches according to the
criteria each follows: Morphological, Distance Transform, GVG and Features.
An implementation of each approach is tested in 20 images, corresponding to
indoor environments in different configurations (furnished and without furniture)
and compared with human label segmentation. In this dataset, the Voronoi-based
approach scores the highest quality in terms of precision and recall. However it
exhibits one of the highest processing times compared with the other approaches.

Incremental versions of GVG improves its performance, increasing the pos-
sibility of being used on line in exploration tasks [[Van Zwynsvoorde et al., 2000]
[Choi et al., 2009] [Liu et al., 2011]. The most recent algorithm is presented
in [L1u et al., 2015]], they incrementally construct a Voronoi graph-based topolo-
gical segmentation for semi-structured environments (unlike room segmentation).
They report a high dependence of processing time with respect to cell size: the
change of the cell size from 0.1m to 0.25m reduces the maximum processing time
from 50 to 2.5 secondd!]

1Processing time extracted from the figure 13 in [Liu et al., 2015]
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4.2.2 Contour-Based Segmentation

Contour-based Segmentation is related to “Part Segmentation”, a type of segment-
ation commonly associated to 3D meshes [Shamir, 2008]]. Its goal is the segment-
ation of the object represented by the mesh into meaningful parts. When applied
to 2D, the image is represented as a set of closed contours and processed to gener-
ate sub-contours. In the contour representation lies the most significant difference
between this approach and the current approaches used for topological segmenta-
tion.

Unlike the pixel based segmentation, contour-based complexity doesn’t de-
pend on the image size (a rectangular shape can be represented by only 4 contour
points), but rather in the characteristic of the contour.

One common criteria for part segmentation is convexity, finding the exact con-
vex decomposition of the contour. According to [Lien and Amato, 2006], this
decomposition can be costly to construct and can result in representations with an
unmanageable number of components. Furthermore, if the polygon has holes the
problem is NP-hard. The alternative they propose is the Approximate Convex De-
composition (ACD). In this way they can produce a hierarchical representation of
convex decompositions of different levels of approximation. They claim the com-
plexity of this decomposition to be O(nr) with n the number of vertexes and r the
number of notchs (the most significant non-convex feature). This decomposition
provides an insight of the characteristics of the shape.

4.3 Dual- Space Decomposition

Other recent works in part segmentation point to decompose two-dimensional
shapes into functional and visually meaningful parts include the Dual-Space De-
composition [Guilin et al., 2014f]. In this work the authors demonstrate that the
resulting decomposition is statistically similar to the one produced by a human
in a dataset composed by complex shapes from the MPEG7 database with added
noise and the contour of some images, such as trees, human crowd, and bikes.

In Dual Space Decomposition (DuDe) the input is a polygon P, possibly with
holes in it. The polygon and the holes are represented as a sequence of 2D points
whose ends are assumed to be connected (same as a closed contour).The algorithm
decomposes the polygon P based on the decomposition of the complement P
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(dual-space).
The following definitions are useful to understand the algorithm.

4.3.1 Definitions

Convex Hull

The smallest convex set which includes the polygon, CH.

Pockets

The regions (p;) inside the convex hull but not inside the contour. Basically the
regions the polygon P needs to add to become CH.

Upri=P @.1)
P\ JP=CH 4.2)

Bridge

The segment of the convex hull that limits each pocket.

Convexity

A polygon is considered convex if for any pair of points inside the polygon, every
point on the straight line segment that joins them is also inside the polygon. As
mentioned above the smallest convex set which includes a polygon P is called the
convex hull. Based on these definitions, several methods to measure the convexity
of a polygon [Zunic and Rosin, 2004] based on either the probability of finding a
straight line segment inside the polygon or in the similarity to its convex hull.

According to [Lien and Amato, 2006], these global measurements of convex-
ity are not useful to identify where and how the polygon should be decomposed.
They instead use the measure of concavity (complementary to convexity)

concavity(P) = mgx{dl’st (x,CH)} (4.3)
xedP
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with P the polygon, dP its contour and dist(x,CH) is the shortest distance (or
path) from the point x € dP to the convex hull CH.

4.3.2 Decomposition

The Dual-Space decomposition works iteratively. Firstly the convex hull of the
polygon is found, this defines the pockets and its corresponding bridges. The
contour of these pockets is iteratively decomposed: every pocket is treated as a
polygon with a new convex hull and new pockets that will be decomposed once
again till no more pockets are found.

Because of the hierarchical relation of the DuDe decomposition (every poly-
gon is the pocket of a parent polygon), it is possible to measure the distance from
every point to its closest bridge, and next the distance from this bridge to the
bridge in the parent polygon, and so on till the convex hull is reached. This path
defines the distance to the convex hull and thus the concavity.

The set of points with concavity bigger than the concavity threshold are the
pivot points of the cut. Finally the set of cuts, using these points, that maximizes
the convexity (minimize the concavity) in the final decomposition, is chosen.

4.3.3 Implementation

In order to produce a topological segmentation of the 2D grid based map we
transform the occupancy grid into a set of polygons, then we use the function
DuDe_SegmentE] from [Guilin et al., 2014] to segment them. This function de-
composes a polygon P represented by a set of n boundaries b, by,bs,b,_1, where
by is the external boundary and by~ are boundaries of the holes, until a maximum
allowed concavity is reached (Algorithm [2).

The first step consists in transforming the occupancy grid into a binary image,
this is a common step for every topological map segmentation based on occupancy
grids. This consists in applying thresholds to the image to obtain the obstacles
and the free space. In the case a real robot is used the obstacles and free space are
modified according to the robot’s characteristics. We transform the binary image
into a polygon representation using the OpenCV ® function findContours.

ZPublic code of Dual Space Decomposition can be found inhttp: //masc.cs.gmu.edu/
wiki/Dude2D
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Using the retrieval tree mode in this function, we can find all the external con-
tours (Parents) and the set of contours inside them (CHILDREN) in the binary
image. Consequently, every set formed by a parent contour and the set of its child
contours represents a polygon.

Looping through every external contour and its children, we obtain every de-
composition and build the Decomposed set aggregating every decomposition.

Algorithm 2: Dual Space Decomposition of Binary_Image
(DuDe_Binary)
Input  : Binary_Image, Max_Concavity
Output : Decomposed = {cp,cy,---}
Contour c; = {x9,x1, - }
Variables: Contour_Sets :
Parents = {Py, P}, - B}
Child; = {}
Dude_Contours = {}
CHILDREN = {Childy, Childy, - - - Childy }

(Parents, CHILDREN) = findContours;..(Binary_Image)

for every contour P; € Parents do
Dude_Contours =

DuDe_Segment({P;, Child;}, Max_Concavity)
Decomposed = Decomposed U{Dude_Contours }

return Decomposed

4.4 Incremental Decomposition

During exploration, whenever a new a scan is processed, some new information
is aggregated to the map. This information usually only modifies the contours
connected to the new scan, leaving the rest unchanged (except during loop clos-
ings). This observation permits the implementation of the incremental version of
the decomposition.
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In the SLAM context a loop closure can potentially modify the whole map,
in this scenario the whole map is decomposed. In this worst case scenario the
processing time is the same as the batch implementation, in the regular exploration
scenario (no loop closure) the expected processing time is lower.

The incremental decomposition is done using the algorithm 3| we now explain
it step by step. The first step consists in obtaining the difference of the binary
image between time step k — 1 and k, the received occupancy grid is transformed
into a binary image, it is then compared to the previous map image to produce the
difference image.

The second step consists in processing the difference image to update the de-
composition. The difference image is transformed into the set of contours “Differ-
ence” using findContours, with simple contour approximation and retrieval
mode set as external (no hierarchy needed). Defining that two regions are in “con-
tact" when they share points in their bounding contour, the set of contours are
classified in:

1. Unchanged, Contours in previous decomposition with no contact with the
“Difference” set.

2. Modifiable, It consists in expanding the set “Difference” with the contours
in the previous decomposition in contact with it.

The set “Modifiable” is transformed into a reduced binary image and processed
using the Dual-Space Decomposition of binary images DuDe_Binary. Finally
the result of this decomposition is aggregated to the set of unchanged contours to
produce the new decomposition. The new decomposition is stored for the next
iteration (Algorithm [3).

4.5 Experimental Results

The first experiment evaluates the performance of the algorithm in the structured
environment scenario (room segmentation). We evaluate our approach in both of
its versions, batch (DuDe_Binary) and incremental, compared to the traditional
approaches in the room segmentation dataset of [Bormann et al., 2016] in terms
of time, precision and recall.



4.5. Experimental Results

49

Algorithm 3: Incremental Decomposition

Input  : Difference_Image, Max_Concavity
Output : Decomposed = {cp,cy,---}

Variables: Contour_Sets :
Previous = {po, p1,--- }
Difference = {dy,d," - }
Modifiable = {}
Unchanged = {}
Modified_Contours = { }

DIFF = findContoursgy(Difference_Image)

for every p; € Previous do
for every d; € DIFF do
if contours_connected(p;,d;) then
| Modifiable = Modifiable U {p;,d;}
else
| Unchanged = Unchanged U {p;}

Expanded_Image = draw_contours(Modifiable)
Modified_Contours = DuDe_Binary(Expanded_Image, Max_Concavity)

Decomposed = Unchanged U Modified_Contours

return Decomposed
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The second experiment evaluates the performance in poorly structured envir-
onments. We use the three exploration sequences described in [Liu et al., 2015],
namely a Parking Lot, a Tunnel and a Building. The lack of ground truth im-
plies the quality of the decomposition cannot be determined using a precision and
recall, thus we evaluate the algorithm in terms of the average processing time
between the batch and the incremental version and show visual results of both
segmentation methods.

The algorithms run in a Laptop Intel® Core™i7-2620M CPU @ 2.70GHz x4,
under the robot operating system framework (ROS). Our ROS package is based
on the function Incremental Decomposition EI (Algorithm [3)) that takes the occu-
pancy grid ROS message and the previous decomposition, processes it and then
decomposes it with the public implementation of [Guilin et al., 2014].

The optimal value for the parameter “Max_Concavity” was found to be 2.5
meters for every scenario in both experiments, independent of the size, resolution
and type of environment.

4.5.1 Environment with High Structure (Room Segmentation)

We use the maps proposed in [Bormann et al., 2016]], consisting in 20 scenarios.
Every scenario contains images of the rooms with and without furniture and the
human segmentation of the image. We choose the evaluation in terms of time,
precision and recall because the time can be compared (the characteristics of our
computer are roughly the same) and precision and recall allows the comparison
with a human labeled image.

In this context the precision and recall is evaluated between the human labeled
regions Rjuq, and the segmented Ry, for every correspondence between regions
the true positive ¢ p represent the pixels in both regions, the false positives fp are
the pixels in the segmented region but not in the human labeled and the false
negatives fn are the pixels in the human labeled region but not in the segmen-
ted. Consequently 7p + fp is the region Rpuan and tp + fn is Reg. This can be
summarized in the following equations.

3Public Implementation can be found in https://github.com/lfermin77/
Incremental_DuDe_ROS
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In order to evaluate the incremental version of the algorithm we simulated
the exploration with a virtual robot with a radius of laser range of 5 meters and
perfect localization. In this situation the map is constructed incrementally and
then processed with our algorithm. The precision and recall are calculated in the
final map and the time reported is the average processing time per simulated scan.

Because the maps presented have different sizes, number of rooms and com-
plexity, we present the results for every map using histograms for precision and
recall (Fig[4.1) and time (Fig[.2)), .

The best result in precision and recall reported in this dataset correspond to
the Voronoi-based segmentation Iﬂ in Table 4.1| the average values are compared.
The contour-based approach has a performance similar to the best evaluated in
this dataset, in particular our incremental version does not sacrifice any quality in
pursue of increased velocity.

Voronoi Batch Incremental

No Furniture recall 950+23 863+97 875+£10.7
precision 948 £5.0 94.1+£3.1 93.8+3.1

Furnished recall 86.6 52 858+103 87.5+10.7
precision 945 +5.1 940+32 938 +3.1

Table 4.1: Averaged Precision and Recall

The diversity on the size of the images in the dataset implies the time needed to
process them is not consistent (the time reported for the Voronoi-based segment-
ation is 12.0 £ 14.2s). To evaluate the processing time we use the histograms in

4The recall in the Not Furniture scenario is 98.1% =+ 2.4% for the mathematical morphology
based, however, in the rest of scenarios the Voronoi-based clearly overcomes it.
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Figure 4.1: Precision and Recall Histograms, In spite the diversity of the maps the
precision is very localized, in both cases 95% of the maps scores precisions above
94%. The effect of the heterogeneity of the maps in terms of complexity and size
affects importantly the recall, we score recalls above 84% in the batch mode and
86% in the incremental mode for the 85% of the maps
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Processing Time Histogram Processing Time Histogram

Batch Room Segmentation Incremental Room Segmentation

20 20
15 15
10 S 10
5 I 2 5
0 H N - -— . .| H . |

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 5 10 15 20 25 30 35 0

Number of Samples
Number of Samples

Processing Time [ms] Processing Time [ms]

Figure 4.2: Processing Times, Using contour based segmentation 95% of the maps
in the dataset are processed under 1s, with our incremental version the processing
time is below 25 ms for the 95% of the maps

figld.2] The batch version of the contour-based segmentation is one order of mag-
nitude faster than the Voronoi-based. Our incremental approach further reduces
these processing time to tens of miliseconds.

Summing up, the proposed Contour-Based Segmentation algorithm obtains
similar quality to the state of the art approaches, one order of magnitude faster,
without any application of oriented heuristics. Our incremental algorithm further
reduces these times, without sacrificing quality.

Qualitatively, the decomposition is similar to the human labeled, with the dif-
ference that corridors are usually over segmented (Fig. [4.3)), this is because this
algorithm is based on the convexity of the regions, one “L" shaped corridor is
always segmented (as a minimum) in two regions.

4.5.2 Environment with Low Structure

The lack of ground truth for segmentation in poorly structured scenarios implies
the evaluation of the quality can only be made using parameters being affected by
it. The number of regions can indicate if a region is over segmented (value too
high) or under segmented (value too low).

As expected, the average time for the incremental version is lower than the
batch version (Tabled.2). On the other hand, the histogram of the processing time
shows an interesting behavior (fig[4.4): in the case of the incremental version, the
distribution is almost completely localized independent on the map resolution, but
the batch version grows monotonically spreading through all X axis.
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Segmented Segmented
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Figure 4.3: Some results on the datasets in [Bormann et al., 2016]], Although the
corridors are over segmented, the rooms are usually well differentiated
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Figure 4.4: Exploration sequences in [Liu et al., 2015]] are processed with the in-
cremental and the batch version of the algorithm. Both methods produce visually
appealing segmentations. The number of regions in the incremental version is
slightly lower than batch counterpart. The histograms show the processing time
of our incremental algorithm is under 200ms for the 95% of the frames processed,
on the other hand in the batch version the time to process increases with every
frame producing and spread distribution
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Scenario  Resolution  Processing Time [ms] Number of Regions

[m/pixel] Batch Incremental Batch Incremental
Parking Lot 0.050 427 £ 156 104 £ 51 16 12
Building 0.025 331 £ 131 137 £ 76 13 11
Tunnel 0.025 376 + 85 135 £ 63 21 20

Table 4.2: Segmentation in low structure environments

Figure 4.4 shows that when the number of regions are similar (table[d.2), both
decompositions are similar. Additionally it can be observed that the number of
regions produced by the incremental algorithm is consistently smaller in this data-
set. This seems to indicate a tendency to under segment environments with low
structure, compared to the batch version.

Figure [4.5] shows the process of the incremental segmentation, where after
successive maps update the over segmented regions are merged.

4.6 Conclusions

We introduce a new contour-based approach for topological segmentation. This
segmentation has the following advantages over traditional approaches:

1. Velocity: batch times are comparable to the simplest segmentation cases,
with quality comparable to the most complicated cases; an incremental ver-
sion allows on-line use.

2. Grid Size Independence: contour based decomposition depends only on the
contour characteristics, not in the image size.

3. Quality of segmentation: the resulting segmentation scores high in precision
and recall in the comparison with human labeling.

4. Flexibility: it works in environments ranging from highly to poorly struc-
tured, with comparable results to human labeling.
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(d)

Figure 4.5: Time Sequence of the Incremental Topological Segmentation: Re-
gions over segmented in the first scan (top) are eventually merged in successive

map updates. The regions (and their colors) are updated only in the contours con-
nected to the new information
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5. Tuning of a single parameter: the only parameter in the algorithm is the
maximum concavity (Max_Concavity) allowed, it is measured in meters.
Empirically, the same value (2.5m) is use for highly and poorly structured
environments, this hints this parameter could be use as a constant for map
segmentation.

This work was presented in the IEEE International Conference on Robotics
and Automation 2017 [Fermin-Leon et al., 2017al].



Chapter 5

Optimal Information Path

In order to define an optimal exploration we need to define some measurement
of performance and then we can variate the variables we can control in order
to optimize that measurement. In active SLAM we focus in the exploration for
reconstruction and we know we have a limiting behavior, the longer the path the
better the map. Although many other exploration variables can be associated to
the exploration, the optimization of the length of the path and the quality of the
reconstruction constitute the quintessential exploration problem.

The length of the path can be measured directly in terms of meters traveled by
the robot and it is also related other terms like exploration time and power con-
sumption. The quality of the map can be a more abstract idea, because the SLAM
problem after linearization can be seen as a multivariate Gaussian distribution the
covariance matrix, and its inverse the information matrix, is a good indicator of the
quality of the reconstruction i.e. the better the information matrix the better the re-
construction. Considering we have the function that maps the information matrix
to a real number, the problem of Optimal Exploration can be properly defined.

Using a graph based approach we are able to model mathematically the ex-
ploration problem. We are able to pose this model as convex optimization and we
demonstrate the solution is unique, and that the maximum optimal is asymptotic-
ally reachable. Based on the results on the floor plans in dataset we are able to
propose a heuristic that achieves performance similar to the optimal behavior.

We propose the Eulerian Path as a policy for exploration and demonstrate that
the obtained paths achieves similar performance to the mathematical optimal. The
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Eulerian Path can be found incrementally, consequently our exploration policy
proposal based on an incremental map is similar to the solution of the full problem
of the optimal exploration when the full map is known.

5.1 Related Work

In [Khosoussi et al., 2014] they observed the relation between the optimality cri-
teria used to evaluate the active SLAM algorithms and the connectivity indices
of the associated graph being built during the Graph-based SLAM. Based on this
link we can now use the latest work in connectivity optimization to produce an
efficient exploration.

Some important connectivity indices of the graph comes from the analysis
of the eigenvalues of one of the matrix associated to the graph, the Laplacian
Matrix. In one of the seminal works on connectivity optimization [Boyd, 2006]]
Boyd considers the problem of optimization of several graph problems related to
the Laplacian eigenvalues like algebraic connectivity and minimum total effective
resistance, these problems are linked to the maximization of the E-Optimal and
A-Optimal criteria. The optimization of the determinant of a generic matrix has
been addressed in [Vandenberghe et al., 1998]] and it is related to the D-Optimal
maximization. Although most of these problems has not closed form solution
Boyd demonstrated that these kind of problems are convex, which means that they
can be solved efficiently using convex optimization techniques like semi-definite
programming.

The work on eigenvalues optimization has seen its application in the robotic
community in the multirobot scenario. In consensus based robot network the al-
gebraic connectivity is related to the convergence rate. In [Zavlanos et al., 2011]
they optimize the configuration of the robot in order to maximize this value.

Inspired by the work [Vandenberghe et al., 1998]] we propose a generic formu-
lation of exploration in terms of any of the commonly used optimality criteria and
demonstrate the optimal is unique.
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5.2 From Information Matrix to Laplacian Matrix

In [Khosoussi et al., 2014] they reveal the relation between the optimality criteria
and the indices of the underlying graph representation of the SLAM problem.
Considering that all measurements have the same noise covariance matrix X, for
linear functions they show that information matrix can be extracted only combin-
ing it with the matrix associated to the structure of the graph called Graph Lapla-
cian. We will expand this work and define which conditions must be fulfilled in
order to be applied in 2D and 3D SLAM scenarios.

5.2.1 Graph Laplacian

Let the graph G be defined as G = (V, E), the set of nodes V =V (G) = {vi, v, - - v, }
the set of numbered nodes of size n = |V|, the set numbered edges E = E(G) =
{e1,e2,---en} of size m = |E|. For each edge e; = {v;,vx} we define v; and vy

the nodes it connects. For clarity we will use “i" when counting nodes and us “j
when counting edges.

The Laplacian Matrix of a graph L of size n X n can be interpreted as a par-
ticular case of the discrete Laplace operator. It can be expressed in terms of other
matrices associated to the graph, those are:

Adjacency Matrix (A)

Square matrix of size n x n where the columns and rows represent the nodes of the
graph. The term A, ; is set to 1 if nodes v; and v; are connected, and 0 otherwise
(Figure [5.1). It is only defined for simple graphs, i.e. graphs without multiple
edges or self loops.

Degree Matrix (D)

Diagonal matrix of size n X n where the terms D; ; are the degree of the nodes, i.e.
the number edges connected to the node v;.
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Figure 5.1: Adjacency Matrix
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Figure 5.2: Degree Matrix

Vertex-Edge Incidence Matrix (Q)

Rectangular Matrix of size n x m that relates the vertex with edges. The columns
of the matrix is formed for the vectors ; associated to the edge e; in the form
Q = (q1|q2| - - |qm) where the terms in the vector are [q;]; = —[q;]x = 1 if the
edge e; connects the nodes v; and v and zero elsewhere.

The Laplacian matrix can be calculated as

L=D-A (5.1)

Therefore, in the Laplacian matrix the diagonal entries are given by the de-
gree of the nodes and the off-diagonal entries are set to —1 when the nodes are
connected.

We can also define the Laplacian matrix in terms of the vertex-edge incidence
matrix



5.2. From Information Matrix to Laplacian Matrix 63

Q = (qi]a2193/94]4s5[q6)
1] 1 ol o
1] 0 1] 1
= o o|—-1] 0| 0
ol o] o|-1] 0
0[—1] 0] 0[—-1]|-

Figure 5.3: Incidence Matrix
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Figure 5.4: Laplacian Matrix
L=QQ’ (5.2)

Using equation [5.2] we can observe the effect in the Laplacian of every single
edge.

—_——_ 0 O O
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L - QQ’ (5.3)
q’
T
qz

= (qilq2|---[qm) | — (5.4)
q’,

=qiq] +q@q} + - +aquql, (5.5)

Defining a new matrix E; = q;q’ associated to the edge ¢; we can write the
g J = 4;4; ge ¢
Laplacian matrix as a sum of the effect of each individual edge.

L=YE, (5.6)
=1

The matrix E; is associated to the edge e; = {v;,v}. This matrix has the
property that the terms of diagonal associated to the nodes (E J)ii = (E j)

the off-diagonal terms (E;), . = (E;),, = —1 and 0 otherwise.

)

kk L,

Ei=| - oo oo (5.7)

Weighted Laplacian

One generalization of the Laplacian matrix consist in considering a weighted
graph. The case of the labeled graph when the edges are labeled by real num-
bers is known as weighted graph. It can be represented adding a new component
to the elements of the edge, i.e. ¢j = {v;, v, 0 }.

We can generalize the equation [5.6] for the Weighted Laplacian as
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m
Ly =) oE; (5.8)
j=1

where the term ¢; is a real positive number. The case with no weight can be
considered using o;; = 1.

5.2.2 Relation between Laplacian Matrix and Information Mat-
rix

We will demonstrate the deep connection between the Laplacian matrix and the

Information matrix, and discuss the case that all measurements have the same

noise covariance matrix £. We need to use the Kronecker product (®) for matrices
A and B.

[Al1iB - [A1.B
A®B = : R : (5.9
[A]n,lB e [A]n,nB
Using the Kronecker product we can write the following

Theorem 5.2.1. The information matrix in Graph SLAM can be approximated for
small error in terms of the edges as

m m
Y=Y Y;~YE;oL' (5.10)
j=1 j=1

In this equation E; is an n x n matrix where “n" is the number of nodes and X ;
is the b X b matrix where “b" is the size of the configuration vector to be estimated,
then the Kronecker product E; @ 2‘.]7] is a nb x nb block matrix.

Proof. In the general problem of SLAM we define the configuration vector x; that
contains the position t; and the orientation 6; of the vertex v;. We will use the op-
erators & for composition of transformation and & for the inverse transformation
as defined in [[Smith et al., 1990].

Xik = OX; D X; (5.11)
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In the SLAM context the information is received in terms of relative trans-
formation, similar to the previous cases this transformation is considered a random
variable

Xk = X Ddj (5.12)

with djx a random variable .47 (0,X;). Setting the transformations with respect

(13 9

to an arbitrary world position “w” we can write

Xyi = Xy Dd; (513)
Xk = Xk D dyg (5.14)

using the composition properties we write

Xif = OXypi D Xk (5.15)
=od; ©X,,; DX, D dg (5.16)
=od; DXy D dy (5.17)
~ X O Jud; dy (5.18)
~ X Ddj (5.19)
Assuming small errors
diyy ~ —Jud; +d; (5.20)

Setting this equation in the common reference frame in w

dicj = Jyrdix (5.21)
~ —Jydkidi + Jrdi (5.22)
~ —Jyid; + Jyrdk (5.23)
~ —d;j,, + dg, (5.24)

~ (I -I) ( i > (5.25)

dk|w
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Considering the full vectord = (- d;j,, - dg),, - ) the equation can be written

digy=(- -1 -1-)d (5.26)

When solving the graph SLAM problem based on the maximum likelihood
approach we find the set of robot poses that minimizes the constraints associated
to the observations (equation[2.3). The function to be minimized is

m m
F=Y Fi=Y dix;'q; (5.27)
j=1 j=1

where d; is the random variable associated to the transformation between the
end nodes of the edge e}, represented in the world reference w. Considering the
edge e; connects the nodes n; and ny we can write dj = dyy,,. Consequently we
can express the function Fj as

Ty—1
Fj:dej d; (5.28)
This can now be written as
-1
T -1
Fj=d - |Z5 (- L1 )d (5.29)
I
—1 -1
. Zj 2‘.] .
=d . . . . - |d (5.30)
-1 -1
_zj . 2] .
Y;

Using Kronecker product we can write Y ; as
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j ' j
L (5.31)
—X; z
1 - =1 .
~ - - |ex! (5.32)
.1 1 -
~E;®L;" (5.33)

where ® is the Kronecker product and E; is the matrix associated to the edge
e; (equation @ Finally we can write the complete information matrix as:

Y=Y, (5.34)
j=1
m

Y~ Y E;®L (5.35)
j=1

u

5.2.3 Every Measurement with same error distribution

In [Khosoussi et al., 2014]] they claim that many SLAM front-ends and many
popular datasets are consistent with the assumption that every measurement can
be modelled as a Gaussian distribution with the same covariance matrix X in that
case we can use the corollary of the theorem [5.2.1]

Corollary 5.2.2. In the case that that every measurement have the same noise
covariance matrix X the equation becomes

Y=LgX! (5.36)
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Proof. This can be easily demonstrated using Kronecker product properties and
setting X; = X

Y=YE;oz! (5.37)
j=1

= YE;|oz! (5.38)
j=1

=LeX! (5.39)

One direct consequence of this corollary is that the unordered set of A, eigen-
values of the information matrix can be calculated directly.

Let uy,--- 1, be the ordered set of eigenvalues of the laplacian matrix L. with
size n x n and vy,---, Vv, be those of the noise covariance matrix £~! with size
b x b (listed according to multiplicity). Using the properties of the spectrum of
the Kronecker product we know that the eigenvalues of the information matrix
Y=LoX ' are:

Aig(j—1)n = Mi* Vj (5.40)

The connectivity indices of the graph are calculated using the eigenvalues of
the Laplacian matrix removing the zero eigenvalue, namely

N
Number of Spanning trees  t(G) = [] Wi
i=2

N
Kirchoff Index Kf(G)= Y u! (5.41)
i=2

Algebraic Connectivity oa(G)= Ww

We can express the connectivity indices as instances of the information func-
tions in terms of the eigenvalues after removing the zero eigenvalue. Using the
same criteria for the information function we remove the b number of zero eigen-
values. For p # 0 and p <1 we have
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1 bn » p
1 n b %
= Vi) (5.43)
= u’ 1% (5.44)
(n—1)b ,:Zé ]:Z’l J
n 1/p b 1/p
Yl LV
_ (;2_ 3 f*b (5.45)
= LI IE" ), (5.46)
In the case that p =0
b(n—1) 1
IYl,= [T 4™ (5.47)
i=b
n b 1
=TT ] (- v)oeD (5.48)
i=2 j=1
= w T TTV) (5.49)
i=2 j=1
=Ll 1=, (5.50)

As a consequence any information function applied to the un-anchored in-
formation function can be found applying it to the Laplacian Matrix L and the
information matrix X separately.

Y1l = L=, (5.51)
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Furthermore, under these conditions we demonstrate the exact connection
between the optimality criteria and the connectivity index of the underlying graph.

5.2.4 Every Measurement with Bounded Measurement Noise

In the case the uncertainty in the edge ¢, is bounded by

<ozt (5.52)

where o; > 1is an scalar, ¥~ ! is a constant information matrix and the symbol
“=<” implies the difference is & jZ’l —2‘.]?1 is positive definite. The equation |5.35
now becomes

m m

Y~ Y E®L'<YE®yZ!
j=1 j=1
m
=Y oE;®X ' =Ly®Z"! (5.53)
j=1

with L, the Laplacian defined for the weighted graphs. Accordingly we obtain
a similar relation between the optimality criteria applied to the information matrix
of the system Y and the one applied to the Laplacian matrix Ly of the weighted
graph

Y[l < [l 1= (5.54)

In general every positive definite matrix, and consequently every uncertainty
matrix, is trivially bounded by

' 2wl (5.55)

where Vj, is the largest eigenvalue of Z;l, therefore the equation|5.54|1s always
valid. The equality is produced when the bound in equation [5.52] 1s sharp, i.e.
2;1 = jE‘l.
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5.3 Optimal Path

The quintessential task in autonomous exploration consist in finding the shortest
path that produces the best map, because the map is not known beforehand this
path has to be found incrementally. In the scenario of Graph SLAM the length of
the path is related to the number of traversed edges and the quality of the map is
related to the optimality criteria applied to the information matrix.

In order to evaluate an exploration policy we compare its performance with
the optimal. This optimal path depends on the current map to be explored and
needs to be calculated off-line. The rest of this section deals with the problem of
the calculus of this optimal path for the case of different optimality criteria.

5.3.1 Off-line Optimal Path

Considering the case that the covariance associated to every measurement is the
same (or bounded by a real positive number) we observe that the result of apply-
ing the information function to the information matrix is proportional to the one
applied to the Laplacian matrix (equation[5.51)

Y|P o< |IL], (5.56)

Instead of maximizing optimality criteria on the information matrix, we max-
imize the connectivity index of the underlying graph. The problem of the optimal
path can be stated as:

Problem 5.3.1. Given the graph G(V,E) and a maximum number of traversals
“d”, find the set of traversals that maximizes a connectivity index of the graph.

Different connectivity indices of the graph can be represented using a variation
of the information function. Lets define the eigenvalues of L in the ordered vector
p= [ ] With 0= py < pip -+ < .

Instead of removing the row and column to obtain the reduced Laplacian L,
like [[Khosoussi et al., 2014], we simply remove the zero eigenvalue and calculate
the information functions on the remaining. The logic behind removing one row
and column comes from setting one node of the graph as a reference for every
other node, i.e. the measurement covariance respect to the world reference is
the zero [Thrun and Montemerlo, 2006] [Grisett1 et al., 2010]]. Removing the zero
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eigenvalue without referencing any other node permits to extract the generic prop-
erties of the quality of the map and thus compare one-to-one with the connectivity
indices of the underlying graph.

(ruzuf) i p£0
=2
L[|, = (5.57)

1

n—1 1
H.uin_l lf p:()
\ =2

This way we can express several connectivity criteria used in the spectral graph
theory with different values of p <1

1. Average Degree of Nodes (p = 1)
2. Number of Spanning Trees (p = 0)
3. Kirchoff Index (p = —1)

4. Algebraic Connectivity ( gm L], = u2)
p—r—o0

Now we can define the characteristics of the solution. Lets define the vector
of traversals x € Z*", the term x j represents the number of times the edge e;
has been traversed. Using equation [5.6) we can represent the Laplacian L as a
sum of the effect of every edge E;, fusing these definitions we can calculate the
Laplacian matrix of every set of edges and the number of traversals simply using
the following equations

L(X) = iEij (558)
j=1

where L(x) represents the Laplacian as a function of the vector x. Finally we
can pose the problem of the Optimal exploration as an optimization problem to
find the optimal vector of traversals x*; , such as
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m
maximize L), = ||} E)x;
J=1 p
m
subject to Y x;<d (5.59)
j=1

The problem posed in this terms can be seen as 0-1 integer programming prob-
lem, it has been solved exactly in [Vandenberghe et al., 1998] in the case where
the function to optimize is the determinant (related to the D-Optimal) and pro-
pose that other functions can be solved, in a similar approach [Sagnol et al., 2015]]
second-order cone programming to optimize the solution. In [Wan et al., 2008]]
they optimize the algebraic connectivity. Although some solution can be found in
specific domains it is known that the general case is NP-complete.

Some recent work have tackle the problem of adding an edge increment-
ally [Hassan-Moghaddam et al., 2017]] using some heuristics, however not op-
timal solution has been found incrementally. Additionally these heuristics do not
include the restriction that the set of edges should represent a feasible path (in
consecutive edges the end node of first edge should be the start in the following).

Lets define the vector which produces the optimal index in equation [5.59] as
X:}’ » consequently we define the optimal value as the function evaluated in that
vector %y, = [|[L(x )|l -

The norm of the Laplacian have some useful properties, we name them here
and the their proofs are in the appendix

Property 5.3.1. %, , have an upper bound for p < 1.

2
Lap< —d (5.60)

Property 5.3.2. ., , is monotonically increasing with respect to the maximum
traversals allowed d and the parameter of the information function p.

In practical terms it means that monotony property is guarantee for every in-
formation function applied to the Laplacian Matrix. Additionally it implies that
given a restriction of maximal traversals the maximum value is achieved travers-
ing the maximum number of traversals
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5.3.2 Information Rate

State of the art criteria to evaluate SLAM algorithms presented in the KITTY
data set [Geiger et al., 2013|] consist in dividing the accumulated error by the
distance traversed. Considering the information functions are related to the error
we similarly define the Information Rate as the quotient between the information
function and the number of traversals.

y Ejx;
L j=1
E(x,p) = | ,,Sxm” =——F (5.61)
; X]' Z Xj

1 j=1

This quantity relate two of the most important concepts in exploration: the
quality of the map in terms of the accumulated information, and the length of the
path needed to achieve this information. The task of exploration implies achieving
the highest amount of information with the shortest path, it implies maximizing
the information rate.

This function have several important properties, one of the most important is
that it has a global maximum independent of the number of traversals, this max-
imum value constitute the Optimal Graph Exploration. In order to demonstrate
that we need a few properties of E(x, p), these properties will be proven in ap-

pendix
Property 5.3.3. The Information Rate is Scale Invariant:
E(ax,p) =E(x,p) (5.62)

Property 5.3.4. The Information Rate is Bounded:

E(p) < 1o (5.63)

In order to find the optimal we can set the following integer maximization.
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L
maximize E(x,p) = I nSX)HP
Y Xj
j=1
m
subject to Z x; <d
j=1
x; ez (5.64)

The integer programming is known to be NP-hard, consequently no practical
solution can be found. One approach to integer programming is called relaxation,
we remove the constraints of x of being a vector of non negative integers and
replace it with the relaxed version of being non negative real numbers in order
to approximate the solution. In our case we can use the property of the scale

m
invariant to calculate the solution when )| x; = 1, because for every other value
j=1
we only need to scale the solution, this way we can find the optimal value and its
associated vector.

maximize |E(x,p)|| = LX),
m
subject to Z xj=1
j=1
X; € R+ (5.65)

Because the set of information functions is concave it is guaranteed that the
function has a maximum value é"p, achievable for X;; € R™ and it is unique.

&, > E(y,p) (5.66)

The optimal value &), represents the theoretical maximum, the performance of
every exploration can be compared with this value to define the efficiency of the
estimator.

Considering the fact that this solution comes from the relaxation in the ori-
ginal optimization problem the value of &), represents an upper bound for the
constrained version.
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5.3.3 Optimal Path as Maximization with Linear Matrix In-
equalities

The Laplacian matrix can be expressed as a weighted sum of matrices

) xE;=L (5.67)
j=1

Finding the set of x that maximizes the criteria is efficiently posed as a convex
optimization problem, although there is not a close form solution a convex prob-
lem is guarantee to converge to an optimal value. The convex optimization con-
sist in minimizing a convex function where every constraint are defined between
matrices using the positive semi definite comparison “>~" where A = B if and only
ifA—B>0.

maximize F(x)
subject to G(x) =0
Ax=h (5.68)

A subset of convex optimization problem with tractable solutions is the Semi
Definite Programming (SDP)

maximize c!'x)
subject to ijFj <0
Ax=Db (5.69)

The A-Optimality criterion deals with the problem of determinant maximiza-
tion which have been studied in [Vandenberghe et al., 1998]. The A-Optimality
and E-Optimality criteria have been addressed in terms of semi definite program-
ming [Boyd, 2006].

The relaxed version of the optimal Information Rate in equation [5.65] is the
same problem of having a weighted graph and assigning the optimal set of weights
that maximizes the criteria in the weighted Laplacian.

The specific shape for the optimization problems are
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D-Optimal

The D-Optimal design has been discussed in [[Vandenberghe et al., 1998|] where
the optimization is defined for real numbers like the relaxed version of the optimal
problem

1
minimize —logdet(L + (—) 117)
n
subject to ijEj =L>0
1'x=1 (5.70)

where 1 is the vector formed by only 1’s.

A-Optimal

The problem of the A-Optimal design is linked to maximizing Kirchoff index of
the graph. The Kirchoff index is also known as the total effective resistance as-
suming every edge is one resistor. The specific problem of finding the minimum
total effective resistance is calculated in [Boyd, 2006]] using Semi Definite Pro-
gramming (SDP).

minimize Trace(Y)
L+(Hn’ 1
subject to =0 (5.71)
I Y
Y x;Ej=L>0
Y=Y'>0
17x=1 (5.72)

The matrix Y is one slack matrix introduced to solve the problem.

E-Optimal

The E-Optimal criteria is related to the lowest non zero eigenvalue of the Lapla-
cian Matrix. This eigenvalue is also related to the spectral partitioning of the
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graph, in the consensus multi-robot network this eigenvalue defines the velocity
of convergence, in [Boyd, 2006] it is defined as the fastest mixing Markov process
and define the problem as a SDP:

minimize Y

subject to ijEj =L>0
yI<L+p117 (5.73)
1'x=1 (5.74)

where ¥, B and x are the variables to be optimized

5.4 Experimental Results

In this section we first verify the results of the properties of the information of the
paths derived in previous section, secondly we analyze the pattern of the solution
of the optimal path in typical indoors environments.

Finally based on the analysis we propose an exploration policy and compare
its performance with respect to the optimal path in indoor environments.

5.4.1 Optimal Path Properties

The objective of this section consist in confirming some of the properties of the
optimal path demonstrated in the previous section.

We perform an exhaustive search to find all possible graph H; derived from
the original graph G = (V, E) such as they contain the same set of nodes V and the
subset of (possible repeated) edges E. We can describe these graphs H;, = (V, F;)
using the mathematical formalism

H=(V,F) | FECE |F|=d (5.75)

where “d” is the maximum number of traversals defined in the equation
and E? is the notation for the multiset containing up to “d” repeated edges of the
original graph G = (V,E). |F;| is simply the number of elements in the set.
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For a given maximum number of traversals d we evaluate the chosen criteria
for every possible graph H; and select the one that maximizes it. Considering that
Y| o< ||L||, (equation we apply the information function to the Laplacian
matrix of every graph H; according to the values of p that represent the different
optimality criteria, namely

e T-Optimal: p=1
e D-Optimal: p =0
e A-Optimal: p = —1

e E-Optimal: p — —oo

The first experiment consist in analyzing the complete graphs. The complete
graphs are the graphs where every pair of distinct nodes is connected by an edge.
The complete graph on n vertices is named K, in the figure [5.5 we observe K4
composed of 4 nodes. This family of graphs is important for our analysis because
all of the non zero eigenvalue of its laplacian matrix are equal, as a consequence
every optimality criteria produces the same value. Finally, when the number of tra-
versals d coincides with the total edges in K}, every information function reaches
the same value, and consequently the optimal.

Figure 5.5: K4 Graph, Every node is connected to the rest of the nodes. Analyzing
this graph we can verify the properties of the information function
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In the figure 5.6 coming from the analysis of the information of the K4 graph
we observe the properties enunciated earlier. The upper bound correspond to p =1
associated to the T-Optimality criteria, every other function lies bellow it. The
monotony with respect to the number of traversals d is evident no matter what
optimality criteria is used. Finally the monotony with respect to the parameter p
can be seen because we can write

T-Optimal > D-Optimal > A-Optimal > E-Optimal (5.76)

15 Information Criteria versus Traversals
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Figure 5.6: The upper bound on the information for every optimality criteria is
the information of the T-Optimal. The functions are monotonously incresing with
respect to both, the number of traversals and the parameter p, associated to the
different criteria

One important feature deals with the fact that when the number of traversals
is lower than the number of nodes the information according to every optimality
criteria is zero, once there is a tree connecting every node the values grows.
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In the figure [5.7] we observe the properties of the Information Rate of the
graph. The upper bound property of the Information Rate is easily observed. The
scale invariant property can be observed for the values of traversals of 6 and 12
and 18, in these cases the optimal information rate is reached when every edge is
traversed the first and the second time.

Information Rate versus Traversals
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Figure 5.7: In the K4 graph the optimal information rate is reached for every
information function when the number of traversals is a multiple of the number of
edges. The scale invariant is demonstrated for d = 6,12, 18

In this first experiment we avoided the constraint that the set of edges must
be traversable, i.e. the edges should be ordered in a sequence where the end node
of every edge is the starting node of the following. Adding this restriction the
graphs of the information and information rate are modified. In Kj there is no
plausible path that visits every edge only once, as a consequence in figure[5.8|the
optimal is not reached when the value of traversals is d = 6, however in every
graph there is always a path that visit every edge exactly twice producing the
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optimal information when d = 12. The information rate reaches exactly the same
optimal that the unconstrained version confirming that the constraint of being a
path do not modify the optimal value.

ion Criteria versus Traversals Information Rate versus Traversals
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Figure 5.8: Restricting the solution to the set of traversable paths the evolution
of the curve is modified, nevertheless the same optimal value is reached when
d =12, i.e. traversing every edge twice.

In the third experiment we show the results for the generic graph imposing
the constraint of being a traversable path. In the figure [5.9) we observe on the left
the topological graph and the evolution of its information when more edges are
traversed. One important difference from this graph to the complete graph Ky is
that the optimal value is different according to optimality criteria used to calculate
the information.

In figure [5.10] we can observe that the information according to every optim-
ality criteria tends to one optimal value, this value is the one defined by equation
as &, for the different values of p.

5.4.2 Optimal Path for Indoors Environment

In [Aydemir et al., 2012] they present a dataset where the maps of 130 indoors
environments and its corresponding topological graphs are given. For every to-
pological graph we solve the optimization problem presented in equation [5.65| to
obtain the optimal set of weights x that maximizes the information according to
the most common criteria, namely: E-Optimality, A-Optimality and D-Optimality.
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Information Criteria versus Traversals

s T-Optimality
= D-Cptimality

A-Optimality
= E-Optimality

Information Value

Number of Traversals

Figure 5.9: For a generic Graph the rate of the information growth is different
according to the optimality criteria used, in general there are not intersection in
these curves

In order to solve the optimization problem we use the function fmincon
in MATLAB® using the default interior-point algorithm. This is not the most
efficient algorithm to solve the optimization problem, however at present we are
only analyzing the solution, we are not interested in efficiency.

According to [Aydemir et al., 2012] the structure of indoors environment is
accurately represented using the small world networks model, one property of
these networks is that small number of nodes concentrate many edges while many
nodes have very low number of connections. In figure[S.11|one of the graphs from
this dataset clearly represents this property. The thickness of the edges are asso-
ciated to the optimal weight assigned by the optimization algorithm. We observe
how the optimization according to the E-Optimality criteria assign more weight
in the connection between the nodes with high degree, i.e. more connections. On
the other hand, the optimization according to the D-Optimality criteria produces
a balanced distributions on the weights.

Even when there is a big loop that can reduce the uncertainty in figure the
optimization according E-Optimal still produces bigger weights in the edges con-
necting the high degree node, in the A-Optimality these edges are still important
but more balanced, and finally for the D-Optimality no big difference is made.

In figure[5.13|there are several cycles but according to the E-Optimal based op-
timization the most important is the tree connecting the nodes with higher degree,
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Figure 5.10: Analizing the information rate the trend to the optimal value is vis-
ible. This optimal value &), is the result of the optimization in the equation [5.63]

in the D-Optimal based optimization the bigger weights are in the nodes with low
number of connections, the A-Optimal optimization emphasizes a different tree
than the E-Optimal based and increases the weights associated to the cycle, but
not as homogeneous as the D-Optimal.

5.4.3 Exploration Efficiency of Eulerian Path Policy

Many of the algorithms for active SLAM consist in choosing an interesting point
and heading towards it [Cadena et al., 2016], most of them are based in the frontier
exploration [Yamauchi, 1997]], once every point have been explored the task is
over. Considering the exploration task as visiting a set of points this common
approach is similar the task of visiting every node in the graph-based exploration.

In SLAM once the data association is solved we are able to recognize a place
we have been before. However even when we are able to recognize some explora-
tion direction the destination is only known once we traverse onto it. According to
the taxonomy on the graph based explorations presented in Chapter 2 the Active
SLAM is in the scenario of nodes recognizable but edges not. The common task
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Figure 5.11: Indoors Graph with small-world topology, few nodes with many con-
nections. The thickness of the edge is proportional its weight in the optimal graph.
E-Optimal based optimization emphasizes the edges connecting the nodes with
many connections while D-Optimal based optimization the weights are evenly
distributed, the A-Optimal based can be seen as a transition between the others

in this scenario is the full graph exploration that consists in traversing every edge
and consequently visiting every vertex.

The Eulerian Path is the path that visits every edge once, this is the shortest
possible path that produces the full graph exploration. We have seen in the pre-
vious experiment that for the complete graphs it maximizes every information
criteria. While solving the famous Seven Bridges of Konigsberg problem Euler
proved that a graph needs that every node have an even degree in order to have
an Eulerian Path, although not every graph fulfill this condition when allowing
every edge be traversed twice this path is always traversable, furthermore using
the scale invariant property of information rate we know this double traversal path
will produce the same information rate that the virtual eulerian path.

Unlike the common approaches in the Active SLAM we propose traversing
every edge as the policy for exploration. This policy recognizes the nature of the
graph based exploration scenario and there are algorithms that can find this path
incrementally.

In order to evaluate the performance of any algorithm we can compare it with
the theoretical optimal, in this case we will compare the quality of the path ap-
plying the information function to the discovered graph and compare it with the
optimal information for the graph.

Using the optimal information calculated for the the dataset presented in [|Ay-
demir et al., 2012]] calculated in the previous experiment we calculate the explora-
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E-Optimal A-Optimal D-Optimal

Figure 5.12: In the case of one loop the pattern of the optimal set of weights is
repeated, in E-Optimal based the few edges connecting the high degree nodes are
emphasized whereas in D-Optimal based the weighs are distributed

tion efficiency as the quotient of the information rate when every edge is traversed
once(G1) and the optimal information rate (&),).

_ IEGDIl,

E

(5.77)

The average results in the table are presented in table [5.1] it can be seen that
using the most common optimality criteria like D-Optimality and A-Optimality
the efficiency of the proposed path is very high. In terms of the E-Optimality,
which is related to minimize the maximum relative uncertainty, the variability in
the efficiency is so high that prevent us for giving any guarantee.

Criteria Average Efficiency
D - Optimality 98.9+1.0%
A - Optimality 89.3+8.6%
E - Optimality 50+24%

Table 5.1: Exploration Efficiency

One final remark is that the A-Optimal is associated to the Kirchoff index of
the graph, in the SLAM case it is related to the average of the uncertainty between
every possible pair of nodes in the graph. Considering this we believe the A-
Optimal criterion is the most appropriate for the active SLAM task.
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E-Optimal A-Optimal D-Optimal

Figure 5.13: The third scenario with several cycles is very interesting because the
weight pattern is very different according the optimality criteria to be optimized.
In the E-Optimal based the edges inside the big loop are emphasized whereas in
D-Optimal based the the edges inside the big loop are the less weighted. In the
A-Optimal based the set of edges lightly emphasized is different from the edges
of the E-Optimal based optimization

5.5 Conclusions

We demonstrated the relation between the optimality criteria of the Laplacian mat-
rix and the un-anchored information matrix.

We demonstrate that optimal information rate has an optimal value which is
independent of the size of the path.

We probe experimentally that the path that traverses every edge is very close
to the optimal when evaluating E-Optimality or A-Optimality. The high variation
in the case of E-Optimality prevents any efficiency claim. Considering the most
commonly used criteria are the D-Optimal and the A-Optimal the proposed path
is very efficient in common applications.



Chapter 6

Graph based Active SLAM

In the chapter[5|we proposed that traversing every edge once is the most appropri-
ated exploration task in Active SLAM based on the characteristics of the problem,
where the destination of the trajectory is only learned once the robot have traverse
it. We also demonstrate that in topological graphs coming for real indoors maps
the proposed path produces a very efficient algorithm when compared with the
optimal exploration.

The next step consist in convert this optimal path into an exploration policy.

The first problem comes from building the graph from the current state of the
map, this problem is solved in the incremental version of the topological segment-
ation described in chapter 4] where the graph is built incrementally emulating the
on-line graph exploration.

The second problem comes from transforming this optimal path into a path
achievable in on-line exploration. The path that traverse every edge once in a
graph is known as Eulerian Path, however this path is not possible for all the
graphs, the only mathematical guarantee is that a path traversing every edge twice
is always achievable. In the case the graph can not have one eulerian path the
Chinese Postman Problem (CPP) ask for the minimum length path that traverse
every edge at least once but not more than twice.

The incremental algorithms to traverse unknown graphs comes from the maze-
searching literature ( [Lumelsky, 1991]). These classical algorithms offer math-
ematical guarantees of the length of the path. The Tréemaux algorithm, the basis of
the Depth First Search (DFS), produces a path that visits every edge exactly twice.
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The Tarry’s algorithm can be seen as a generalization of the Tremaux and have the
same path length, however its formulation permits introducing early termination
criteria like the one proposed by Fraenkel’s in [Fraenkel, 1970] which produces a
path length between the minimum possible, defined by the solution of the CPP,
and the original algorithm, that traverse every edge exactly twice. According to
Fraenkel not further reduction of this interval of path lengths can be achieved by
incremental algorithms and time has proven him right.

In this work we modify the maze-searching algorithm proposed by Tarry to
include the Active SLAM constraints and insert it into an autonomous robotic
exploration pipeline TIGRE that begins with a partially explored map, transform
it into an partially explored graph and decides the next direction according to the
Tarry’s modified algorithm.

The resulting path is compared with the optimal path calculated off-line to visit
every edge (solving CPP) or to visit every node (solving the traveling salesman
problem 7SP). The performance of the TIGRE is similar to the solution of the
CPP which produces the lowest error in the reconstruction.

6.1 Tarry’s Maze-Searching Algorithm

Early work on motion planning [Lumelsky, 1991]] pointed out the relationships
between maze-searching algorithms and robot motion planning with incomplete
information driving the attention of the community towards classical algorithms
(e.g. Tremaux, Tarry and Fraenkel algorithms) that could be suitably adapted to
motion planning problems as the exploration task considered in this work.

In particular, Tarry’s algorithm [|Gross and Yellen, 2006], an efficient algorithm
to explore mazes, could be easily adopted within an exploration task because,
from the knowledge of a partially known graph, it guarantees that every edge of
the still unknown graph will be traversed exactly twice, once in every direction,
with the exception of the edges incident to the start and target nodes, which will
be traversed once each.

The assumptions of the Tarry’s algorithm are:

1. Node Recognition, it can be recognized when a node has been previously
visited.
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2. Edges Traversed Recognition, upon arrival to a node, the edges that have
been previously traversed outwards the node are known.

3. Entrance Edge Recognition, the entrance edge, i.e. the edge we traversed
the first time we arrived to the node, is known for every visited node.

Under these assumptions, the algorithm can be easily described as: Arriving at
any node continue via any edge which has not yet been traversed outward, but
choose the entrance edge only as a last resort.

It is worth noting that, adding an extra condition as Every time you arrive to
a previously visited node by a new path, return by the path you came, then the
Trémaux method is obtained, which is the basis of the Depth First Search (DFS)
algorithm for graph traversal.

6.2 Topological Graph-based Robotic Exploration

In this section we describe the TIGRE algorithm, a topological graph-based ro-
botic exploration algorithm rooted on the previously mentioned Tarry’s maze-
searching algorithm and that allows a robot to autonomously explore its navig-
ation environment modeled as an undirected connected graph. Starting from an
empty graph the algorithm evolves until a stopping criterium is satisfied.

At each time step an incremental contour-based topological segmentation al-
gorithm [Fermin-Leon et al., 2017al] extracts the graph-based representation from
the output of a graph-SLAM algorithm [Kummerle et al., 2011]]. Every region
in the topological segmented map is represented by one node in the graph and
one additional node is used for the unexplored area. The graph’s edges represent
every pair of regions connected by a physically traversable path, including regions
driving towards unexplored area. Physical traversability of all the edges of the
topological graph increases the reliability of the obtained model for subsequent
robotic tasks.

6.2.1 Tarry’s Assumptions in Graph-SLAM

The graph SLAM algorithm for the map reconstruction satisfies, within perform-
ance bounds, the assumptions of the Tarry’s algorithm described in the previous
section:
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1. Node Recognition, recognizing a previously visited node relates to the loop-
closing capabilities of the algorithm. In our work we enforce loop-closing
behaviour by navigating the vehicle in the vicinity of previously stored ro-
bot’s poses within the navigation region.

2. Edges Traversed Recognition, the edges between nodes of the topological
graph are defined by the traversed edges, and its direction vector, of the
graph-SLAM algorithm

3. Entrance Edge Recognition, because the time history of the edge traversals
is stored, the entrance edge is just the first, in chronological order, edge
traversed into the region.

6.2.2 On-line Exploration Terminating Conditions

Fraenkel’s constraints [Lumelsky, 1991] reduce the exploration path length in-
troducing a counter associated with the number of nodes with unexplored edges,
guarantying that every edge will be traversed at least once but never more than
twice, once in every direction. In our case we keep track of the number of the
remaining edges to be traversed, and once every edge is traversed the exploration
is over. Consequently, our exploration path length lies within an analogous inter-
val, i.e. between the minimum number traversals, achieved by the off-line CPP
algorithm when the full graph is known, and twice the number of edges of the
graph.

Additionally, we modify the Tarry’s algorithm by a break-tie criteria when
multiple edges could be chosen to be traversed at a given time step of the evolu-
tion of the algorithm. In the original Tarry’s algorithm whenever a new node is
reached and there are several edges that can be traversed, one edge is chosen ran-
domly. We modify this criteria by choosing, in those situations, an edge leading to
a previously visited node instead of an edge leading to the unexplored area, thus
enforcing the loop-closing behaviour and increasing the precision of the underly-
ing graph-SLAM solution.
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6.2.3 The TIGRE Algorithm

Algorithm [ describes the pseudo-code of the proposed topological graph-based
exploration algorithnﬂ Initially, the algorithm builds on top of the ROS naviga-
tion stack for the functions simulator and navigate.

Then, the Graph_SLAM function is based on the implementation reported
in [Lazaro et al., 2013]] of g20 [Kummerle et al., 2011]] as a back-end for the
optimization, by using the odometry readings and the 2D laser scan to update the
pose graph and the grid-map. The function Topological_Segmentation
segments the input grid-map, associating a label to each segmented region by
using the implementation reported in [Fermin-Leon et al., 2017a]] of the contour-
based segmentation algorithm [Guilin et al., 2014].

Next, the function Build_Topological_Graph builds an annotated to-
pological graph. The information of the nodes includes their order in the sequence.
Using this information the function Extract_Incident_Edges finds the
valid edges connected to the current region (edges not traversed outwards) and
classify them into either Frontier_Edges (leading to unexplored areas) or Link_Edges
(leading to previously visited areas).

Finally, from those subsets of the incident edges the next goal location for the
vehicle is selected. The algorithm favors the selection of goals leading to previ-
ously visited areas to enforce the loop-closing behaviour in the case of ambiguity.

6.3 Experimental Results

In this section we report simulation results, in the Player/Stage simulation en-
vironment [Gerkey et al., 2003|], to illustrate the behaviour of the topological
graph-based robotic exploration algorithm proposed in previous sections when
an autonomous vehicle is navigating within the 20m x 20m Cave environment
[Howard and Roy, 2003]. A C++ implementation of the TIGRE algorithm has
been programmed on top of both simulation and navigation functions of the ROS
package.

Figure[6.1]shows the online reconstruction of the navigation environment both
from the geometrical perspective of the grid-map provided by the graph-SLAM

I'The source-code of the algorithm is available at https://github.com/lfermin77/
TIGRE


https://github.com/lfermin77/TIGRE
https://github.com/lfermin77/TIGRE
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Algorithm 4: TIGRE Algorithm

Input  : Map, Topological_Map, Pose_Graph
Output : Topo_Graph = (V, E)
Variables: Link_Edges = {}

Frontier_Edges = {}

Exploration_Completed = FALSE
Commands =0

while Exploration_Completed = FALSE do
[Scan, Odometry] = simulator(Commands)

[Pose_Graph, Map] = Graph_SLAM(Scan, Odometry)
Regions_Set = Topological_Segmentation(Map)

Topo_Graph = Build_Topological_Graph(Map, Regions_Set,
Pose_Graph)

[Frontier_Edges, Link_Edges] = Extract_Incident_Edges(Topo_Graph)

if Link_Edges = {} & Frontier_Edges = {} then

| Exploration_Completed = TRUE
else
Remove_Entrance_Edge(Link_Edges)
if Link_Edges = {} & Frontier_Edges = {} then

| Goal = Entrance_Edge(Topo_Graph)
else

if Link_Edges # {} then
| Goal = Extract_Goal(Link_Edges)

else
| Goal = Extract_Goal(Frontier_Edges)

B C;)mmands = navigate(Goal)




6.3. Experimental Results 95
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Figure 6.1: Snapshots of the exploration task: (a) and (d) represent early stages of
exploration task and its decomposition with the current topological graph (green);
in (b) the robot chooses to traverse the edge presented in (e) first, rather than
exploring the nearby frontier. The exploration is considered completed in (c) and

(®).

algorithm, and the online topological graph used for the robot exploration task
derived for the incremental contour-based topological segmentation. The compu-
tation of segmented regions, and their representative nodes are sufficiently topo-
logically stable for the execution of the TIGRE algorithm. In some cases, a region
is over-segmented and 2-connected regions appear but the performance of the to-
pological exploration algorithm is unaffected because when only one edge drives
out of a node, no decision is required.

Different performance metrics, as the average of 10 replications of the experi-
ment, are reported to compare the behaviour of the graph-SLAM algorithm when
the topological graph-based model of the navigation is provided by: (i) an off-line
full graph-based solution to the Travelling Salesman Problem (TSP); (ii) an off-
line full graph-based solution to Chinese Postman Problem (CPP); (iii) an on-line
greedy Frontier-based algorithm; and (iv) our on-line TIGRE algorithm.
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Full Graph Incremental
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Figure 6.2: Comparison of the performance of different off-line, that use the full-
graph, and on-line, that incrementally build the graph, algorithms. The average
estimated error € of the robot poses is shown together with its standard deviation
computed from the ten replications of the experiment.

Figure [6.2] plots the final grid-maps obtained by each algorithm with the over-
laid exploration trajectory. Also the final topological segmentations and the to-
pological graphs are shown. Additionally, figure [6.3] plots the evolution of the
rate robot pose error over distance for the complete exploration path length. From
the computation of the mean error of the poses of the vehicle along its trajectory
(recall that ground-truth is available in the simulation tool) we conclude that the
best performance corresponds to the CPP-algorithm, the worst performance cor-
responds to the TSP-algorithm and that the TIGRE algorithm outperforms both
the TSP and Frontier-based algorithms. The results agree with the intuition that
both TSP and Frontier-based search for the shortest exploration path faster at the
expense of reducing the number of loop-closing during the graph-SLAM execu-
tion. Both CPP and TIGRE, visiting all the edges of the graph, result in larger
path lengths but in improved estimation errors.

Finally, figure [6.4] describes the evolution of the area coverage (percentage of
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Figure 6.3: Evolution of the estimated error of the robot pose divided by the
distance traveled versus the distance traveled. Relevant behaviour appears as the
traveled distance increases.

the explored cells of the grid-map) versus the path length. Clearly the TSP al-
gorithm results, by definition, in the shortest exploration path length due to its
inherent feature of driving the vehicle always to unexplored terrain visiting all the
nodes of the graph but only a subset of the edges. Similarly, the Frontier-based,
with its greedy approach towards unexplored terrain reports short exploration path
length in this case-study. In both cases, the number of edge re-traversals (and
therefore loop closures) is very low, thus a similar performance, in terms of es-
timation error is obtained for both of them. On the contrary, the behavior of the
TIGRE and the CPP bear similarities because they force the traversal of every
edge of the graph, at least once, as mentioned in the previous sections, and there-
fore the distance travelled by the vehicle is larger, with frequent re-traversals of
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the edges of the graph (see the plateaus in the figure), and therefore achieving a
better estimation error.

Area Coverage
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Figure 6.4: Map area coverage versus the distance traveled by the robot.

6.4 Conclusions

This paper focused on the problem of autonomous robotic exploration and map
building supported by high level information provided by online topological seg-
mentation that incrementally generates an undirected connected graph of the en-
vironment. The exploration problem is formulated as the traversal of all the edges
of the online graph.

The online TIGRE algorithm is proposed that integrates Graph-SLAM fea-
tures, contour-based topological segmentation, incremental graph construction
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and online decision-making by an adaptation of a constrained depth-first search
based graph traversal algorithm. Simulation results suggested a close behaviour of
the online TIGRE algorithm with off-line algorithms that require the knowledge
of the full graph of the environment (CPP), and that it outperfoms, in terms of er-
ror estimation of the robot poses other online (Frontier-based) and off-line (TSP)
algorithms.

Further work is aimed at thoroughly evaluating the TIGRE algorithm in more
complex scenarios and its comparison against other exploration methods reported
in the literature.

This work was presented in the European Conference on Mobile Robots 2017
[Fermin-Leon et al., 2017Db]].
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Chapter 7

Conclusions and future work

7.1 Conclusions

The graph theory is a branch of mathematics with more than two centuries of
work. Whenever a problem in any area can be stated as a graph problem every
tool in the graph theory can potentially be used to solve it. In our case we use
the tools from graph theory, spectral graph theory, on-line graph exploration,pr
among others to design several stages of the Active SLAM problem.

Current algorithms in path planning under uncertainty are essentially a graph
based planning. Unlike previous works in the area we include the probability of
getting a good relocalization which resulted in recognizing the stochastic nature
of the problem resulting and planning in terms of the expected uncertainty. One
important finding is that the graph coming from the Graph-SLAM algorithm is
not the best to pose the problem, in fact including edges of potential traversable
paths coming from the Voronoi Diagram increases the number of possible routes
where a shorter route can be traversed without risk of getting lost.

When the environment is segmented as a set of convex regions we can guaran-
tee that every point in the region becomes observed once the robot enters it, with
this formulation we can safely transform the robotic exploration problem to the
on-line graph exploration problem. Most of the algorithms to segment the envir-
onment are based on grid based representation of the environment and commonly
uses heuristics associated to indoors environment, these methods do not guarantee
the convexity of the regions decomposed. Consequently we decided to choose a
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new method based on contours, not pixels, this way our algorithm produced ap-
proximated convex regions, additionally it was very robust to noise, very stable
and obtained a great performance in public datasets. Changing the paradigm was
superior than to fine tune one old method.

Efficiency is a measure of performance when optimal is known. In active
SLAM there is not a predefined optimal, in that scenario the only way to evaluate
an algorithm is with respect to other. We define the quintessential exploration
task where the only variables are the traversed distance and the quality of the
reconstruction, we also substitute the continuous domain of the environment to the
topological graph that represents it, because every region is assumed to be convex
visiting every edge implies full coverage. In this set we can finally analyze the
problem of robotic exploration.

One important tool for the optimal path analysis consists in establishing the
connection between the Information matrix of the graph SLAM and the Lapla-
cian matrix of the underlying graph. Using this relation we can link the robotic
exploration with the spectral graph theory being able to demonstrate the relation
between the connectivity indices of the graph and the different optimality criteria
applied to the Information matrix.

Finally we were able to calculate the optimal exploration path for any map
decomposed into a topological graph.

Once the optimal exploration is defined we can evaluate our proposal in dif-
ferent scenarios. Using the indoors maps from dataset we were able to compare
the performance of our proposal of traversing every edge with the optimal and it
resulted in a great performance, achieving in average 98% of the optimal when
measuring the D-Optimal and 90% when measuring the A-Optimal.

The last chapter consist in integrate the modules into the exploration pipeline.
In the experiments we observed how frontier based algorithms behave similar
to the one associated to the solution of the 7SP, whereas our algorithm behaves
similar to the off-line solution of the CPP which achieves the best performance in
terms of the error in the estimation.
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7.2 Future Work

The optimal on-line graph exploration is agnostic to the type of environment rep-
resented as a graph. The main limit in order to be used in a 3D exploration scenario
consist in being able to segment the 3D environment into a set of convex regions.
One efficient incremental segmentation of 3D environment will permit the optimal
exploration y 3D scenario.

In the optimal exploration analysis we assumed that every time the robot gets
to a previously visited region it is able to recognize it, however recognizing the
stochastic nature of this event permits to make a more accurate prediction of the
quality of the map. Considering every possible scenario, whether the robot is able
to recognize or not previously visited regions, leads to multiple possible recon-
structions. We already treated this problem using the expected uncertainty when
planning a path, the natural extension consist in evaluating the expected uncer-
tainty during exploration.
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Appendix A

Proofs

A.1 Properties of the Information Function applied
to the Laplacian Matrix

We will probe that [|L(xj )|, is monotonically increasing in terms of both, “p”
and “d”. We also demonstrate that every information function has an upper bound
linear in the number of traversals d.

Theorem A.1.1. The set of information functions is an ordered set. Let' Y be a
positive definite matrix and p,q real numbers with p < q then

1Y 1], < 1Yllq (A.1)

This theorem is demonstrated in [Pukelsheim, 2006] as a consequence of the
Jensen inequality.

Corollary A.1.2. Let G(V,E) the connected graph with Laplacian L, the set of
information functions have an upper bound for p < 1.

2 2
L <——k<
L9l < k<

d (A.2)

n—1
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Proof. This comes from the fact that in information functions if p <1 then ||L(x)||, <
|IL(x)]||1. Calculating ||L(x)||; we obtain the upper bound.

Zu (A3)

1:1

”L ||1_—Z.LL£_

= ! 0 -trace (L) (A.4)

n—

= ! I -trace (i ijj> (A.5)

n— j=1

= 1 1 <itrace(ijj)> (A.6)

n—1\ /=
= ni 1 (i thrace(Ej)> (A.7)
j=1

Using the definition of E; we observe there are only two nonzero elements
in the diagonal of these matrix, they are [E;];; = [E;]ix = 1, as a consequence
trace(E ;) = 2. Combining it with the previous equation we have

Lol = —— (Zx] ) (A.8)

2
= k (A9)
n—1
2
< d (A.10)
n—1
]

We demonstrated the upper bound for every Laplacian only depends on the
number of nodes n and the number of traversals k, independent of the topology of
the graph.

Theorem A.1.3. Let G(V, E) the connected graph with Laplacian L, the maximum
information function is monotonically increasing with respect to the maximum
traversals allowed d.
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Proof. This is a consequence of the concavity property of the information func-
tions [Pukelsheim, 2006]. Lets consider the maximum information of the Lapla-
cian ||L(x} ,)||, among all possible traversals of length k according to the criteria
associated to p. Now lets define xk as a generic vector with ) x; = k. Using the
definition we know that

LX) = IIL(xi)] (A.11)
One possible Laplacian matrix, not necessarily the optimal, comes from adding

one generic edge to the optimal set of edges for k. Using the concavity of the in-
formation functions we can write

LG )llp = IL(xi ) +Ejl (A.12)
> [L(xe p) 1o+ I1E;» (A.13)
> [[L(xi )l (A.14)

Combining equations [A.11|and [A.14]we have

Lty o) o 2 ILGace) [l = [T )
L1 )l = L )

(A.15)

We demonstrated that every information function is monotonously increasing
with the number of traversals. In practical terms it means that monotony property
is not a restriction for choosing the information function to apply to the Laplacian
Matrix. The following corollary also deals with another practical issue

Corollary A.1.4. The maximum value of |L(X)||, is achieved traversing the max-
imum possible number of traversals

L&), =-Z(d,p) (A.16)

Proof. Considering the information function is monotonically increasing we know
that if k < d then Z(k,p) < Z(d, p), consequently .Z(d, p) is the maximum
value in the interval. |

This implies that we only need to search for the vectors of traversals x with
length d.
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A.2 Properties of the Information Rate Index

We will probe that E(xx) is Scale Invariant and Bounded.
Property A.2.1. Scale Invariance: E(oxy,p) = E(Xk)

Proof. Using the homogeneity of the information functions ||Y (oxk)|| = o] Y (xk) ||
we have

L
E(ax) |, = Ml (ﬁk)up (A17)
_ oLl
= 2 (A.18)
_ L)l
- =2 (A.19)
= [E(oxx) | (A.20)
n

Property A.2.2. Bounded

Proof. Trivial consequence of corollary [A.1.2]

2k
L L
< 2 (A.22)
n—1
|

In order to find the optimal we can set the following integer maximization.
L(x
maximize E(xx,p) = I (kk) I

subject to k<d
(x); € ZT" (A.23)
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One approach to integer programming is called relaxation, we remove the
constraints of xi of being a vector of integers and replace it with the vector yk
consisting on real numbers in order to approximate the solution. In our case we
can use the property of the scale invariant to find the solution when k = 1, because
for every value of k # 1 we only need to scale the solution, this way we can find
the optimal value and its associated vector

maximize IE(yk, p) = [[L(yi)lp
subject to k=1

(yo)i e RT" (A.24)

Because the set of information functions is concave the it is guaranteed that
the function has a maximum value &), achievable for y € R™ and it is unique.
Additionally it is achieved for y*,

&, > E(yk,p) (A.25)

The optimal value &), represents the theoretical maximum, the performance
of every exploration can be compared with this value to define the efficiency of
the estimator. Now we will demonstrate that the value &), is the asymptotic value
when restoring the integer constraint.

Property A.2.3. The optimal value &), represents the asymptotic value of equation

.64
b=t (mx (13220 ) a0

Proof. In order to demonstrate we need to recall the scale invariant property and
some analysis of the integer numbers. Every real number y with a finite number
of decimal digits r can be written as a weighted sum of integer numbers s; with
the property 0 <s; <9.

.
y=Y six10~" (A.27)
i=0
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Multiplying by 10" reveals that 10y is an integer number. Let’s consider the
vector y* solution of the relaxed maximization problem. When the maximum
number of decimal digits of any real number in the vector is bounded by r and
using the scale invariant property we can write

&p = max (E(y"), p)) (A.28)
=max (E(10"y", p)) (A.29)
= max (%) (A.30)

Because 10"y* is an integer vector we have the solution of the equation
set in the integer domain. In order to finish the demonstration we take the limit
r — oo to consider the cases of real number with infinite number of decimal digits.

&, = max (}LIEO (E(lOry*,p))> (A31)
= max (rh_)r?o (%)) (A.32)

Now let’s define k = 10" and we can write
Ep = ]}1_1;210 (max (@)) (A.33)
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