242 research outputs found

    Accurate volume alignment of arbitrarily oriented tibiae based on a mutual attention network for osteoarthritis analysis

    Get PDF
    Damage to cartilage is an important indicator of osteoarthritis progression, but manual extraction of cartilage morphology is time-consuming and prone to error. To address this, we hypothesize that automatic labeling of cartilage can be achieved through the comparison of contrasted and non-contrasted Computer Tomography (CT). However, this is non-trivial as the pre-clinical volumes are at arbitrary starting poses due to the lack of standardized acquisition protocols. Thus, we propose an annotation-free deep learning method, D-net, for accurate and automatic alignment of pre- and post-contrasted cartilage CT volumes. D-Net is based on a novel mutual attention network structure to capture large-range translation and full-range rotation without the need for a prior pose template. CT volumes of mice tibiae are used for validation, with synthetic transformation for training and tested with real pre- and post-contrasted CT volumes. Analysis of Variance (ANOVA) was used to compare the different network structures. Our proposed method, D-net, achieves a Dice coefficient of 0.87, and significantly outperforms other state-of-the-art deep learning models, in the real-world alignment of 50 pairs of pre- and post-contrasted CT volumes when cascaded as a multi-stage network

    Landmark Localization, Feature Matching and Biomarker Discovery from Magnetic Resonance Images

    Get PDF
    The work presented in this thesis proposes several methods that can be roughly divided into three different categories: I) landmark localization in medical images, II) feature matching for image registration, and III) biomarker discovery in neuroimaging. The first part deals with the identification of anatomical landmarks. The motivation stems from the fact that the manual identification and labeling of these landmarks is very time consuming and prone to observer errors, especially when large datasets must be analyzed. In this thesis we present three methods to tackle this challenge: A landmark descriptor based on local self-similarities (SS), a subspace building framework based on manifold learning and a sparse coding landmark descriptor based on data-specific learned dictionary basis. The second part of this thesis deals with finding matching features between a pair of images. These matches can be used to perform a registration between them. Registration is a powerful tool that allows mapping images in a common space in order to aid in their analysis. Accurate registration can be challenging to achieve using intensity based registration algorithms. Here, a framework is proposed for learning correspondences in pairs of images by matching SS features and random sample and consensus (RANSAC) is employed as a robust model estimator to learn a deformation model based on feature matches. Finally, the third part of the thesis deals with biomarker discovery using machine learning. In this section a framework for feature extraction from learned low-dimensional subspaces that represent inter-subject variability is proposed. The manifold subspace is built using data-driven regions of interest (ROI). These regions are learned via sparse regression, with stability selection. Also, probabilistic distribution models for different stages in the disease trajectory are estimated for different class populations in the low-dimensional manifold and used to construct a probabilistic scoring function.Open Acces

    Automated Image Analysis of High-field and Dynamic Musculoskeletal MRI

    Get PDF

    Analysis of MRI for Knee Osteoarthritis using Machine Learning

    No full text
    Approximately 8.5 million people in the UK (13.5% of the population) have osteoarthritis (OA) in one or both knees, with more than 6 million people in the UK suffering with painful osteoarthritis of the knee. In addition, an ageing population implies that an estimated 17 million people (twice as many as in 2012) are likely to be living with OA by 2030. Despite this, there exists no disease modifying drugs for OA and structural OA in MRI is poorly characterised. This motivates research to develop biomarkers and tools to aid osteoarthritis diagnosis from MRI of the knee. Previously many solutions for learning biomarkers have relied upon hand-crafted features to characterise and diagnose osteoarthritis from MRI. The methods proposed in this thesis are scalable and use machine learning to characterise large populations of the OAI dataset, with one experiment applying an algorithm to over 10,000 images. Studies of this size enable subtle characteristics of the dataset to be learnt and model many variations within a population. We present data-driven algorithms to learn features to predict OA from the appearance of the articular cartilage. An unsupervised manifold learning algorithm is used to compute a low dimensional representation of knee MR data which we propose as an imaging marker of OA. Previous metrics introduced for OA diagnosis are loosely based on the research communities intuition of the structural causes of OA progression, including morphological measures of the articular cartilage such as the thickness and volume. We demonstrate that there is a strong correlation between traditional morphological measures of the articular cartilage and the biomarkers identified using the manifold learning algorithm that we propose (R 2 = 0.75). The algorithm is extended to create biomarkers for different regions and sequences. A combination of these markers is proposed to yield a diagnostic imaging biomarker with superior performance. The diagnostic biomarkers presented are shown to improve upon hand-crafted morphological measure of disease status presented in the literature, a linear discriminant analysis (LDA) classification for early stage diagnosis of knee osteoarthritis results with an AUC of 0.9. From the biomarker discovery experiments we identified that intensity based affine registration of knee MRIs is not sufficiently robust for large scale image analysis, approximately 5% of these registrations fail. We have developed fast algorithms to compute robust affine transformations of knee MRI, which enables accurate pairwise registrations in large datasets. We model the population of images as a non-linear manifold, a registration is defined by the shortest geodesic path over the manifold representation. We identify sources of error in our manifold representation and propose fast mitigation strategies by checking for consistency across the manifold and by utilising multiple paths. These mitigation strategies are shown to improve registration accuracy and can be computed in less than 2 seconds with current architecture.Open Acces

    Patient Specific Alignment, Anatomy, Recovery and Outcome in Total Knee Arthroplasty

    Get PDF
    Total knee arthroplasty (TKA), despite being an otherwise highly successful medical operation, has a recurrent problem of dissatisfaction and recurrent pain rates in the 15-20% range. A variety of factors contribute to this incidence of dissatisfaction which can broadly be considered to fall into one of three groups: factors driven by the surgical outcome, pre-existing factors relating to the patients psychology, appropriateness for surgery or expectation level, and factors driven by the patient’s recovery and their management during that recovery process. With consideration to the extensive variation between patients, it is reasonable to posit that addressing patient specific factors in selection for surgery, alignment of components during surgery and post-operative management may reduce the instance of post-operative dissatisfaction. The first goal of this thesis was to understand the variation of patient anatomy as it relates to standard practice in TKA. Following the finding of extensive variation, a bio-mechanical rigid body dynamics simulation of the knee joint was developed to determine the degree to which this variation was reflected in the kinematic behaviour of the implanted knees. Later studies showed extensive kinematic variation that was responsive to variation in the alignment of the components as well as well as significantly related to patient reported outcome. Later studies further investigated how outcome related to patient selection for surgery and recovery of the patient as measured with simple activity monitoring. From this work, a pre-operative simulation assessment tool has been developed, the Dynamic Knee Score (DKS), and paired with selection and recovery management tools forms the basis of 360 Knee Systems surgical planning and patient management, which has been used in over 3,000 primary TKA’s to date

    Patient-Specific Implants in Musculoskeletal (Orthopedic) Surgery

    Get PDF
    Most of the treatments in medicine are patient specific, aren’t they? So why should we bother with individualizing implants if we adapt our therapy to patients anyway? Looking at the neighboring field of oncologic treatment, you would not question the fact that individualization of tumor therapy with personalized antibodies has led to the thriving of this field in terms of success in patient survival and positive responses to alternatives for conventional treatments. Regarding the latest cutting-edge developments in orthopedic surgery and biotechnology, including new imaging techniques and 3D-printing of bone substitutes as well as implants, we do have an armamentarium available to stimulate the race for innovation in medicine. This Special Issue of Journal of Personalized Medicine will gather all relevant new and developed techniques already in clinical practice. Examples include the developments in revision arthroplasty and tumor (pelvic replacement) surgery to recreate individual defects, individualized implants for primary arthroplasty to establish physiological joint kinematics, and personalized implants in fracture treatment, to name but a few

    1st EFORT European Consensus: Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices

    Get PDF
    Innovations in Orthopaedics and Traumatology have contributed to the achievement of a high-quality level of care in musculoskeletal disorders and injuries over the past decades. The applications of new implants as well as diagnostic and therapeutic techniques in addition to implementation of clinical research, have significantly improved patient outcomes, reduced complication rates and length of hospital stay in many areas. However, the regulatory framework is extensive, and there is a lack of understanding and clarity in daily practice what the meaning of clinical & pre‐clinical evidence as required by the MDR is. Thus, understanding and clarity are of utmost importance for introduction of new implants and implant-related instrumentation in combination with surgical technique to ensure a safe use of implants and treatment of patients. Therefore EFORT launched IPSI, The Implant and Patient Safety Initiative, which starting from an inaugural workshop in 2021 issued a set of recommendations, notably through a subsequent Delphi Process involving the National Member Societies of EFORT, European Specialty Societies as well as International Experts. These recommendations provide surgeons, researchers, implant manufacturers as well as patients and health authorities with a consensus of the development, implementation, and dissemination of innovation in the field of arthroplasty. The intended key outcomes of this 1st EFORT European Consensus on “Medical & Scientific Research Requirements for the Clinical Introduction of Artificial Joint Arthroplasty Devices”are consented, practical pathways to maintain innovation and optimisation of orthopaedic products and workflows within the boundaries of MDR 2017/745. Open Access practical guidelines based on adequate, state of the art pre-clinical and clinical evaluation methodologies for the introduction of joint replacements and implant-related instrumentation shall provide hands-on orientation for orthopaedic surgeons, research institutes and laboratories, orthopaedic device manufacturers, Notified Bodies but also for National Institutes and authorities, patient representatives and further stakeholders. We would like to acknowledge and thank the Scientific Committee members, all International Expert Delegates, the Delegates from European National & Specialty Societies and the Editorial Team for their outstanding contributions and support during this EFORT European Consensus

    The role of subchondral bone in osteoarthritis

    Get PDF
    Osteoarthritis (OA) is the most common form of arthritis. Affected individuals commonly suffer with chronic pain, joint dysfunction, and reduced quality of life. OA also confers an immense burden on health services and economies. Current OA therapies are symptomatic and there are no therapies that modify structural progression. The lack of validated, responsive and reliable biomarkers represents a major barrier to the development of structure-modifying therapies. MRI provides tremendous insight into OA structural disease and has highlighted the importance of subchondral bone in OA. The hypothesis underlying this thesis is that novel quantitative imaging biomarkers of subchondral bone will provide valid measures for OA clinical trials. The Osteoarthritis Initiative (OAI) provided a large natural history database of knee OA to enable testing of the validity of these novel biomarkers. A systematic literature review identified independent associations between subchondral bone features with structural progression, pain and total knee replacement in peripheral joint OA. However very few papers examined the association of 3D bone shape with these patient-centred outcomes. A cross-sectional analysis of the OAI established a significant association between 3D bone area and conventional radiographic OA severity scores, establishing construct validity of 3D bone shape. A nested case-control analysis within the OAI determined that 3D bone shape was associated with the outcome of future total knee replacement, establishing predictive validity for 3D bone shape. A regression analysis within the OAI identified that 3D bone shape was associated with current knee symptoms but not incident symptoms, establishing evidence of concurrent but not predictive validity for new symptoms. In summary, 3D bone shape is an important biomarker of OA which has construct and predictive validity in knee OA. This thesis, along with parallel work on reliability and responsiveness provides evidence supporting its suitability for use in clinical trials
    corecore