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Abstract

The work presented in this thesis proposes several methods that can be roughly divided

into three different categories: I) landmark localization in medical images, II) feature match-

ing for image registration, and III) biomarker discovery in neuroimaging.

The first part deals with the identification of anatomical landmarks. The motivation

stems from the fact that the manual identification and labeling of these landmarks is very

time consuming and prone to observer errors, especially when large datasets must be ana-

lyzed. In this thesis we present three methods to tackle this challenge: A landmark descrip-

tor based on local self-similarities (SS), a subspace building framework based on manifold

learning and a sparse coding landmark descriptor based on data-specific learned dictionary

basis.

The second part of this thesis deals with finding matching features between a pair of

images. These matches can be used to perform a registration between them. Registration is

a powerful tool that allows mapping images in a common space in order to aid in their anal-

ysis. Accurate registration can be challenging to achieve using intensity based registration

algorithms. Here, a framework is proposed for learning correspondences in pairs of images

by matching SS features and random sample and consensus (RANSAC) is employed as a

robust model estimator to learn a deformation model based on feature matches.

Finally, the third part of the thesis deals with biomarker discovery using machine learn-

ing. In this section a framework for feature extraction from learned low-dimensional sub-

spaces that represent inter-subject variability is proposed. The manifold subspace is built

using data-driven regions of interest (ROI). These regions are learned via sparse regression,

with stability selection. Also, probabilistic distributionmodels for different stages in the dis-

ease trajectory are estimated for different class populations in the low-dimensional manifold

and used to construct a probabilistic scoring function.
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Chapter 1

Introduction

As new imaging techniques are developed and improvements of existing imaging modali-

ties offer lower signal-to-noise ratio, higher resolution and better contrast, three-dimensional

(3D) medical imaging offers a huge potential for advances in science and medicine [58]. Dif-

ferent imaging systems for biomedical applications produce mappings of several physical

attributes in various ways [208], by measuring either directly or indirectly certain anatomical

or physiological properties of tissues. Medical imaging modalities can be broadly divided

into ionizing and nonionizing, according to the radiation technique used. Amongst the sev-

eral medical imaging modalities that exist, some commonly used techniques include:

• Ionizing:

(a) X-rays

(b) Computed tomography (CT)

(c) Positron emission tomography (PET)

(d) Single-photon emission computed tomography (SPECT)

• Nonionizing:

(e) Magnetic resonance (MR)

(f) Optical tomography

(g) Ultrasonography (US)
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(a) (b) (c) (d)

Figure 1.1: (a) MR image of a healthy volunteer, (b) MR image of AD patient, (c) fractional

anisotropy MR image and (d) PET image of a healthy volunteer, of comparable regions of

the brain in different subjects.

(a) (b) (c)

Figure 1.2: (a) MR double echo steady state image, (b) MR turbo spin echo image and (c)

CT image, of comparable regions of the knee in different subjects.

3D biomedical imaging systems allow the visualization of specimens in all three dimen-

sions. This not only helps in providing a more complete understanding of the issue, but

can also be essential in diagnosing conditions that may not be clearly visible using two-

dimensional (2D) imaging systems. Despite this, 2D imaging techniques are still widely

used due to their low cost, high resolution, and lower radiation dosages for ionizing modal-

ities.

1.1 Challenges in medical image analysis

Images of the same structure captured with different imaging modalities reveal different

aspects of the imaged tissue, and hence produce largely different images. Additionally,

anatomical variations between subjects further contributes to image variability. Figures

1.1 and 1.2 show some examples of brain and knee images captured with various imaging
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modalities and from different subjects. As can be seen, different imaging techniques reveal

substantially different properties of the structures, e.g. MR images give a more detailed

contrast in soft tissues, while CT images offer a higher contrast of bony structures. This,

coupled with higher levels of noise, low contrast and complex 3D information, among other

issues, make the analysis of medical images a challenging task. In many medical imaging

applications the assumption is made that image features, especially step changes or edges in

intensity, are interesting features [46]. Consider a pair of images {IA, IB} ∈RD, where all of

their voxels, p and q, have unique labels, lpA and lpB , associated to them. Since both images

lie inRD, then, in principle, correspondence between p and q can be fully established. How-

ever, in practice the full correspondence assumption does not hold. This is in part because

voxels at different locations often have very similar intensities, signal degradation due to

partial volume effects, and corruption of the signal by imaging noise. Moreover, the imaged

features may not present in both images (e.g. due to anatomical variability or pathology). If

a full correspondence cannot be established, then a unique spatial correspondence between

the images cannot be established. Generally, unique voxel-level mappings cannot be de-

rived based purely on intensities alone [46]. The absence of one-to-one correspondences

underlines some of the challenges in medical image analysis.

The analysis of medical images can be broadly subdivided in to three categories: Reg-

istration, segmentation and extraction of clinically relevant information. In the following

sections we will describe each of these categories.

1.1.1 Registration

Image registration is the process of finding a spatial transformation that maps points from

one image to the corresponding points in another image (see Figure 1.3). Chapter 2 gives

a more detailed description of registration and its components. Medical image registration

has many clinical and research applications [13, 82, 52, 74, 182]. For example, images of

the same subject acquired at different times or at the same time but from different views,

will have inherently different coordinate changes at different locations. Image registration

enables the detection of subtle differences by eliminating the effect of the subject’s position
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IB

p T(p)

IA

Figure 1.3: Basic registration example. Transformation T maps every point in IA to IB.

and orientation. Once the images have been registered they can be subtracted or compared

in some other way to visualize and quantify the changes that have occurred [182, 52, 74].

The vastness of applications implies that it is unfeasible to have a single registration

method that is optimal for every use. Nonrigid registration is particularly useful when work-

ing with medical images, as it is desirable to have images in the same space for analysis and

comparison. This usually requires establishing correspondence between different images,

due to the fact that tissue may have deformed between taking one image and another, of

the same subject (intrasubject registration) or when establishing correspondence between an

individual and an atlas, computer model, or another individual (intersubject registration).

The motivation to have more accurate registration algorithms stems from applications in

medical imaging, where high accuracy and low uncertainty are very desirable traits. This is

because a number of diseases cause subtle changes in the anatomy over time, e.g. dementia

patients show changes in different brain structures (the ventricles expand, the hippocampus

and the cerebral cortex shrink) while osteoarthritis patients display a gradual degradation

of the joints (like the articular cartilage and subchondral bone). Assessing this changes

accurately may allow the monitoring of the treatment of patients and the early detection of

abnormalities in normal subjects.

1.1.2 Segmentation

Segmentation refers to the partitioning process of the image domain into regions that corre-

spond to specific anatomical or functional structures and background. Although segmenta-
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tion does not form an integral part of the work presented in this thesis, a brief description

is included for completeness. The segmentation of medical images is a complicated task

and several algorithms have been developed in the field of image processing to tackle it

[13, 224, 100, 78, 60]. Figure 1.4 shows an example of a brain MR image segmented into

several structural and functional regions, and a knee MR image segmented into anatomical

regions. Medical image segmentation is also used to analyze anatomical structures and tis-

sue types, functional regions and regions associated with pathology. Additionally, segmen-

tation can be a useful tool to aid the visualization of structures, e.g. via volume or surface

rendering. The segmentation of structures or regions can be achieved by grouping together

all voxels that belong to the structure or region [236, 224, 100]. Grouping can be carried out

by analyzing intensity, texture or shape features, although other types of attributes might be

used. Another way to achieve segmentation is to locate only those voxels that lie on or near

the boundary of a structure or region. Typically this is done via edge detection techniques

[1, 201].

Since segmentation requires classification of voxels into regions, it is often regarded as

a machine learning problem and tackled with learning-based methods [229, 174]. Medical

images tend to be highly variable and are often of poor quality, making their structural seg-

mentation from the background very difficult. Moreover, the boundaries between structures

or regions may be diffuse, and segmentation techniques often have to rely on prior informa-

tion in those regions. Machine learning techniques provide an interesting approach to learn

the necessary prior knowledge directly from the data.

1.1.3 Extraction of clinically relevant information

In the context of medical image analysis, the definition of what is considered clinically rel-

evant information, can be ambiguous and subjective. In general, it refers to information that

aids clinicians to objectively reach a certain diagnosis or conclusion. Types of clinically

relevant information can include anatomical landmark locations, volume measurements, or

shape analysis, to name a few. Figure 1.5 shows some examples of clinically relevant infor-

mation extracted from medical images.
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(a) (b)

Figure 1.4: Examples of image segmentation: An MR image of a brain segmented into

several structural and functional regions (a), and an MR image of a knee segmented into

anatomical regions (b).

An intuitive definition of feature points in medical images is that of salient anatomical

points. Such points can be defined in the image space by an expert via visual inspection. In

this thesis we refer to landmarks (or anatomical landmarks) as such identifiable anatomical

points, while reserving the term features for a more generic definition of saliency. Several al-

gorithms have been proposed for the location of anatomical landmarks [217, 108, 136, 134].

Volume measurements generally refer to that of a specific anatomical structure, e.g. the

hippocampus or amygdala in the brain [111, 223, 231], or the articular cartilage, femur or

tibia in the knee [60, 228]. Volume measurements are often clinically relevant measure-

ments, as they offer an intuitive insight into anatomy. In many cases landmark or volume

measurements do not suffice to properly quantify structure variability or pathology. Shape

and morphological pattern analysis [71, 200, 235, 66] can model structures or pathologies

to track changes across time or within a population. These pattern recognition techniques

can be applied to different populations to gain insight into differences between populations

as well as diseases.

1.2 Machine learning in medical imaging

Machine learning is a branch of artificial intelligence involving the design of computer sys-

tems whose performance can automatically adapt and learn through experience. Such sys-

tems can learn to make intelligent decisions based on their recognition and interpretation of

complex patterns, with applications including but not limited to stock market analysis, email

6



(a) (b)

(c)

Figure 1.5: (a) Brain anatomical landmarks, (b) regions associated with AD and (c) knee

joint/cartilage volume renderings. Best seen in color.

filtering, security, and medical image analysis. These applications involve the use of general

models for recognition, diagnosis, planning, prediction, etc. Given a set of empirical pairs

of inputs and outputs, machine learning methods have the ability to generate general models

from complex patterns that might lay hidden among large amounts of data. This makes ma-

chine learning very suitable to solve medical image analysis problems. The main purpose of

this thesis is to explore and develop methods based on machine learning that aim at tackling

some of the previously mentioned challenges presented by medical image analysis.

1.3 Contributions

The main contributions presented in this thesis can be found in Chapters 4 to 8, and can be

divided into three main categories: Landmark localization, registration via feature matching

and Alzheimer’s disease (AD) biomarker discovery. The contributions are as follows:
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• A method is developed for the characterization of landmarks in brain MR images

using local structure information in the form of 3D self-similarity (SS) feature de-

scriptors. To locate the position of a landmark in an unseen image, several template

images in which the landmark position is known are used for training. Matches be-

tween landmarks positions in the template images and the unseen image are found.

The final landmark location in the unseen image is estimated using a voting scheme

using all templates matches.

• An affine registration framework that builds on the 3D SS feature descriptor developed

is presented. Feature correspondences are used to register knee MR images from pa-

tients with osteoarthritis, in a more robust and accurate way. Significant improvements

in registration accuracy are achieved compared to existing registration approaches.

• Amanifold learningmethod that uses Laplacian eigenmaps to learn a low-dimensional

subspace representation of the local anatomy around a specific landmark is presented.

The method is applied to brain MR images. The landmark-specific, low-dimensional

manifolds are learned using image patches, around the vicinity of the landmark, us-

ing brain MR images from the Alzheimers Disease Neuroimaging Initiative (ADNI)1

dataset. To demonstrate the method’s versatility the approach has also been applied

to images of the face. Prior knowledge of the spatial distribution of the landmarks is

additionally used to reduce the search space, and hence, the size of the manifolds.

• A framework that combines dictionary learning and sparse coding in order to cre-

ate data-specific feature descriptors is developed. Using a learned dictionary basis to

reconstruct image patches using sparse coding, feature descriptors can be specially

tailored to represent the image dataset (in this case brain MR images). The method

has been used in conjunction with an online learned graphical model to regularize the

landmark’s location. The combined spatial information from several feature points

permits a robust localization. The results demonstrate that landmark localization ac-

curacy is improved when the approach is used in conjunction with a graphical model.

1http://adni.loni.ucla.edu
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• A framework is developed for feature extraction from learned low-dimensional sub-

spaces that represent inter-subject variability for a group of subjects with AD and a

group of matched controls. The manifold subspace is constructed using a data driven

region of interest (ROI), defined using an elastic net sparse regression technique. The

learned manifold is used to perform classification of the subjects. Classification results

improve significantly when using the learned regions compared to anatomical ROI,

e.g. the hippocampus. Also, a new metric, the MR imaging disease-state-score (MRI-

DSS), is proposed. Results of the proposed approach are shown using the ADNI and

ADNI Grand Opportunity (ADNIGO) datasets.

1.4 Outline of the thesis

The thesis is organized as follows: Chapters 2 and 3 introduce the background of the most

important techniques used in registration and machine learning, respectively, as they will

form an integral part of the methods proposed in this thesis. Chapter 4 proposes a feature

descriptor that is based on SS. This feature descriptor is used to find matching landmark

locations in unseen brain MR images. In Chapter 5 the SS features introduced in Chapter 4,

in combination with random sample and consensus (RANSAC), are used to automatically

find matching features in knee MR images using a forward-backward matching algorithm,

while at the same time estimating the parameters of an affine transformation model between

images. In Chapter 6 manifold learning is used on patches from brain MR images to learn

a subspace representation, where a regression function is used to estimate landmarks loca-

tions of unseen images. Chapter 7 presents a data specific feature descriptor that is learned

specifically to represent the data at hand using dictionary learning. This type of descriptor

is used in combination with a graphical model to find matching landmarks between a pair of

brain MR images. In Chapter 8 a combination of machine learning techniques are used to

derive a continuous metric that aims to act as an imaging biomarker for AD. Using sparse

regression with stability selection, relevant features are identified in brain MR images, thus

defining a ROI. Manifold learning (on the defined ROI) and nonparametric density estima-
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tion are used to model different populations into the mentioned metric. Finally, Chapter 9

contains a discussion and concluding remarks of the work presented in this thesis, as well

as potential future work research directions.
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Chapter 2

Background: Registration

As mentioned before, image registration maps points in one image (target) to their corre-

sponding points in another image (source). Let us consider each image that is involved in a

registration as a coordinate system, which defines a space for that image. Image registration

is defined as the estimation of the geometrical transformations [69] which map points from

the space of an image IA to the space of a second image IB. The transformation T applied

to a point p ∈ IA, produces a transformed point p′, such that p′ = T (p). If a point q ∈ IB

corresponds to a point p ∈ IA, then a successful registration will find the geometric transfor-

mation, such that p′ = q (Figure 1.3 shows a basic example). In this context correspondence

can refer to anatomical or functional correspondence. In Figure 2.1 we can see that image

registration consists of different components: Transformation, optimization, interpolation

and a similarity (or dissimilarity) metric. A good overview of registration can be found in

Sotiras [195] and Hajnal et al. [95]. For an additional overview of available registrations

techniques see [238].

2.1 Transformation models

A transformation (or deformation, or spatial mapping) model T describes the relationship

between corresponding locations in a pair of images, the target and source. The choice of

transformation model is of great importance for the registration process as it entails an im-

portant compromise between computational efficiency and flexibility of the transformation
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Figure 2.1: The basic components of a registration procedure (fixed and moving image, a

transform, a metric an interpolation and an optimizer).

model, e.g. rigid, affine and nonrigid. The most common applications of medical image

registration involve aligning pairs of 3D images. The number of parameters that are needed

to describe a transformation model and hence need to be estimated through an optimization

strategy (discussed in Section 2.3) defines the associated degrees of freedom (DOF) of the

registration. The number of parameters hugely varies between transformation models, with

the simplest ones requiring 6 (rigid) or 12 (affine) to parametrize global transformations, up

to the number of voxels in the image in the case of non-parametric local deformations. The

higher the number of parameters, the more descriptive and flexible the model will be, but

also the higher the computational cost required to estimate the parameters. The choice of

transformation model often implies prior knowledge about the nature of the objects being

registered.

(a) (b) (c) (d)

Figure 2.2: Illustration of transformation types: (a) identity, (b) rigid, (c) affine and (d)

nonrigid.

Transformation models can be classified as global or local: Global transformation (rigid

and affine) preserve the straightness of lines while local deformations (nonrigid) do not.

Figure 2.2 depicts a basic example of rigid, affine and nonrigid transformations. Nonrigid

deformation models capture more detailed and local variability, but as stated before they
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have a higher computational cost associated. Global transformations are of particular use to

provide the initial estimates for a nonrigid registration or in applications where intrasubject

registrations are performed. In applications where intrasubject registrations are performed,

local transformations are generally favored due to their flexibility.

2.1.1 Rigid and affine transformations

Rigid transformations preserve distances, straightness of lines and angles in the space to

which they are applied. They therefore only allow for rotations and translations. A rigid

transformation T in 3D has six DOF: Three parameters describe the rotation along the three

axes and three parameters describe translation along the x, y and z axes. Using orthogonal

matrices, rigid transformations can be represented by a 3x3 rotation matrix R and a 3x1

translation vector t as T (p) = Rp+ t where p = (x,y,z) and T (p) = p′ = (x′,y′,z′). Alter-

natively, the rotational component of a rigid transformation can be parametrized using the

axis-and-angle or quaternion parametrization.

Rigid transformations cannot accommodate shear (skew) or scale deformations. For this,

a more general representation, namely affine transformations, is needed. Affine transforma-

tions preserve parallel lines as well as the straightness of the lines. An affine transformation

in 3D has 12 DOF that describe rotation, scaling, shearing and translation. Figure 2.3 shows

an illustration of the type of transformations that can be achieved with both rigid and affine

transformation models. As can be seen such models are able to capture only global varia-

tion between images and as such they do not fully account the variability present in complex

scenes. This shortcoming can be addressed using more flexible, nonlinear transformation

models. Some of the most common nonlinear transformation models are described in the

following sections.

2.1.2 Polynomial-based deformations

By adding even more DOF to linear models the transformation model can be extended to

include nonlinear deformations. An example is the quadratic transformation model, which

is defined by second order polynomials and can be expressed as:
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Figure 2.3: Illustration of possible rigid and affine transformations.
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(2.1)

Here n is the order of the polynomial and determines the number of DOF of the trans-

formation, e.g. if n = 10 then a 30 DOF quadratic transformation is defined. In a similar

way the transformation model can be extended to higher order polynomials. However this

is rarely done since higher order polynomials tend to introduce unrealistic oscillations in the

transformation model.
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2.1.3 Spline-based deformations

The oscillations created by higher order polynomials can be avoided by using piecewise

low-order polynomials. Spline-based deformations address this issue and typically require

the localization of control points or ”knots“ in both images. The selected points can be

corresponding anatomical landmarks [19], or image features [178, 177, 179], or external

markers. Another way of defining these points is to simply place evenly spaced points

(pseudo-landmarks) throughout the image [188, 53, 182], regardless of whether they are

located at anatomically relevant or geometrically salient regions. Most registration tech-

niques using splines assume that this set of control points can be found in both the target

and source images. The transformation aims at matching these control points while splines

are used to interpolate between them while creating a smoothly-varying displacement field.

The interpolating condition can be written as:

T (φi) = φ
′
i i= 1, ...,n . (2.2)

Here n is the number of control points, φi denotes the location of i-th control point in the

target image and φ
′
i represents its corresponding location the source image.

Thin-plate splines

Thin-plate splines are based on radial basis functions. Originally formulated for the surface

interpolation of scattered data by Duchon [59] and Meinguet [144], they can be defined as a

linear combination of n radial basis functions θ(s),

t(p) = a1+a2x+a3x+a4x+
n

∑
i=1

b jθ(|φ j− p|) . (2.3)

The transformation model T (p) can be expressed as three separate thin-plate spline

functions, one along each dimension, as T (p) = (t1, t2, t3)
T , where the coefficients a define

an affine component and b the nonrigid component of the deformation model. Thin-plate

splines offer the freedom of placing the control points anywhere in the image. However this

also implies that the corresponding control points must be first identified. Also, radial basis
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functions have an infinite support. This means that each control point has a global effect on

the transformation.

B-spline deformations

As mentioned above, a drawback of using radial basis functions is their global support.

This means that each control point influences the transformation everywhere in the image.

This complicates the modeling of local deformations while at the same increasing the com-

putational complexity required to solve such model. This makes it unfeasible to use the

thin-plate spline model with large numbers of control points.

An alternative is to use free-form deformations (FFD), originally proposed by Seder-

berg and Parry [188] in the computer graphics community. FFD deforms a mesh of reg-

ularly arranged control points using local blending functions to produce a smooth trans-

formation. B-spline basis functions have a limited support range as opposed to thin-plate

splines. However, control points must be arranged in a regular grid. The limited support

of B-spline basis functions means that transformations can be computed efficiently, even

for large numbers of control points. A B-spline FFD is defined on the image domain

Ω = {(x,y,z)|0 ≤ x < X , 0 ≤ y < Y, 0 ≤ z < Z}. Let Φ denote a nx x ny x nz denote a

mesh of control points φi, j,k with uniform spacing δ. The FFD can be written as a 3D tensor

product of 1D cubic B-splines:

T (p) =
3

∑
l=0

3

∑
m=0

3

∑
n=0

Bl(u)Bm(v)Bn(w)φi+lφ j+mφk+n (2.4)

Here i = ⌊x/nx⌋− 1, j =
⌊

y/ny
⌋

− 1, k = ⌊z/nz⌋− 1, u = x/nx−⌊x/nx⌋ , v = y/ny−
⌊

y/ny
⌋

, w= z/nz−⌊z/nz⌋ and Bl represents the l-th basis function of cubic B-splines [182]:

B0(u) = (1−u)3/6

B1(u) = (3u3−6u2+4)/6

B2(u) = (−3u3+3u2+3u+1)/6

B3(u) = u3/6 .

(2.5)
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2.1.4 Physical models of deformation

In this section we will describe physical deformation models, which constrain a deforma-

tion field using elastic, fluid or diffusion models. These models provide quantitative, and

physically interpretable estimates of 3D deformation fields.

Elastic deformations

Elastic deformations were originally proposed by Bajcsy et al. [12] as a model for matching

a brain atlas to CT images of a new subject. Here, the deformation of the source image to the

target image is modelled as the physical process of stretching an elastic membrane. As with

any elastic material, the process is governed by two forces: an external force that stretches

the membrane and an internal force that counteracts any change from its equilibrium state. In

this case, the image undergoing deformation is modeled using the Navier-Cauchy equation:

µ∇2u+(λ+µ))∇(∇ ·u)+b) = 0 (2.6)

Here ∇2 is the Laplacian operator, µ and λ are Lamé’s elasticity constants, b is the

external force applied to the elastic body that drives the registration and u is the displacement

field of a point p. Lamé’s elasticity constants can be combined to give Young’s modulus and

Poisson’s ratio of the modeled material.

A popular choice for the external force is the gradient of a similarity measure between

the two images. Several similarity measures have been proposed for this purpose, e.g. local

intensity correlation [12], intensity differences [35], or intensity features (such as edges

and curvature) [83]. Alternatively, similarity measures may be based on distances between

corresponding features based on anatomical structures, such as curves [51] and surfaces

[205]. Davatzikos [49] proposed an extension to the original elastic registration method that

adds spatially-varying elasticity parameters that allow organ-specific elasticity modelling.
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Fluid deformations

Elastic deformations are limited by the fact that the deformation energy is increasing pro-

portionally with respect to the applied force f and hence very localized deformations cannot

be properly modeled. Fluid registration techniques allow this constraint to be relaxed by

using time as an additional parameter for the deformation. This permits modeling large and

localized deformations. This added flexibility increases the risk of misregistration as fluid

registration models have a large amount of DOF. Fluid deformations are commonly for-

mulated in a Eulerian reference framework and are modelled by the Navier-Stokes partial

differential equation [36] as:

µ∇2v+(λ+µ))∇(∇ ·v)+ f= 0 (2.7)

Here µ∇2 is the Laplacian operator, µ and λ are viscosity constants, f is the force that

drives the registration and v is the velocity field of a point passing through x. The relation

between the displacement field u and velocity field v is given by:

v=
∂u

∂t
+v ·∇u . (2.8)

Christensen et al. [36] estimated the velocity fields iteratively by solving a system of

nonlinear partial differential equations through successive over relaxation (SOR). The im-

plementation of this approach is not very computationally efficient and requires a significant

amount of time. Bro-Nielsen and Gramkow [27] proposed a faster implementation technique

based on a convolution filter in scale-space. However this requires the assumption that the

viscosity is constant which is not necessarily the case. Spatially-varying viscosity models

have been proposed [131] but their solution require numerical schemes like SOR.

Diffeomorphic flow deformations

Diffeomorphic flows are smooth and invertible transformations that allow connected sets to

remain connected, disjoint sets to remain disjoint and preserve the smoothness of features

such as curves and surfaces. Large deformation diffeomorphic metric mapping (LDDMM)
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[16] is a technique that defines a distance between images or sets of points [117, 141] as a

geodesic flow. In a variational framework, LDDMM can be estimated as:

v̂= argmin
v

(∫ 1

0
‖Lvt‖2v dt+

1

σ2

∥

∥I1(T
−1)− I2

∥

∥

2

L2

)

(2.9)

Here ‖·‖v is a norm on the space v that constrains the velocity field v to be smooth

(regularization term), L is a differential operator and ‖·‖L2 is the L2 norm of square integrable

functions. Choosing an appropriate kernel associated with v allows for modeling of different

levels of spatial regularization. The fact that the velocity varies over time allows for the

estimation of large deformations. On the other hand, integrating the velocity field over time

leads to significant computational and memory costs.

Optical flow and Demons algorithm

Optical flow techniques [104, 15] have been originally developed in the computer vision

community as a tool to recover the relative motion of an object and the viewer in between

frames in image sequences. The fundamental assumption behind optical flow is that the

image brightness is constant over time and hence optical flow represents the distribution of

velocities of movement of brightness patterns in an image. For a volumetric image sequence

this assumption can be expressed as:

I(p, t) = I(x+δx,y+δy,z+δz, t+δt) . (2.10)

Using a Taylor expansion (and ignoring high order terms), Equation (2.10) can be rewrit-

ten as

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂z

dz

dt
+

∂I

∂t
= 0 . (2.11)

A more compact representation of Equation (2.11) is

∆I+∇I ·u= 0 , (2.12)
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where ∆I denotes the temporal difference between frames, ∇I is the spatial gradient of the

image and u describes movement between images. Equation (2.12) is ill-posed. Therefore,

additional smoothness constraints are added to the motion field u.

A closely related technique to optical flow is the Demons algorithm, originally formu-

lated by Thirion [204] (inspired by Maxwell’s Demons from thermodynamics). In his work,

Thiron proposes to register two images by first modelling objects boundaries in one image as

semi-permeable membranes and then allowing the other image (considered as a deformable

grid model) to diffuse through the membranes by the action of Demons placed inside the

membranes. The optical flow constraint is used to calculate a Demon force and Gaussian fil-

tering is used as regularization. This algorithm is an effective way to establish dense image

correspondences. However, it lacks strong theoretical foundations. Several attempts have

been made to give theoretical insight to the Demons algorithm [156, 65].

2.2 Similarity measures

The purpose of the similaritymeasure is to quantify the degree of alignment between images.

The similarity measures can be subdivided into three categories: point-based (features, sur-

faces or curves), voxel-based (raw intensity) and entropy-based (information theory). There

is a wide range of similarity measures to choose from and some of the most popular choices

are described in the following sections.

2.2.1 Point-based methods

Assuming that a set of corresponding points can be found in a pair of images, a similarity

metric can be defined to act on the alignment of these points. In order for points to be reli-

able enough for registration, they must be clearly identifiable image features or landmarks.

The subject of identifying these points can be interactive (where a user annotates match-

ing landmarks) or automatic (where an algorithm locates anatomical landmarks in a pair of

images or extracts feature point descriptors from both images and then matches them). Al-

ternatively, external markers (specifically designed to be easily localizable) can be attached
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to the subject before being imaged. For example, markers can be placed directly on bone

structures or on the skin. In either case the quality of the registration, will be strongly cor-

related to the reliability of the matched points (features, landmarks or markers). A more

detailed analysis of point-based methods can be found in [115]. Consider a set of n match-

ing points {pi|i ∈ 1, ...,n} from image IA and {qi|i ∈ 1, ...,n} from image IB: Any non-zero

displacement T (pi)− qi between a transformed point T (pi) and its corresponding point qi

can be viewed as a registration error. A common approach of measuring point misalignment

is the root mean squared (RMS) error. Here the aim is to minimize the distance between

matching points:

S=
1

n

n

∑
i=1

w2
i ‖pi−T (qi)‖2 , (2.13)

where w2
i is a weighting factor that relates to point’s pi localization confidence.

Point correspondences can also be used in nonrigid registration. In this case it might

be possible to perfectly align all points depending on their distribution and transformation

model chosen. For example, if a thin-plate spline model is used then all points can be

matched exactly while this is generally not the case if a B-spline model is used. The result-

ing transformation in other regions of the images (e.g. away from features, landmarks or

markers) will depend very strongly on the transformation model used. The exact alignment

of points through a nonrigid registration is generally not the most useful approach as the

point localizations usually contain a certain amount of error. Thus, the exact alignment of

inaccurately located points will result in an erroneous alignment of the images.

2.2.2 Voxel-based similarity metrics

Voxel-based similarity metrics measure differences between intensities or their distribution.

If both images have been acquired using the same modality and only differ by image noise

the sum of squared of differences (SSD) measure is a good choice [220]. The SSD between

images IA and IB can be expressed as
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SSD=
1

n

n

∑
p

|IA(p)− IB(p))|2 , (2.14)

where n is the total number of voxels and p are the voxels in IA and IB.

The SSD metric can be very sensitive to outlier values that might arise from subtracting

IA and IB. To reduce the impact of outliers the sum of absolute differences (SAD) can be

used as a similarity measure:

SAD=
1

n

n

∑
p

|IA(p)− IB(p)| . (2.15)

SSD and SAD make the assumption that images IA and IB vary only by Gaussian noise.

The correlation coefficient (CC) can be used as a similarity metric under the assumption that

the intensities in images IA and IB are linearly related. CC can be defined as:

CC =
∑p (IA(p)− ĪA)(IB(p)− ĪB)

{

∑p (IA(p)− ĪA)
2

∑p (IB(p)− ĪB)
2
}1/2

(2.16)

Here ĪA and ĪB are the mean voxel values of images IA and IB respectively.

2.2.3 Entropy-based metrics

As stated before voxel-based similarity measures like SSD, SAD or CC operate on voxel

intensity values and as consequence they are only suitable for mono-modal image regis-

tration. Entropy-based metrics measure the amount of shared information between images

rather than directly comparing intensity values. This permits images to be registered even

when they originate from different imaging modalities (multi-modal registration). A survey

on entropy-based medical image registration techniques can be found in Pluim et al. [164].

Joint entropy measures the amount of information in the combined images [189], which

can be seen as a measurement of image alignment by constructing the joint histogram of two

images. The concept of joint entropy can be visualized using a joint histogram. If the joint

histogram is normalized, then an estimate of the joint probability distribution function (PDF)

of the intensities in the images can be obtained. The joint entropy of two images is defined
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as:

H(IA, IB) =−∑
a

∑
b

PDF(a,b) logPDF(a,b) . (2.17)

Mutual information (MI) [39, 219] normalizes the joint entropy with respect to the

marginal entropies of the contributing signals. In terms of image registration, this takes

into account the change of the marginal entropies of both images as a result of the transfor-

mation. Mutual information is defined as:

MI(IA, IB) = H(IA)+H(IB)−H(IA, IB)

= ∑
a

∑
b

PDF(a,b) log
PDF(a,b)

PDF(a)PDF(b)
.

(2.18)

Normalized mutual information (NMI) is defined by the ratio between the sum of images

IA and IB marginal entropies, and their joint entropy. Originally proposed by Studholme et

al. [198] it has been shown to be more robust to variations in image overlap:

NMI(IA, IB) =
H(IA)+H(IB)

H(IA, IB)
. (2.19)

2.3 Optimization

As mentioned previously, the deformation model used in a registration application can vary

significantly in its complexity, mainly due to the number of parameters or DOF of the trans-

formation model. The aim of the optimization is to find the transformation parameters that

maximize the similarity (or minimize the distance) of the two images. In general, the more

complex the transform, the harder it is for the optimization to find the ideal set of parame-

ters. The most general form of the objective function that is optimized in image registration

is

C =Csimilarity−Cdeformation . (2.20)
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Here the first term (also known as data term) characterizes the similarity between the

source and target image and the second term (regularization, penalty or smoothness term)

associates a cost to a particular deformation. When simple transformations are considered,

e.g. rigid or affine transformation, the regularization term is often omitted.

The optimization procedure in image registration generally requires iterative methods

that gradually minimize a cost function. In the case of point-based rigid registration, the

process of finding the optimal solution has a closed formed solution and it is generally

known as the ”Orthogonal Procustes“ problem [106]. Another way to estimate the parame-

ters of a rigid or affine transformation model in a point-based registration procedure is using

RANSAC [67]. This permits an estimation that is robust against outliers (point localization

errors). In broad terms, optimization techniques can be subdivided in to two categories:

Continuous and discrete. Figure 2.4 shows a summary of some of the available optimization

methods.

Optimization
methods

Gradient descent

Conjugate gradient

Quasi-Newton

Levenberg-Marquardt

Graph-based

Message passing

Linear programing

Continuous
methods

Discrete
methods

Figure 2.4: Diagram of optimization methods.

2.3.1 Continuous optimization methods

Continuous optimization methods are generally used when the registration/transformation

parameters are assumed to be continuous and the associated cost function is differentiable.

Assuming that θ is the vector of the transformation parameters, t denotes an iteration index,

αt is a step size and gt defines a search direction, then continuous optimization iteratively
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looks for the ”best“ solution using an update rule of the form: θt+1 = θt +αtgt(θt). The αt

and gt parameters can be defined in several ways. The choice in setting these parameters dif-

ferentiates between continuous optimization methods. For example, the search direction g

can be specified using first-order information. The step size αt can be constant, change with

each iteration or be such that minimizes the objective function. Variations of the behavior

of these parameters is what distinguishes between optimization methods. Some continu-

ous optimization approaches commonly used in medical image registration are: Gradient

descent, conjugate gradient descent, quasi-Newton and Levenberg-Marquardt methods, to

name a few. For a comprehensive overview we refer the reader to [167].

Gradient descent methods traverse the search space in the direction of the negative gra-

dient of the function g=−∇θ(θ). Gradient descent optimization is often used in registration

algorithms like LDDMM [16], FFD [182] or [30, 137], to name a few. A drawback is that

the gradient direction is local, and while it locally decreases the value of the function, it may

not be moving in the best direction. For parameter spaces with two or more dimensions, this

can lead to a slow convergence to the optimum.

Conjugate gradient descent algorithms guarantee convergence in a finite number of steps

for quadratic functions. Instead of moving in the direction of the gradient, it does in the

direction of the conjugate gradient. This linearly combines directions of previous steps

with the current as g = f (∇θ(θt),gt−1). Some examples of registration methods that use

conjugate gradient optimization are [145, 86, 166]. In general conjugate gradient methods

converge faster, although computing the conjugate direction is slightly more complicated.

Similar to conjugate gradient descent, quasi-Newton methods accumulate information

from the previous iterations in order to achieve better convergence. Their goal is to estimate

the inverse Hessian matrix H−1(θ) to define the search direction. Thus, the search direction

is defined as g=−Ĥ−1(θ)∇θ(θ) where the ˆ denotes the type of approximation that is used.

Quasi-Newton optimization methods have been tested in several registration applications

[45, 135, 214].

Another optimization method is the Levenberg-Marquardt algorithm. In this method

the search direction is given by g = −
(

Ĥ−1(θ)+ζI
)

∇θ(θ) where I is the identity matrix
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and ζ is a computational cost vs. stability weight factor. Smaller ζ values achieve greater

speeds while higher values increase stability. If ζ equals to zero, then g is the same as in the

quasi-Newton algorithm. Some applications of the Levenberg-Marquardt optimization can

be found in [234, 128, 11].

2.3.2 Discrete optimization methods

One of the shortcoming of continuous optimization methods is that they usually perform a

local search in the parameter space for the optimal solution. This makes such methods sen-

sitive to the initial estimate of the transformation parameters and they can easily get trapped

in local minima [195]. The fact that the methods require the computation of the gradient

of the cost functions limit their use to cost functions which are differentiable. Furthermore,

the assumption that the design parameters are continuous does not always hold. Discrete

methods are less sensitive to the initial conditions and often converge faster compared with

continuous methods [88]. In many practical problems in engineering the design parameters

can be modelled as discrete variables [170], and image registration is no exception. The

main limitation of discrete methods is their lack of precision due to the fact that they quan-

tize the search space. Therefore, a trade-off between computational speed and precision

exists in discrete methods. If precision is desired a denser sampling of the parameter space

is required, however, higher computational costs will be incurred. An additional trait of

discrete methods is the possibility to introduce knowledge about the expected location of

the solution through the quantification of the parameter space [195]. Discrete optimization

techniques can be separated into three classes: Graph-based, message passing and linear

programing methods.

Graph-based methods are based on the max-flow min-cut principle [73] that states that

the maximum amount of flow that can pass from the source to the sink is equal to the

minimum cut that separates the two terminal nodes. The α-expansion optimization tech-

nique [22] is a multi-label extension of the maximum a posteriori estimation [90] algorithm.

Some applications of medical image registration based α-expansion optimization include

[202, 194].
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Message passing methods are based on belief propagation [155] where messages are

locally exchanged between the nodes of a graph and then backtracking is used to recover the

best solution to the problem. Each message conveys the belief of a node to its neighboring

node regarding each solution. Belief propagationmethods can provide an exact inference for

graphs with a chain or tree-shaped topology, however this not the case for graphs that contain

loops. In this case loopy belief propagation [77, 151] must be used. Image registration

techniques that use message passing optimization can be found in [191, 133].

Another class of discrete optimization methods are based on linear programing, which

provides better theoretical properties. Linear programing methods avoid solving the origi-

nal, generally N-P hard problem, in favor of an LP relaxation solution of the problem. Some

examples of linear programing based optimization methods in image registration can be

found in [125, 126, 87].

2.4 Interpolation

The intensity correspondences between target voxel locations {p1, ..., pn} and source loca-

tions {T (p1), ...,T(pn)}, that were obtained through the estimated transformation T (p), are

unlikely to coincide with voxel centers. Consequently, the transformed source image inten-

sities need to be interpolated from the sampled source image values prior to evaluation of

the similarity metric.

An ideal interpolation method involves multiplication with a rectangular function in the

Fourier domain. This can be realized in the spatial domain by a convolution with the sinc

function [129]. From sampling theory we know that sinc interpolation allows loss-less re-

construction. However, the sinc function cannot be applied to real images as it has an infi-

nite support range. Generally, a kernel function that limits the support of the sinc function

is used. Different interpolation methods make use of different kernel functions: One of the

main trade-offs of different methods is between computational cost and accuracy. One of

the simplest methods is based on nearest neighbor interpolation, in which the intensity value

that is closest to the transformed location is assigned. Albeit this is a very computationally
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efficient procedure, it can lead to data loss or block artifacts. Tri-linear interpolation in-

volves performing a linear interpolation along each dimension. Although this approach can

produce more accurate results than nearest-neighbor interpolation, the image is blurred and

it is generally slower. Higher-order interpolation methods are used to improve re-sampling

quality. A popular type of higher order interpolation is B-splines, which are derived by

several self-convolutions of a basis function [211]. Another popular approach is cubic in-

terpolation [120]. This method uses cubic polynomials to construct an interpolation kernel.

Figure 2.5 shows some examples of the results produced by some interpolation methods.

See Lehmann et al. [129] for a comprehensive overview on interpolation methods for med-

ical image registration.

(a) (b) (c)

Figure 2.5: Results of using different interpolation methods on a ROI of a brain MR image:

(a) nearest neighbor, (b) linear and (c) B-spline interpolation.

2.5 Applications of image registration

Applications of image registration in medical imaging can be broadly categorized as intra-

subject (registering images of the same subject) or inter-subject (registering images from

different subjects) registration.
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2.5.1 Intra-subject registration

Longitudinal studies

Subjects can be imaged several times over a time in order to assess disease progression,

response to therapy or follow-up. Registering images from the same subject at several dif-

ferent time points allows a quantitative comparison, e.g of tumor growth or shrinkage. For

any of these examples, identifying patterns of longitudinal change can provide clinically

useful information. Another example is to decide if a particular clinical intervention is ap-

propriate, or to assess whether a patient with a neurodegenerative condition is responding to

a particular drug or treatment [5].

Multi-modal image fusion

Multi-modal image fusion can be defined as the process of combining (via registration)

information from multiple modalities of the same subject into a single fused image. Image

fusion plays an important role in many clinical applications, such as the combination of MR

and CT images, to give clear visualization of the relative position of bone and soft tissue

for use in surgical planning of the skull base [82]. Another example is the combination

of structural information provided by CT or MR images with the functional information

provided by PET images [199]. Radiotherapy planning [119] is yet another example, where

radiation doses need to be calculated to maximize tumor exposure, while minimizing over

all patient radiation exposure [168].

2.5.2 Inter-subject registration

Cohort studies

The great variability of anatomical structures across subjects makes comparisons across pop-

ulations a very difficult task. Registration-based comparison methods are based on spatial

normalization to a common atlas. The development of atlases representing average models

of the anatomy are therefore a critical part of cohort studies. Subjects from a population can

be registered to as reference subject to create an atlas that captures the particular structural
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characteristics of the population. It is often the case that in the atlas’ space a group of test

subjects is compared to a control group of healthy subjects in order to gain insight about the

test group. Furthermore, the creation of atlases of different populations of subjects allows

the comparison of typical anatomies for each group. For example, in [229] hippocampal

volumes are extracted from healthy subjects and AD patients in order to differentiate them.

Davatzikos et al. [52] performed morphological analysis of the corpus callosum to deter-

mine structural differences between males and females in an elderly population. Nicolson et

al. [152] and Csernansky et al. [47] performed a hippocampal morphometry study in autism

and schizophrenia patients, respectively.

Segmentation

Another use of inter-subject registration is image segmentation which refers to the identifica-

tion of anatomical or functional structures in images. Some of the most common approaches

for image segmentation involve the use of either the expectation maximization (EM) algo-

rithm [236, 224, 174] or atlas propagation [13, 100, 229]. In EM segmentation, an image

can be registered to an atlas containing prior information about the segmentation. Tissue

classes are modeled based on their intensities or other properties and the EM algorithm is

used to search for the best possible set of parameters of such model. On the other hand, label

propagation segmentation uses one or several presegmented image atlases, each of which is

nonrigidly registered to the unseen image. Labels are then inferred from the atlases using a

label fusion strategy (e.g. majority voting).

2.6 Evaluation of image registration

As stated before, image registration is based on the identification of corresponding point

landmarks or fiducial markers in the two images. Consequently, corresponding landmarks

can be used to evaluate an image registration. The fiducial registration error (FRE), can be

a useful metric to evaluate registration errors in landmark correspondence. Given a set of

N anatomical landmarks p1, ..., pN in the target image IA and their corresponding locations
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q1, ...,qN in the source image IB, the FRE is calculated as:

FRE2 ≡ 1

N

N

∑
i=1

|T (pi)−qi|2 . (2.21)

However, the FRE does not directly measure registration accuracy, as changing the po-

sitions of the registration landmarks in order to reduce FRE can increase the error in cor-

respondence between other points or structures in the images that did not contribute to the

registration. A better measure of registration error is the accuracy with which points that did

not contributed to the registration in the two images can be aligned. This error is normally

position-dependent in the image and in rigid registration is called the target registration

error (TRE). In practical terms, TRE, and how it varies over the field of view, is the most

important parameter determining image registration quality. Fitzpatrick [68] describes TRE

prediction based on a distribution of identified corresponding points and the estimate of er-

ror in identifying correspondence at each point, the fiducial localization error (FLE). The

squared expectation value of TRE at position p is then expressed as:

〈

TRE(p)2
〉∼=

〈

FLE2
〉

(

1

N
+

1

D

D

∑
i

D

∑
j 6=i

p(i)2

Λ2
i +Λ2

j

)

. (2.22)

Here the number of dimensions D = 3, Λ are the singular values of the landmark lo-

cations, and are related to the distribution of landmarks with respect to the principal axes

of the point distribution. Assuming all markers are identified with the same accuracy, the

registration error as measured by TRE can be reduced by increasing the number of fiducial

markers. If the error in landmark identification or FLE is randomly distributed about the true

landmark position, the TRE reduces as the square root of the number of points identified,

for a given spatial distribution of points [95].

2.7 Summary

This chapter has presented a review of the methods used as different components of image

registration: Transformation, similarity metric, optimization and interpolation. In addition,

31



applications of medical image registration in longitudinal studies, multi-modal image fu-

sion, cohort studies and segmentation have been discussed. In the following chapter we

will discuss the state-of-the-art machine learning techniques for dimensionality reduction,

classification and regression.
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Chapter 3

Background: Machine learning

Machine learning, techniques and methods are vast and span several fields such as stock

market analysis, email filtering, security, and medical image analysis. An in-depth presen-

tation of all methods in this field is neither possible nor of interest here. In this chapter an

overview of the main methods in machine learning along with their basic concepts will be

presented. We will focus on dimensionality reduction, classification and regression methods

as these methods are used throughout this thesis.

3.1 Dimensionality reduction

In this section we briefly describe widely used techniques for dimensionality reduction. We

follow the description of manifold learning techniques given by Aljabar et al. [8] and van

der Maaten et al. [213].

Manifold learning in general refers to a set of machine learning techniques that aim at

finding a low-dimensional representation of high dimensional data while trying to faithfully

describe the intrinsic geometry of the data. A simplified schematic overview of manifold

learning techniques is given in Figure 3.1. For example, an image can be considered a single

point in a very high dimensional space. However, if we consider all images of an anatomical

structure like the brain, these images only occupy a small part of this high-dimensional

space. Recently, several new manifold learning algorithms have been proposed and applied

to solve different problems in the field of medical image analysis such as morphological
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Figure 3.1: An example of manifold learning with brain MR images: The images X =
{x1, ...,xn} are compared in pairs and measures of similarity between them are obtained.

The measures define a nxn similarity matrix that encodes the edge weights in the graph

model representation of the data. The graph/matrix representation may be either full (dense,

W) or sparse (W′). Typically, the eigenvalue-eigenvector structure of the matrix W (or W′)
is used to derive a coordinate representation for an embedded manifold representation yi of

the original data. Only two dimensions of yi are shown above.

analysis [7], segmentation [229], landmark localization [92] and classification [230].

In the following we give a more formal description of manifold learning: Consider a set

of N images X = {x1, ...,xN} ∈ R
D with i ∈ {1,2, ...,N}, where each image xi is arranged

as a vector of its voxel intensities and D is the number of voxels per image. Assuming that

images x1, ...,xN lie on or near an d-dimensional manifoldM embedded inRD, it is possible

to learn a low-dimensional representation of the input images in M , such that f : X→ Y,

yi = f (xi) with Y= {y1, ...,yN} ∈ R
d , where d << D.

Several manifold learning techniques use a graph to represent the relation between pairs

of data points. In the following we assume that the data points are images. The graph in turn,

may be viewed as a representation where each node is an image and the weight of each edge

denotes the similarity or distance between the image pair it joins. Manifold learning tech-

niques can be separated into two broad categories: Methods that use a fully connected graph

to model the relations among data points and methods that use a sparse representation of

the graph with a smaller number of edges, around local neighborhoods. In general, different

manifold learning techniques seek to optimize different criteria as functions of the matrix
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representation (see Figure 3.1). Many of the manifold learning techniques can be described

as spectral since the optimization is often carried out using the eigenvalue-eigenvector struc-

ture of the associated matrix.

3.1.1 Dense spectral techniques

This section describes dense (or full spectral) techniques for manifold learning. These meth-

ods use a full matrix that measures all pairwise relations between data points to learn their

low-dimensional representation.

Principal component analysis (PCA)

PCA [116] aims to build a low-dimensional representation of the data to describe as much

of the variance in the data as possible using only a few principal components. This is done

by finding a linear basis of reduced dimensionality for the data, in which the amount of

variance in the data is maximal. The problem is described as finding the linear mapping

functionM that optimizes the objective function

max
M

trace
(

MT cov(X)M
)

(3.1)

where cov(X) is the sample covariance matrix of X. The linear mapping is defined by the d

principal eigenvalues λ of the eigenproblem

cov(X)M= λM . (3.2)

Using the mapping functionM, the low-dimensional space is defined as Y= XM.

Kernel PCA

Kernel PCA [185] is a dimensionality reduction technique that uses the “kernel trick“ [4] to

formulate a nonlinear extension of classic PCA. In Kernel PCA the principal eigenvectors

are computed using the kernel matrix, rather than the covariance matrix as in PCA. The

kernel matrix K is defined from the data points in D-dimensional space with
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ki j = κ
(

xi,x j

)

, (3.3)

where κ is a kernel that can be any function that results in a positive-semidefinite kernel

matrix K. A centering operation is performed on the new features so that they have zero-

mean. The d principal eigenvectors vi and eigenvalues λi of K, can be computed using the

relation between the eigenvectors ai of the associated covariance matrix and the eigenvectors

vi of the kernel matrix through

ai =
1√
λi

vi. (3.4)

The low-dimensional embedding of image xi is then defined through a projection onto

the eigenvectors ai of the covariance matrix as

yi =

{

N

∑
j=1

a
( j)
1 κ

(

x j,xi
)

, ...,
N

∑
j=1

a
( j)
d κ

(

x j,xi
)

}

, (3.5)

where a
( j)
i is the j-th entry of vector ai.

Multidimensional scaling (MDS)

MDS [44] is a linear technique closely related to PCA. It is based on a distance matrix W

with wi j representing the distance between two data points xi and x j. MDS seeks to find

the low-dimensional representation that best preserves the pairwise distances in the high-

dimensional space. This is carried out by minimizing the objective function

φ(Y) = ∑
i j

(

w2
i j−

∥

∥yi−y j

∥

∥

2
)

, (3.6)

where
∥

∥yi−y j

∥

∥

2
is the Euclidean distance between two data points in d-dimensional space,

d ≪ D. The optimal embedding for Equation (3.6) can be obtained through the eigende-

composition of the Gram matrix K = XXT of the data in the D-dimensional space. There

is a duality between PCA and MDS when similarities wi j are measured by the Euclidean

distance [44].

36



Isomap

Isomap [203] is a nonlinear embedding technique that builds upon the MDS approach. Note

that MDS does not take into account the distribution of the neighboring data points. For

instance, if the high-dimensional data lies on or near a curved manifold, MDS might treat

data points as being close, even if their distance in the manifold is large. In Isomap pairwise

distances (or weights) wi j are not calculated directly between data points xi and x j but

using a neighborhood graph G that connects all N data points. This graph is build by either

connecting all data points xi to its k closest neighbors or to all subjects within some radius ε.

After constructing G, the weights wi j are estimated as the shortest path distances wG
i j within

the graph. The final embedding coordinates yi are obtained by applying classical MDS to

the distance matrixWG =
{

wG
i j

}

.

3.1.2 Sparse spectral techniques

In this section, some of the available sparse techniques for manifold learning are described.

These techniques focus on retaining the local similarities measured in the input space via

the solution of a sparse (generalized) eigenproblem.

Locally linear embedding (LLE)

A low-dimensional manifold constructed with LLE [180] aims to preserve the local neigh-

borhoods of the high-dimensional data in the low-dimensional learned space. LLE is simi-

lar to Isomap considering that both approaches construct a graph representation of the data

points. However, Isomap solely attempts to preserve the local properties of the data, as-

suming locally linear relationship between neighboring data points. It represents every data

point xi as a weighted combination of its k nearest neighbors in the high-dimensional space.

This defines a set of weights wi j for the k neighbors of xi and the aim is to find a low-

dimensional representation yi that respects this weighting. The LLE objective function is

defined as:
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φ(Y) = ∑
i

∥

∥

∥

∥

∥

yi−
k

∑
j=1

wi jyi j

∥

∥

∥

∥

∥

2

subject to
∥

∥

∥
y(k)
∥

∥

∥

2
= 1 for ∀k , (3.7)

where y(k) represents the kth column of the solution matrix Y. The constraint on the co-

variance of the columns of Y is required to exclude the trivial solution Y = 0. Using a

sparse weight matrix W, it can be shown that the embedding can be obtained from the d

eigenvectors corresponding to the smallest nonzero eigenvalues of (I−W)T (I−W) [180].

Hessian LLE

Using the same concept of local linearity, Hessian LLE [57] minimizes the curvature of the

high-dimensional manifold when learning the low-dimensional representation. The method

constrains the distances in both spaces to be locally isometric. Applying PCA to every data

point xi and its k nearest neighbors gives an approximation of the local tangent space at

every data point. The mapping function M obtained from the d principal components at

every point xi is then used to obtain an estimator for the Hessian Hi of the manifold at that

data point [57]. From the Hessian estimators in tangent space, a matrix H is constructed

with entries:

Hlm = ∑
i

∑
j

(

(Hi) jl× (Hi) jm

)

. (3.8)

The eigenvectors that correspond to the d smallest eigenvectors of H are used to define

the low-dimensional embedding Y that minimizes the curvature of the manifold.

Laplacian eigenmaps

Laplacian eigenmaps can be used to find a low-dimensional representation of the data while

preserving the local geometric properties of the manifold [17]. Laplacian Eigenmaps uses

a local neighborhood graph to approximate geodesic distances between data points. This

graph is defined by either connecting every data item xi to its k closest neighbors or to all

subjects within some fixed radius ε. From these distances a sparse neighborhood graph G

is constructed. Furthermore, a weight matrix W that assigns a value to each edge conect-
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ing points xi and x j in G (zero elsewhere) according to the distance between the points is

computed using a Gaussian heat kernel:

wi, j =K(xi,x j) = exp

(

−
∥

∥xi−x j

∥

∥

2

2σ2

)

. (3.9)

Here σ is the standard deviation of the Gaussian kernel. Laplacian eigenmaps aims to

place points xi and x j close together in the low-dimensional space if their weight wi, j is

high, e.g. if they are close in the original, high-dimensional space. This is done by means

of minimizing the cost function given by

φ(Y) = argmin∑
i, j

‖yi−y j‖2wi, j , (3.10)

under the constraint that yTDy= 1 which removes an arbitrary scaling factor in the embed-

ding and prevents the trivial solution where all yi are zero. The minimization of Equation

(3.10) can be formulated as an eigenproblem [10] through the computation of the degree

matrix M and the Laplacian L. The degree matrix M is a diagonal matrix that contains

information about the degree of each vertex of W, where mi,i = ∑ jwi, j and the Laplacian

L =M−W. Hence the low-dimensional manifold Y that represents all the data points can

be obtained via solving a generalized eigenproblem

Lν = λMν , (3.11)

where ν and λ are the eigenvectors and eigenvalues, and in turn the d eigenvectors ν corre-

sponding to the smallest (non-zero) eigenvalues λ represent the new coordinate system.

3.1.3 Summary

Some of the advantages of the dense spectral techniques is that they can achieve a more faith-

ful representation of the data’s global structure and that their metric-preserving properties

are better understood theoretically [54]. Sparse spectral techniques have two main advan-

tages: Computational efficiency as they involve only sparse matrix computations which may
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yield a polynomial speedup and representational capacity as they may give useful results on

a broader range of manifolds, whose local geometry is close to Euclidean, but whose global

geometry may not be [54]. An additional consideration that must be taken into consider-

ation when choosing a dimensionality reduction technique is that some application require

the mapping of new points into the learned manifold: Linear dimensionality reduction, such

as PCA, provides a projection matrix for exact transformation between the original and the

embedded space. This is not the case for most non-linear methods and approximation tech-

niques must be used. Bengio et al. [18] proposed an out of sample embedding technique,

that employs the Nyström approximation [163], for dimensionality reduction techniques that

rely on an eigendecomposition.

3.2 Classifiers

Classifiers are a group of machine learning techniques that aim to predict group membership

of data instances. Constructing a general model based on training data, for which the group

membership is known, to infer membership (class) of unseen data instances (or samples)

is known as supervised learning. Alternatively, if no training samples are available cluster-

ing techniques (unsupervised learning) can be used to determine sample class membership.

Here we will focus on supervised learning techniques as the bulk of work presented in this

thesis relies on them.

Consider a set of feature vectors for training, X = {{x1, l1}, ...,{xN, lN}} where each

sample xi has a known class li. The classification problem is then to find a good prediction

function, given a set of observed features X for the class label li of any sample belonging to

same distribution as X, e.g. our training dataset is of the form:

{xi, li} where i= 1, ...,N, li ∈ {k0, ...,km} , x ∈ R
D . (3.12)
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Figure 3.2: Decision and projection planes from linear discriminant analysis. Feature vec-

tors belonging to class k0 are shown in red, and those belonging to class k1 are shown in

blue. The decision plane is defined by its orthogonality to the projection plane.

3.2.1 Linear and quadratic discriminant analysis

In discriminant analysis the aim is to find an optimal low-dimensional space such that when

data points are projected, data from different classes are well-separated (see Figure 3.2).

This method maximizes the ratio of between-class variance to within-class variance for any

particular data set thereby guaranteeing maximal separability.

Let us assume a normal distribution of the class-likelihood density functions fk(x), with

mean and covariance parameters (µµµk,Σk) for class k. Under this assumption, the Bayes

optimal solution is to predict the class-likelihood, which can be done by maximizing the

posterior probability:

l̂(x) = argmax
k

p(k|x)

= argmax
k

fk(x)πk .

(3.13)

Here πk is the class prior probability and is defined as the ratio between the number

of samples in class k and the total number of samples. Defining fk(x)πk as the linear dis-

criminant function δk(x), then the two class decision boundary between classes k0 and k1 is
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defined as

{x : δk0(x) = δk1(x)} . (3.14)

If no assumption is made about the covariances Σk0 and Σk1 , of distributions fk0(x) and

fk1(x), then the resulting classifier is known as quadratic discriminant analysis (QDA) [99].

Simplifying the relationship in Equation (3.14) by making the assumption that Σk0 = Σk1 =Σ

yields a linear discriminant analysis (LDA) classifier [99]. Then, without loss of generality,

it can be shown that the relationship in Equation (3.14) can be expressed as

log
πk0

πk1

− 1

2

(

µµµk0 +µµµk1

)T (
µµµk0−µµµk1

)

+xTΣ−1
(

µµµk0−µµµk1

)

= 0 . (3.15)

3.2.2 Support vector machines

Support vector machines (SVM) where originally proposed by Vapnik and Lerner [215] as

a two-class linear classifier. A SVM aims to construct a hyperplane that maximizes the

margin between the hyperplane and the closest points (support vectors) on either side of

the boundary. Reformulations of the original SVM to deal with data that are not linearly

separable have also been proposed: Cortes et al. [42] give a soft-margin SVM formulation

that allows for mislabeled data. Also, making use of the “kernel trick” [4], Boser et al. [21]

developed nonlinear SVM classifiers. The following sections will describe in more detail

these three formulations of SVM.

Linear SVM

Consider a set of N training samples xi where each sample is of dimensionality D and has

an associated binary label li. That is, the training samples can be expressed as:

{xi, li} where i= 1...N, li ∈ {−1,1} , x ∈ R
D . (3.16)

Let us assume that the data is linearly separable, that is, there is a separating surface of

the form y(x) = x ·w−b= 0 that perfectly separates both classes, where w is normal to the
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Figure 3.3: 2-D illustration of maximum-margin hyperplane and margins for a linear SVM.

separating surface and b
‖w‖ is the perpendicular distance from the separating surface to the

origin. The support vectors are the samples that are closest to this surface and, as can be

seen in Figure 3.3, they lie on the planes y(x) = 1 and y(x) = −1. The values of w and the

threshold b are then chosen as to maximize the distance between the support vectors and the

separation surface, which can be expressed as

xi ·w+b≥+1 for yi =+1

xi ·w+b≤−1 for yi =−1
(3.17)

or equivalently as:

yi(xi ·w+b)−1≥ 0 ∀i . (3.18)

Therefore, the margin maximization can be expressed as a constrained optimization

problem of the form:

min
w
‖w‖ s.t. yi(xi ·w+b)−1≥ 0 ∀i . (3.19)

Alternatively, one could minimize 1
2 ‖w‖

2 instead of w in order to allow the use of
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quadratic programing optimization. Hence, Equation (3.19) can be rewritten in the form:

min
w

1

2
‖w‖2 s.t. yi(xi ·w+b)−1≥ 0 ∀i . (3.20)

Adding Lagrange multipliers α to the constraints to force that no feature vectors lie

within the margin, Equation (3.20) may be rewritten as

min
w,b

max
α

{

1

2
‖w‖2−

N

∑
i=1

αi [yi(xi ·w−b)−1]

}

s.t. αi ≥ 0 ∀i . (3.21)

Differentiating Equation (3.21) with respect to w and setting it to zero, allows us to find

the value of w that maximizes the equation:

w=
N

∑
i=1

αiyixi . (3.22)

The solution for b can be found by averaging over the support vectors Nsv,

b=
1

Nsv

Nsv

∑
i=1

(xi ·w− yi) . (3.23)

Substituting equations (3.22) and (3.23) in Equation (3.21), the dual form of the La-

grangian can be expressed as

max
α

L̃(α) =max
α

{

N

∑
i=1

αi−
1

2∑
i, j

αiα jyiy jx
T
i x j

}

s.t. αi ≥ 0 ∀i and
N

∑
i=1

αiyi = 0 ,

(3.24)

which expresses an optimization criterion based only on terms of inner products of the

feature vectors.

Soft margin SVM

Soft margin SVM is a reformulation of linear SVM that allows the handling of non-linearly

separable data. This is done by relaxing the constraints imposed on linear SVM by adding
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Figure 3.4: 2-D illustration of maximum-margin hyperplane and margins for a soft margin

SVM. The slack parameter ξ measures the degree of misclassification.

slack variables ξi, i= 1, ...,N that measures the misclassification of points. Figure 3.4 shows

a visual example of this. Data points incorrectly classified will incur a penalty proportional

to their distance to the decision surface. Hence, the optimization problem now becomes one

where there is a trade-off between maximum margin and minimum misclassification. The

trade-off parameter C acts in such way that the optimization equation takes the form:

min
w,ξ,b

{

1

2
‖w‖2+C

N

∑
i=1

ξi

}

s.t. yi(xi ·w−b)≥ 1−xi and ξi ≥ 0 ∀i . (3.25)

In a similar way as in the linear SVM case, Lagrange multipliers can be used to rewrite

Equation (3.25) as an unconstrained optimization problem in the form:

min
w,ξ,b

max
α,ξ,β

{

1

2
‖w‖2+C

N

∑
i=1

ξi−
N

∑
i=1

αi [yi(xi ·w−b)−1+ξi]−
N

∑
i=1

βiξi

}

s.t. αiβi ≥ 0 .

(3.26)

Differentiating Equation (3.26) with respect to w, b and ξ, setting the derivatives to zero

and then replacing in Equation (3.25), yields the dual form:
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max
α

L̃(α) =max
α

{

N

∑
i=1

αi−
1

2∑
i, j

αiα jyiy jx
T
i x j

}

s.t. 0≤ αi ≤C ∀i and
N

∑
i=1

αiyi = 0 ,

(3.27)

where the only difference between equations (3.27) and (3.24) is the upper limitC imposed

on α.

Nonlinear SVM

In their initial development, SVMs were proposed as a linear classifier. In the previous

section we saw how to extend SVM to the case where the data is not fully linearly separable

using slack variables. Another approach to classify nonlinearly separable data using SVM is

to apply the kernel trick. Using a nonlinear function φ(x) data points are mapped to a higher

(and in most cases much higher) dimensional space were the data is linearly separable, as

illustrated in Figure 3.5. In the same way as linear SVM, the nonlinear case can be solved

using the kernel trick to transform the input feature vectors in the high dimensional space

by optimizing the dual form Lagrangian:

max
α

L̃(α) =max
α

{

N

∑
i=1

αi−
1

2∑
i, j

αiα jyiy jφ(xi)
Tφ(x j)

}

. (3.28)

Here the optimization criterion is expressed in terms of inner products of the transformed

feature vector. If a nonlinear mapping function φ(x) that allows the inner products to be

expressed in terms of a kernel function k(xi,x j) = xTi x j is used, then it is not necessary to

perform an explicit mapping of the feature vectors into the high dimensional space. Some

popular choices of kernels include Gaussian, polynomial and hyperbolic tangent kernels.

3.2.3 Artificial neural networks

An efficient way of solving complex problems is by subdividing them into smaller, simpler

and more manageable problems. Artificial neural networks can be seen as such a system.
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(x) 

Figure 3.5: Illustration of how a nonlinear decision boundary can become linear in a higher

dimensional space.

There are various types of networks with different attributes, but they all share the same

basic components: a set of nodes and connections between them. In an artificial neural

network nodes are seen as “artificial neurons”. McCulloch and Pitts [143] were the first

to propose a computational model of “nervous activity”, where the neurons act as binary

devices with a fixed threshold logic.

An efficient technique for evaluating the gradient of the error function of a layered feed-

forward neural network (also known as error backpropagation [183], Figure 3.6), can be

achieved using local message passing of information alternately forwards and backwards

through the network. Using supervised learning, the error backpropagation algorithm calcu-

lates the network’s error based on training input and output examples. The idea of the error

backpropagation algorithm is that the artificial neural network learns the training data via

a minimization of this error. The weights in the network are randomly initialized and the

goal is to optimize their values in order to minimize the error. The error backpropagation

algorithm can therefore be summarized in the following four steps:

• Apply an input vector xi to the network and forward propagate through the network

using a j = ∑iw jizi to find the activations of all the hidden and output units.

Here zi is the activation of a unit i, or input, that sends a connection to hidden unit j,

and w ji is the weight associated with that connection. This sum can be transformed

by a nonlinear activation function h(·) to give the activation z j of unit j in the form
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Figure 3.6: Three layer artificial neural network.

z j = h(a j).

• Evaluate the δk = yk− tk for all the output units, where the outputs yk are linear com-

binations of the input variables xi so that yk = ∑iwkixi, tk is the associated binary class

and wki are the associated weights.

• Backpropagate the δ’s using δ j = h′(a j)∑kwk jδk to obtain δ j for each hidden unit in

the network.

• Use ∂En

∂w ji
= δ jzi where En =

1
2 ∑k(yk− tk)

2 to evaluate the required derivatives.

One of the main advantages of artificial neural networks is the ability to learn a mapping

function based on a large training set comprised of input and output data. Artificial neural

networks are also good when dealing with noisy or incomplete data. However, some key

disadvantages are that the mapping function that emerges from artificial neural networks

weights can be difficult to interpret and that their training can take significantly longer than

other machine learning methods, e.g. LDA or SVM.

3.2.4 Boosting and AdaBoost

Ever since the mid 1990’s boosting has received a significant amount of attention as an ef-

fective classification tool and more generally as a regressor. Boosting is a meta-algorithm

that seeks to combine weak learners (classifiers) into one single strong classifier, which pro-

duces much more accurate results than any of the single weak ones. Assuming that we
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have a simple classifier learning algorithm that produces very modest results based on the

observed training data, boosting works by employing this black box classifier learning algo-

rithm several times with different subsets of the training data, or rather, differently weighted

versions of the training data. At each round or iteration of boosting the aim is to find a weak

classifier to separate the training data (based also on its weights). The only requirement of

this weak classifier is that it has to predict the training data’s labels slightly better than ran-

dom. This is a very relaxed constraint since in case of a weak classifier performs worse than

random the classification can be simply inverted. After a weak classifier is learned, a weight

is assigned to this classifier according to its accuracy. The training data is re-weighted based

on the performance of the classifier on each sample: a higher weight is given to samples

that where misclassified, while a low weight is given to those correctly classified. Figure

3.7 illustrates an example (three iterations), where at each round a linear classifier is learned

and the samples re-weighted according to the classifier’s output. The weighting reflects the

“focus” a particular sample should receive in the next round of boosting.

Freund and Schapire [76] describe a series of classifiers (for two or more classes) and

regressors, as well as a mathematical proof of their guaranties and properties. They intro-

duced the powerful and very popular algorithm called adaptive boosting (AdaBoost), which

has been studied and tested in detail. Given a set of N training samples x, where {xi,yi} and

i = 1, ...,N , yi ∈ {−1,1}, AdaBoost first initializes a vector of weights for each sample,

such that D1(i) = 1/N. The objective at each iteration t = 1, ...,T is to choose the weak

classifier ht ∈H that minimizes the classification error εt based on the sum of misclassified

samples’ weights Dt . The classifier is stored along with a weighting αt that relates to its

performance in the form:

αt =
1

2
ln

(

1− εt
εt

)

. (3.29)

Here εt is the sum of weights that where incorrectly classified:

εt =
N

∑
i=1

Dt [ht(xi)− yi] . (3.30)

49



(a) (b) (c)

Figure 3.7: Three iterations of a boosting procedure: The marker size represents the weight

at each iteration. (a) All samples have the same weight and the best classifier is chosen.

(b) Based on re-weighted samples, the best classifiers is chosen, (c) Samples that have been

consistently been miss-classified have an even higher weight.

Using this new weak classifier ht the distribution model D is then updated by

Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt
, (3.31)

where Zt is a normalization factor. The output (strong) classifier is then formed from the

combination of the selected classifiers multiplied by their weight as

H(x) = sign

(

T

∑
t=1

αtht(xi)

)

. (3.32)

3.2.5 Bagging and random forests

Bagging (bootstrap aggregating) [24] is a useful meta-algorithm designed to improve the

stability and the predictive performance of tree models. Consider a base classification or

regression algorithm that produces a mapping function f (·) : X→ Y. Bagging generates B

bootstrapped samples (X∗1 ,Y
∗
1 ), ...,(X

∗
B,Y

∗
B ) (randomly subsampled with replacement), uses

the base algorithm to find a mapping function f ∗b (·), where b ∈ B, and finally aggregates the

bootstrap estimates as

F(·) = B−1
B

∑
b=1

f ∗b (·) . (3.33)

Bagging has been proven to improve unstable procedures, e.g. classification and regres-
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sion trees (CART) [26] and artificial neural networks, while providing little or no perfor-

mance improvement to more stable approaches [24], e.g. K-nearest neighbors.

Random forests are a powerful approach to data exploration, data analysis, and predic-

tive modeling. Originally proposed by Breiman [25], random forests have their roots in

bagging and random feature selection [9, 102]. They have been shown to have good perfor-

mance in classification, regression, clustering and density estimation problems. High levels

of predictive accuracy are achieved automatically, with only a few control parameters to

tune, while remaining resistant to over-fitting (good generalization to new data).

Random forests generate a large number of different tree models that are grown using

binary partitioning (see Figure 3.8). Randomness is introduced in the trees in two simul-

taneous ways. First, growing each tree on a different random subsample of size M from

the training data of size N without replacement (bootstrap). Second, by selecting the best

splitter at any node using only d << D features chosen at random, where D is the total

number of features and typically d =
√
D or d = log2D . The motivation for generating

multiple tree models is that by combining different models the results will be better than if

we relied on a single model. In classification problems the outputs generated by the multi-

ple models are typically combined by majority voting (aggregation). Combining trees via

voting will only be beneficial if the trees are different from each other. A reduction of the

number of features available at each split, d, corresponds to a reduction in the correlation

between trees, ρ̄, and the strength of the trees, s. The error rate depends on both ρ̄ and s,

such that an upper bound for the generalization error is given by ρ̄(1− s2)/s2. In random

forests, bagging is improved by minimizing the model inter-dependence by forcing splits to

be based on different predictors.

3.3 Regression overview

Regression is a technique that allows the modelling and analysis of several variables. A

regression model estimates the relationship between one or more dependent variables l and

the observed independent variables X through the unknown coefficients βββ:
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Figure 3.8: Illustration of a random forest.

l= f (X,βββ) . (3.34)

Contrary to classification where the outputs are categorical, a regression model estimates

a continuous function.

3.3.1 Ordinary least squares regression

One of the most popular regression techniques is ordinary least squares regression (OLSR).

Here the aim is to estimate the unknown parameters of a linear regression model via min-

imizing the axis-aligned squared error between the observed or measured data (predictors)

and the predictions made by the linear model approximation. This simple estimator can be

represented as follows:

β̂ββ = argmin
βββ

{

‖l−Xβββ‖22
}

. (3.35)

Here l is a dependent variable, X are independent variables and βββ are the estimated

model coefficients. The prediction power of a model found via ordinary least squares can be

somewhat poor in the presence of outliers and noise in the independent variables, unequal

training point variances, dependance among variables or too many variables. Most real life

applications might contain some of these problems. Additionally, OLSR tends to produce

rather complex and not very intuitive models since all predictor variables are used in the

model regardless of their contribution.
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3.3.2 Ridge regression

Ridge, or Tikhonov, regression [103] attempts to address some of the drawbacks of OLSR.

This is done via adding an L2-norm regularization term (that bounds the model’s coeffi-

cients) to the sum of squared residuals. Hence it requires minimizing

β̂ββ = argmin
βββ

{

‖l−Xβββ‖22+λR ‖βββ‖22
}

, (3.36)

where λR is the ridge regression penalty.

Ridge regression achieves better prediction performance than OLSR. However, the

model complexity, and hence its intuitivity, is not addressed since it also keeps all avail-

able predictors in the model.

3.3.3 LASSO regression

Another approach that seeks to simplify the estimated model is the so called least absolute

shrinkage and selection operator (LASSO) technique [206]. The LASSO is a least squares

method that penalizes the L1-norm of the regression coefficients. Formally we can write the

LASSO model as:

β̂ββ = argmin
βββ

{

‖l−Xβββ‖22+λL ‖βββ‖1
}

. (3.37)

Due to the nature of the L1-norm penalty sparse solutions to the problem are favored.

Hence this approach acts as an automatic variable selector. Comparisons made with other

techniques (ridge and bridge regression, [206] and [80]) found neither ridge, bridge or

LASSO outperforms the other. Due to the exponential growth of data in many applica-

tions, variable selection is becoming ever more important for modern data analysis prob-

lems. Although the LASSO technique has been proven successful in many applications it is

not without its drawbacks. For example, if the amount of variables is larger than the amount

of samples, the LASSO will select only a number of variables that is equal to the number

of samples. This limitation is a major constraint when dealing with very high dimensional

data, e.g. medical images, where the number of samples can be in the thousands while the
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dimensionality can easily be in the order of millions. Also, if a group of variables has high

pairwise correlations, the LASSO selects only one of these variables ignoring the rest and

hence potentially ignoring other important variables.

3.3.4 Elastic net regression

The elastic net regression technique [239] seeks to fix the drawbacks of the LASSO, while

still maintaining its high performance. This is done by adding an additional L2 penalty

term on the model’s coefficients. Similar to the LASSO, the elastic net performs automatic

variable selection while encouraging the grouping of highly correlated variables. The elastic

net is formulated as follows:

β̂ββ = argmin
βββ

{

‖l−Xβββ‖22+λR ‖βββ‖22+λL ‖βββ‖1
}

. (3.38)

Here X is a n by D matrix containing N vectorized images, βββ is a D long vector of the

regression coefficients, l is the response variable, λR and λL are the ridge and the LASSO

regression penalty weights, respectively. In Equation (3.38), the L1 term encourages solu-

tions that are sparse, while the L2 term promotes the grouping of correlated variables.

3.4 Performance and fit measures

3.4.1 Classifier performance

A confusion matrix allows the performance of a binary classifier to be characterized. The

columns of the matrix represent the class predictions, while rows represent the true classes.

Table 3.1 shows an example of a confusion matrix. Correctly classified instances are located

along the diagonal of the matrix. The true positives (TP) represent the correctly identified

instances, while true negatives (TN) represent the correctly rejected instances. In a similar

way, outside the diagonal line of the confusionmatrix lie the false positives (FP) and the false

negatives (FN), which represent incorrectly identified and the incorrectly rejected instances,

respectively.
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❳
❳
❳
❳
❳
❳
❳
❳
❳❳

True

Predicted
Class A Class B

Class A TP FN

Class B FP TN

Table 3.1: Confusion matrix for a binary classifier.

A common metric to measure a classifier’s performance is accuracy (ACC) which mea-

sures the rate of correctly classified examples as:

ACC=
TP+TN

TP+TN+FP+FN
. (3.39)

ACC may not be a good metric of performance if the class distribution of the dataset

is unbalanced. For example, if the dataset consists of a larger number of instances labeled

as class A than B, a high accuracy can be achieved by a classifier that simply labels all in-

stances as class A. The Sensitivity (SEN) and specificity (SPE) measures provide an overall

assessment of the classifiers performance. SEN measures the ratio of correctly classified

instances, while SPE measures the ratio of correctly rejected instances:

SEN=
TP

TP+FN
and SPE=

TN

TN+FP
. (3.40)

Another way to measure ACC is through the balanced ACC, in which both classes have

an equal weight on the output. It can be expressed as:

balanced ACC=
SEN+SPE

2
. (3.41)

A receiver operating characteristic (ROC) is a graph that provides visualization of the

performance of a binary classifier. ROC depicts the inherited trade-off that exists in binary

classifiers between the true positive rate (SEN) and the false positive rate (1-SPE) as the

discrimination threshold varies (see figure 3.9). The area under a ROC curve (AUC) may be

interpreted as an aggregated measure of classifier performance [70].
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Figure 3.9: Illustration of the ROC curves of three binary classifiers. Each solid line shows

the relationship between sensitivity and specificity of the classifier as the discrimination

threshold is varied. The dashed line depicts a random classifier (best seen in color).

3.4.2 Cross-validation

The parameters of a model, e.g. a classifier, are usually optimized based on the available

training data. An independent test set is therefore required for making a reliable assessment

of the applicability of the model to unseen data. Cross-validation provides a statistical pro-

cedure to evaluate and compare models by partitioning data into two segments: one is used

to learn or train the model and the other is used to validate the model. In a typical cross-

validation, the training and validation sets must cross-over in successive rounds such that

each data point has a chance of being validated against. A commonly used method is k-fold

cross-validation [99], in which the data is partitioned into k equally sized segments or folds.

Subsequently, k iterations of training and validation are performed. Each iteration trains a

model based on k−1 folds and then validates the trained model on the reminding fold. The

performance of the model on each iteration can be tracked using performance metrics, e.g.

ACC, which upon completion can be averaged. Another common cross-validation method

is repeated random subsampling [161]. This method randomly splits the dataset into training

and validation sets of fixed sizes. This process is repeated k times, and in the same way as

in k-fold cross-validation the results are averaged over all folds. The advantage of repeated

random subsampling is that the proportions of the training and validation sets are not de-
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pendent on the number of iterations. However, due to its random nature some observations

may never be selected in the validation subsample, whereas others may be selected more

than once. In stratified cross-validation the training and validation sets for a classifier are

selected such that they contain observations from each class in equal proportions to the full

dataset. Stratified cross-validation has been shown to produce results with a lower variance

than regular cross-validation [123]. Nested cross-validation or ”double-cross“ [196] is used

to estimate the performance of a model for which the training includes selecting parameters

or attributes. First, the attributes or parameters of a model are selected using an inner cross-

validation loop. Then, an outer cross-validation loop is used to evaluate the performance of

the selected model in the inner loop.

3.4.3 Coefficient of determination

The coefficient of determination, also known as R2, is a measure of the goodness of fit

of a regression model to the data. The higher the R2 ∈ [0,1], the better the variance of

the dependent variable is explained by the independent variable. For the standard linear

regression model the R2 is a widely used goodness of fit measure and can be calculated as

the relation between the total sum of squares and the residual sum of squares. If we denote

yi as the observed values of the dependent variable, ȳi as its mean, and fi as the fitted value,

then R2 is defined as:

R2 = 1− ∑i( fi− yi)
2

∑i(yi− ȳi)2
. (3.42)

Using this metric for nonlinear regression models can lead to R2 ∋ [0,1]. However, some

applications of this measure to particular nonlinear models have been constructed using a

variety of methods [138, 227, 38].

3.5 Summary

Dimensionality reduction, classification and regression are important tools in machine learn-

ing and they can form an important part of medical image analysis. This chapter has pro-
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vided details on some of the most relevant machine learning algorithms, as well as some

performance evaluation techniques, related or used as part of the work presented in later

chapters of this thesis. Careful consideration, with the application in mind, must be given

when choosing an algorithm for a specific task, i.e. linear or nonlinear data/features, known

or unknown labels, discrete or continuous labels, feature space size, etc. The purpose of this

chapter was to give the reader an insight into the state-of-the-art in dimensionality reduc-

tion, classification and regression techniques available, as well as the know how to select

the most appropriate technique. The following five chapters will give a detailed description

of the the main research contributions of the thesis.
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Chapter 4

Landmark localization in brain MR

images based on 3D local self-similarities

This Chapter is based on:

• R. Guerrero, L. Pizarro, R. Wolz, and D. Rueckert. Landmark localisation in brainMR

images using feature point descriptors based on 3D local self-similarities. In IEEE

International Symposium on Biomedical Imaging (ISBI), pages 1535-1538, 2012.
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Abstract

The identification of anatomical landmarks in the brain is an important task in registration

and morphometry. The manual identification and labeling of these landmarks is very time

consuming and prone to observer errors, especially when large datasets must be analysed.

In this chapter we present an approach that describes and locates landmarks based on

their intrinsic geometry, rather than their intensity patterns. As the proposed approach

moves away from intensity-based landmark description, we show that descriptors of intrinsic

geometry are well suited for the landmark localization problem in MR brain images since

the intensity information in these images is not quantitative (and intensity normalization

is not straight forward). Our results show that for the task of localizing 20 anatomical

landmarks in brain MR images, the proposed descriptor performs better in 75% of cases

when compared with a sliding window with Haar features detector and in 100% of cases

when compared to non-rigid registration.

4.1 Introduction

In recent years several algorithms for landmark localization have been proposed indepen-

dently in the medical image analysis, computer vision and machine learning communities,

each with specific advantages and disadvantages. The detection of landmarks is a crucial

step in many medical imaging applications, including registration, shape modelling and

morphometry.

In this chapter we propose the use of descriptors that define a landmark based on the

structural pattern of its neighborhood. As descriptors we use a modified version of the

local self-similarities described in [190]: First, descriptors are found on several training

brain MR images. Then, when an unseen query image is presented, each training image’s

descriptor votes on the position of the landmark. Finally, a consensus for the landmark’s

location is estimated by fusing all the predictions available. In our evaluations, the presented

approach has been trained on a large dataset of 100 brain MR images from cognitively

normal (CN) subjects, patients with mild cognitive impairment (MCI) and AD from the
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Figure 4.1: Radial bins used to construct the self-similarity (SS) descriptor, in 2D (top) and

3D (bottom). From left to right, complete area covered by the descriptor, partitioning of the

area in radial bins and individual bins.

ADNI study database. A different set of 100 images from ADNI is used for testing the

proposed approach.

4.2 Method

4.2.1 3D local self-similarity (SS) landmark descriptor

In order to characterize landmarks based on their surrounding (local) structures we propose

an extended and enhanced SS descriptor. The local SS descriptor was recently described as

an approach for measuring similarity between two visual entities in either images or video

[190].

For every pixel in an image a local SS descriptor can be computed. In 2D this can

be done by computing the similarity between a small square patch around the pixel and

every other point (another small square patch) in a larger surrounding circular image region,

which results in an internal similarity map. This similarity map is then binned into a log-

polar representation (Figure 4.1, top row). Each bin is filled with the highest similarity that

falls within its supported range. This representation yields three benefits: It compresses the

descriptor’s length for the pixel. It also accounts for radially increasing affine deformations

allowing for invariance to small rotations, shears and scales. Finally, since only the largest

similarity is used and bin sizes allow for some leeway, small local non-rigid deformations
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can be tolerated.

In our work we extend this approach to 3D volumetric images and borrow ideas from the

non-local means algorithm [29] to improve the descriptors’ robustness. We define spherical

regions around each voxel and find matches in a way similar to the approach previously

described for 2D. We use SSD as a similarity measure between patches, and bin the results

according to a log-spherical representation (Figure 4.1, bottom row). The small patches’

descriptors, used to compute the SS, are defined as spherical regions surrounding the voxel

(typically with radius of 3 or 5 voxels) and each voxel within the sphere is weighted indi-

vidually using a radially decreasing Gaussian kernel K:

SSDq(p) = ∑Ki

(

Pp−Pq
)2

. (4.1)

Here Pp and Pq are the spherical patches at locations p and q, and the sum is over all

voxels in the patches. This has been shown to improve patch similarity measurements [162].

The calculated SSD is then normalized to form a “correlation volume” Sq, that is asso-

ciated with any voxel q ∈ R
3, and can be written as

Sq(p) = exp

(

− SSDq(p)

max(varnoise,varauto(q))

)

(4.2)

for all p ∈ R
3 such that ‖p−q‖2 < ρ2. This is computed for all points within a distance ρ

from pivot point q at which the descriptor is being calculated. varnoise = 2ρ2 ∗ var(I) is the

estimated photometric image variance, and var(I) is the variance in image I. varauto is the

maximal variance of the difference of all patches within a radius of one voxel relative to the

patch centered at q. The correlation volume, which is defined in Cartesian space, is mapped

to a spherical coordinate system Sq(x,y,z)→ S̃q(r
′,θ′,φ′). Thus, the SS descriptor SSq is

given by the maximum correlation value within each bin (ri,θ j,φi):

SSq(ri,θ j,φi) = max
(r′,θ′,φ′)∈R3

S̃q(r
′,θ′,φ′) (4.3)

where

62



r′ ∈ [ri,ri+1] , ri ∈ R= {r1, ...,rL}

θ′ ∈
[

θ j,θ j+1

]

, θ j ∈Θ = {θ1, ...,θM}

φ′ ∈ [φk,φk+1] , φk ∈Φ = {φ1, ...,φN}

(4.4)

and R, Θ, Φ denote the sets of radii, elevation and azimuth angles, each discretized into L,

M and N values, respectively.

This type of descriptors are specially suited to work with imaging modalities where there

is no consistent intensity scaling between images (e.g. MR images) or different modalities,

since they encode the intrinsic surrounding geometry of the point of interest, and not the

intensity distribution. In this way we can characterize anatomical landmarks based on their

surrounding structures.

4.2.2 Landmark localization

With a set of annotated images, in which landmark location and landmark descriptors have

previously been determined, the landmark can be localized in unseen images: First, we

assume that the brain is in some approximately known orientation and position. Thus, a

landmark’s spatial location is likely to fall inside a particular volume within the brain. We

can reduce the search space to a limited ROI that is defined as a non-zero probability volume

of where we expect to find the landmark. This could be done in two different ways: One can

define a box in which one could expect to observe the landmark or one can learn the spatial

prior probabilities from the training set (atlases). Here, the latter approach is used. The

spatial prior probabilities are estimated using kernel (parzen window) density estimation.

This can be formulated as

PDF(p) =
1

n

n

∑
i=1

1

hdn
Kp

(

p− ιi
hn

)

(4.5)

where p denotes the 3D voxel coordinates (x,y,z), ιi ∈ {ι1, ..., ιn} refers to the i-th landmark

position,Kp(·) is the window function or the kernel in a 3D space such that
∫

ℜd Kp(x)dx=
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1. Here n is the number of observations and hn > 0 is the bandwidth parameter that cor-

responds to the width of the kernel. The kernel function Kp(·) is modelled as a Gaussian

function.

In the search space, defined by thresholding the prior probability PDF(p), we calculate

a descriptor for every voxel contained in this ROI, and then find the best possible match

among the set of training descriptors. Each training descriptor provides an estimate (vote)

for the spatial localization of the landmark. Each vote will be associated with a certain

weight w. For an unseen image i, we estimate the localization ιli of the landmark l by fusing

all votes using the following equation:

ιli =
∑ j I

l
i, j ·wl

i, j

∑ jw
l
i, j

. (4.6)

Here Ili, j represents the estimated position of the landmark l in the image i as voted by

template j. In this work we explore several strategies to select the weights wl
i, j:

• Simple average vote (SAV): All votes have the same weight.

• Sparsity (S): The weighting is calculated according to the sparsity of the likelihood

output, see Equation (4.7). This favors descriptors with concentrated “energy” peaks,

which are considered more informative that evenly distributed descriptors.

• Normalized sparsity (NS): Same as S, but with sparsity values normalized to the range

[0,1].

• Descriptor similarity (DS): Similarity between template and test descriptors. This

favors descriptors with a lower SSD.

• kmost similar descriptors (kSD): Only the kmost similar templates, according to their

SSD, are considered.

As a metric for the sparsity we used a measure based on the relationship between the L1

and L2 norms (as described in [105]):
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σ
(

SSq
)

=

√
n−
(

∑
∣

∣SSqi

∣

∣

)

√

∑SS2qi√
n−1

(4.7)

where n is the number of bins of the descriptor SSqi , and 0≤ σ≤ 1.

4.3 Comparison to other landmark detection approaches

In this section we briefly describe two other different methods commonly used for landmark

localization: (a) Sliding window detector with Haar feature (SW) [218] and (b) non-rigid

image registration (REG). These two methods were used as a comparison to the method

proposed.

4.3.1 Sliding window with Haar features detector (SW)

A detector for each landmark point was built using a variation of the Viola-Jones face detec-

tor [218]. In our implementation, Haar-like features are calculated within a cuboid region

in 3D space for the MR brain images. Haar-like features offer the advantage of being very

computationally inexpensive. Figure 4.2 illustrates some of the Haar-like features in 2D and

3D space. The computational efficiency stems from the usage of integral images, where

each value in an integral image takes the value of the sum of pixels above and to the left of

the pixel,

II(x,y) = ∑
x′<x

∑
y′<y

Ii(x
′,y′) (4.8)

where II is the integral image of Ii, which is the original image. Extending this idea to 3D,

the integral image at location p= {x,y,z} takes the value

II(x,y,z) = ∑
x′<x

∑
y′<y

∑
z′<z

Ii(x
′,y′,z′). (4.9)
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(a) (b)

Figure 4.2: Haar-like features in (a) 2D space are rectangles and in (b) 3D are cuboids. In

columns, from left to right: two, three and four cuboid features.

Using the following set of recurrences, the integral image can be calculated in one single

pass over the original image

s(x,y,z) = s(x,y−1,z)+ pi(x,y,z)

s2(x,y,z) = s2(x−1,y,z)+ s(x,y,z),

II(x,y,z) = II(x,y,z−1)+ s2(x,y,z).

(4.10)

where s and s2 are sum accumulators.

Boosting (Section 3.2.4) is then used to perform classification based on all calculated

Haar-like features. In each round of boosting, the algorithm picks a single feature that best

classifies the data. For each feature, the algorithm determines the optimal threshold classi-

fication function using QDA, such that the minimum number of examples are misclassified.

A weak classifier h j(xi) consists of a feature f j, a threshold θ j and a parity τ j indicating

the direction of the inequality sign (since we do not know if a high or low feature response

value is desired):

h j(xi) =











1 if τ j f j(xi)< τ jθ j

0 otherwise
(4.11)

where x is a positive or negative training instance.

No single feature is capable of correctly classifying the whole dataset, e.g. patches
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where the landmark is present and patches where it is not. However, the aim is to distin-

guish between only two classes (landmark present and not present) and even a naive random

classification scenario should achieve an accuracy of 50%, which is unlikely to occur since

the best feature was chosen. All that is needed is that the simple classifier based on a sin-

gle feature, perform slightly better than random (which is guaranteed since we can always

change the direction of the threshold by changing the sign of the parity function). At each

round of boosting the algorithm picks the best weak classifier/feature and reweights the

training examples according to the performance of the chosen weak classifier. This process

is repeated for T rounds, or until an early termination criteria is met, such as the error on

the training set being below a threshold. Instead of forming a final “strong” classifier using

a weighted combination of all the selected features and thresholding the response, when

evaluating the classifier response in the test images, we opted not to threshold the result. By

not thresholding the output of the classifier we can retain information about the confidence

of the classifier. To localize the landmark we can select the voxel which yields the highest

confidence from the classifier. A drawback of a sliding window detector is that it does not

allow for sub-voxel landmark localization accuracy.

4.3.2 Non-rigid image registration (REG)

Intensity-based image registration establishes dense point correspondences across images by

computing a transformation that maps points from one image IA to corresponding points in a

second image IB. The transformation T applied to a point p in IA, represented by the column

vector p = {x,y,z}, yields a transformed point p′ = {x′,y′,z′} in IB, such that, p′ = T (p).

Intensity-based image registration can be used to propagate the annotation (e.g. landmarks)

from a reference image to a new image. In this case the annotated reference image acts as

a template. Hence, landmarks that are annotated in the template can be propagated to new

images. Figure 4.3 illustrates the landmark propagation procedure. In this work we used the

non-rigid FFD registration algorithm proposed in [182]. Since correspondences between

images are not constrained to voxel centroids, a REG approach to landmark localization

allows for sub-voxel accuracy.
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Skull striped and affinely 

aligned MR image

Spatial mapping to 

MNI space

Non-rigidly deformed 

MR image

MNI template

Figure 4.3: Diagram showing the landmark annotations propagated from the MNI template

to the skull striped and affinely aligned images. First, the image is affinely and non-rigidly

aligned to MNI space (see the solid black arrows). The landmarks are manually located in

MNI space, then propagated to the affine images (see the dashed green arrows).
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Figure 4.4: Diagram of proposed landmark localization method.

4.4 Experiments and results

The images that were used to evaluate the proposed method were obtained from the ADNI

database [148]. In the ADNI study, brain MR images were acquired at regular intervals

after an initial baseline scan from approximately 200 CN older subjects, 400 subjects with

MCI, and 200 subjects with early AD. In this work, we used a subset of 1.5T T1-weighted

baseline images of 100 randomly chosen subjects for training and another 100 randomly

chosen subjects for testing. In both (training and testing) datasets there are 24 AD, 48 MCI

and 28 healthy subjects, to faithfully represent the full ADNI dataset. All brain MR images

were skull stripped and affinely aligned to the Montreal Neurological Institute (MNI) space.

Figure 4.4 shows the pipeline of the proposed landmark localization method. For both

the training and testing datasets a total of 20 landmarks (Figure 4.5) were manually selected

by an expert observer using three orthogonal views. See Appendix C.1 for the description

of the landmarks. As mentioned before, two other commonly used methods for landmark

localization were used as a comparison to the proposed one: (a) SW and (b) REG. In total

20 different landmark specific SW detectors where learned. 3D image cubic patches of

313 voxels centered at the landmark where used as positive training samples, while patches

extracted from the vicinity of the landmark where used as negative training samples.
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(a) (b)

(c)

Figure 4.5: Anatomical landmarks in the MNI152 atlas. (a) Splenium and genu of corpus

callosum, superior and inferior tip of the cerebellum, fourth ventricle, anterior and posterior

commisure, and superior and inferior aspect of the pons. (b) Anterior and inferior tip lateral

ventricle (only left side shown). (c) Superior and inferior tip of the putamen (left and right).
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From the training set we calculate 3D SS descriptors at each landmark’s position. To

calculate the 3D SS descriptors we used small spherical kernels with a radius of three voxels,

that were weighted using a second Gaussian kernel (same size) with σ = 3, and a larger

correlation sphere of radius 10. The similarity results were binned in a partitioned sphere

with four radial intervals, five elevation angles and 10 azimuth angles (see Figure 4.1, bottom

row for visualization). We tested the performance of classifiers built from different numbers

of training images (10, 20, 40, 60, 80 and 100). During testing, we look for the best matches

of the training descriptors in the test image and then form a consensus on the final landmark

location by fusing the results using several techniques. Figure 4.6 (a) shows the average

(over the 20 landmarks shown in Table 4.4) landmark error. Using descriptor similarity

weighting (most robust results, Figure 4.6 (a)), a comparison with the boosted Haar features

classifier, was carried out (also using the 20 landmarks from Table 4.4). We show that

using less training images we can obtain the same level of accuracy, which is a highly

desired as annotated images are scarce and expensive in terms labor involved. Using the

same amount of images for training the proposed method achieves better results. Figure

4.6 (b) illustrates this even better. Another desirable feature of the proposed method is

that it does not require any intensity normalization step, as is required by intensity based

approaches (such as SW). An unfeasible computational cost is associated to carrying out

the number of registrations needed to do a several-to-one landmark localization, e.g. to use

vote fusion. Hence, registration was used as a one-to-one landmark propagation tool and a

direct comparison is not possible.

Table 4.4 shows the result of individual landmark localization error, using the proposed

method and both comparison techniques. A five-fold cross validation of the method was

carried out in order to asses the results and ensure reproducibility (the average of the five

tests is shown, with a variability among tests of ∼0.15mm).

The proposed method was implemented in Matlab, and the implementation of SS is

based on the code provided by Varun Gulshan [94]. Training time depends on the number

of template images used: Typically each image requires ∼0.11 seconds on a 3.00GHz 2-

core machine with 8Gb of RAM. Testing takes about 16 seconds per landmark per image, if
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Figure 4.6: (a) Performance of the proposed classifier built with different amounts of train-

ing images and using different fusion techniques. (b) Comparison of the proposed method

vs SW.
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Landmark SS SW REG

Splenium of corpus callosum (outer aspect) 1.29(0.99)+* 1.79(1.07) 3.95(1.43)

Splenium of corpus callosum (inferior tip) 1.27(0.88)+* 1.66(0.96) 2.10(0.89)

Splenium of corpus callosum (inner aspect) 2.28(1.54)+ 1.81(0.82) 2.31(1.31)

Genu of corpus callosum (outer aspect) 1.08(0.78)+* 1.87(1.08) 1.73(1.01)

Genu of corpus callosum (inner aspect) 2.56(2.17)+* 1.32(0.73) 1.47(0.64)

Superior aspect of pons 1.06(0.77)* 1.12(0.77) 2.79(1.26)

Inferior aspect of pons 1.26(2.29)* 1.45(0.72) 1.70(0.85)

Superior aspect cerebellum 3.92(1.02)+* 2.83(1.75) 2.99(1.64)

Fourth ventricle 0.83(0.78)+* 1.19(0.80) 5.57(2.70)

Putamen posterior (left) 2.24(1.16)* 2.43(1.41) 4.36(1.81)

Putamen anterior (left) 1.78(1.14)+* 2.14(1.27) 2.48(1.29)

Putamen posterior (right) 2.28(1.33)* 2.25(1.13) 3.53(1.78)

Putamen anterior (right) 1.90(1.24)+* 2.28(1.23) 2.79(1.43)

Anterior commissure 0.67(0.59)+* 1.16(0.59) 1.05(1.42)

Posterior commissure 0.64(0.31)* 0.69(0.59) 1.85(0.48)

Inferior aspect cerebellum 2.87(2.02)+* 2.39(1.89) 3.71(1.68)

Anterior tip of lateral ventricle (left) 1.31(0.89)+* 2.22(1.24) 3.67(1.72)

Anterior tip of lateral ventricle (right) 1.14(0.71)+* 1.78(0.98) 3.65(1.73)

Inferior tip of lateral ventricle (left) 1.76(1.34)+* 2.80(1.35) 4.44(2.07)

Inferior tip of lateral ventricle (right) 1.27(0.78)+* 2.20(1.11) 4.01(1.79)

Table 4.1: Accuracy of the proposed method (using 100 training images) on the ADNI

database, for the 20 landmarks listed. Errors in mm with standard deviation in brackets.

Best results shown in bold numbers. Statistical significance (to %5, results not corrected

for multiple comparisons) is indicated by + and *, for comparisons between SS and SW or

REG, respectively.

only one image is tested. Time can be reduced to about 11 seconds per landmark per image

if several images are tested at the same time due to computational overhead.

4.5 Conclusions

We have proposed a method that localizes landmarks in brain MR images using a 3D lo-

cal SS descriptor that is not intensity dependent and describes the self-similarity around the

vicinity of the landmark. Using this landmark representation we search for and obtain votes

on where the landmark is located. Several vote fusion strategies have been tested. Also,

prior knowledge of the spatial distribution of the landmarks was used to reduce the search

space. Our results show that the proposed method outperformed a sliding window with Haar

features detector in 15 out of 20 cases and non-rigid image registration in every case in the

landmark localization task. Preliminary comparison experiments with 3D Scale-invariant

feature transform (SIFT) feature descriptors [187] where tried using an implementation pro-

vided by Scovanner, but the computational burden of the SIFT descriptor calculation was

deemed to high. It should be noted that a disadvantage of both the 3D local SS descrip-
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tors and SW approaches to landmark detection can only offer localization accuracies at the

voxel level as they find the best matching location. This is in contrast to non-rigid image

registration, which locates landmarks with a subvoxel accuracy. However, it may be pos-

sible to achieve subvoxel localization accuracies using both 3D local SS descriptors and

SW approaches by modeling their output as a continuous function. Heinrich et al. [101]

have successfully used SS maps as a similarity metric in multimodal lung image registra-

tion. However, due to the metric’s associated high computational expense the registration

run time was very high, even though the similarity maps where kept small. Which points

out the clear computational expense disadvantage of the proposed descriptor, which limits

its scalability.

This chapter introduced the use of 3D local SS features as a tool for landmark localiza-

tion in brain MR images. In the following chapter we extend this idea to automatic feature

matching and combine it with RANSAC for affine image registration of knee MR images.
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Chapter 5

Learning correspondences in knee MR

images using 3D local self-similarities

This Chapter is based on:

• Ricardo Guerrero, Claire Donoghou, Luis Pizarro, Daniel Rueckert. ”Learning corre-

spondences in knee MR images from the Osteoarthritis Initiative”. Machine learning

in medical imaging - Medical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 7588, pages 218-225, 2012.
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Abstract

Registration is a powerful tool that allows mapping of images into a common space in order

to aid in their analysis. Accurate registration of images that contain articulate structures

such as the knee is challenging to achieve using intensity-based registration algorithms.

Problems arise due to potentially very large inter-subject differences in both articulation

and anatomy. This can cause intensity-based registration algorithms to fail to converge to

an optimal solution. In this work we propose a method for learning correspondences in

pairs of images in order to match the self-similarity features introduced in Chapter 4. These

features where used in Chapter 4 to find anatomical landmarks in brain MR images. We

use RANSAC, in combination with the automatically obtained feature matches, to robustly

estimate the parameters of an affine transformation model. We show a substantial improve-

ment in terms of mean error and standard deviation of 2.13mm and 2.47mm compared to

intensity-based registration methods when comparing target registration error.

5.1 Introduction

In many medical image analysis applications it is important to estimate spatial transfor-

mations to a common space, e.g. in registration [238, 195], statistical shape modelling

[40, 35, 41], atlas construction [93, 197, 31], segmentation [224, 174, 13, 100, 6] and com-

puter aided diagnosis [55, 43, 192]. Many of these methods rely on global registration (e.g.

rigid or affine) as an initialization for a more local alignment. In some cases this global

registration provides a very good initialization, e.g. in brain imaging where the global vari-

ations in head shape, position and orientation are generally limited when compared to other

anatomical structures. Unfortunately intensity based affine registrations does not suffice for

datasets with large inter-subject anatomical variability or for articulated structures. In these

cases the global registration can fail completely.

One such example are MR images of the knee: Obtaining good global registrations in

knee MR images can be particularly challenging due to the aforementioned reasons. This

means that intensity-based affine registration may converge to a poor local minimum and
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hence fail to align the images correctly. Fine tunning registration methods often solves miss-

registration problems, but migth also introduce an unwanted bias in the “fixed” registrations.

Several methods have been shown to be successful at registering knee MR images, mainly in

cartilage and bone segmentation [78, 113]. For very large population studies manually fine

tuning algorithms to correct registration errors is a very time-consuming and tedious task.

The Osteoarthritis Initiative (OAI) is a multi-center, longitudinal, prospective observational

study of knee osteoarthritis, and provides public access to MR images and clinical data. The

OAI is a large-scale study into this disease with a large number of participants (4796 men

and women aged 45-79). A robust and automated registration method that yields accurate

and consistent results is essential for such a large-scale study.

Several methods have been proposed to address the problem of registration in the pres-

ence of large intra-subject variability. Recently graph-based registration methods [96, 114]

that aim to find geodesic path across a similarity graph between images have emerged, with

Donoghue et al. [56] applying the concepts of graph-based registration to a large population

knee MRI study. This allowed the registration of two images in the graph to be expressed as

a composition of incremental transformations along the shortest path between images. The

main advantage of these techniques is that the incremental transformations can avoid getting

trapped in local minima, thus achieving a more accurate registration, but at a higher com-

putational cost. Moreover, it is not straightforward how to deal with images that were not

used in the initial construction of the graph. In general, feature-based registration methods

[178, 157, 176] aim to find and match features in a pair of images, and use these obtained

correspondences to define a transformation from one image to another at these landmarks

while interpolating the transformation between the landmarks. This can lead to a faster reg-

istration, while at the same not requiring to learn a graph. However, as stated in [176], the

success of point- or feature-based image registration highly depends on the representative

power and accuracy of the feature matching.

In this work we propose an approach to the problem of image registration in the presence

of large-scale variations that explores feature matching. We use the recently proposed 3D

local SS features [91]. Through saliency measures we compute and match features in each
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pair of images. These matched features are used in turn for a robust affine transformation

parameter estimation that minimizes the feature alignment error. We show results of using

the proposed method on a subset of knee MR images of the OAI cohort although the method

is generalizable to other types of images.

5.2 Method

To register a pair of images we use the structure tensor [176] to filter out image regions

that contain no structure and therefore are considered uninformative. Then we calculate 3D

local SS features [91] for all remaining voxels. After this, the feature list is reduced by

measuring the energy distribution and level of similarity of the descriptors. The remaining

features are used in a forward-backward matching algorithm that further reduces the list of

features by finding and matching stable points in both images. Finally, the parameters of

an affine transformation are estimated using RANSAC [67], which again reduces the list of

matching points by removing outliers. RANSAC is a popular model estimation algorithm

that is robust against outliers that has been used before to estimate transformation model

between medical images [175, 184, 140]. Figure 5.1 shows the pipeline describing the

proposed feature analysis and matching methods.

5.2.1 Dense 3D local SS feature descriptors

As mention in Chapter 4, for every voxel in an image I a local SS descriptor can be computed

[91]. This can be done by calculating the similarity (using SSD) between a small spherical

patch around the voxel and every other point (another small spherical patch) in a larger sur-

rounding spherical image region. This results in an similarity map between a voxel and its

neighborhood that is then binned into a log-spherical representation. Each bin is populated

with the highest similarity value that falls within its supported range. This representation has

three benefits: It leads to very compact descriptors for each voxel, it accounts for radially

increasing affine deformations and it can handle small amounts of local non-rigid deforma-

tions. Following the same description as in Chapter 4, the calculated similarities are then
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Figure 5.1: Proposed feature analysis and matching methods to identify potentially stable

feature points: First, the structure tensor identifies regions that contain no structure and

therefore are considered uninformative (second column). Then, 3D local SS features are

computed (third column). After forward-backward matching the number of matches is fur-

ther reduced (fourth column). In the final stage an affine transformation model is estimated

using RANSAC (last column).

normalized to form a correlation volume Sq, that is associated with any voxel q ∈ R
3, and

can be written as

Sq(p) = exp

(

− SSDq(p)

max(varnoise,varauto(q))

)

(5.1)

for all p ∈ R
3 such that ‖p−q‖2 < ρ2. That is, for all points within a distance ρ from pivot

point q at which the descriptor is being calculated. varnoise = 2ρ2 ∗ var(I) is the estimated

photometric image variance, where var(I) is the variance in image I. varauto is the maximal

variance of the difference of all patches within a radius of one voxel relative to the patch

centered at q. The correlation volume, which is defined in Cartesian space, is mapped to a

spherical coordinate system Sq(x,y,z)→ S̃q(r
′,θ′,φ′). Thus, the SS descriptor SSq is defined

by the maximum correlation value within each bin (ri,θ j,φk):

SSq(ri,θ j,φi) = max
(r′,θ′,φ′)∈R3

S̃q(r
′,θ′,φ′) , (5.2)
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where

r′ ∈ [ri,ri+1] , ri ∈ R= {r1, ...,rL}

θ′ ∈
[

θ j,θ j+1

]

, θ j ∈Θ = {θ1, ...,θM}

φ′ ∈ [φk,φk+1] , φk ∈Φ = {φ1, ...,φN}

(5.3)

and R, Θ, Φ denote the sets of discretized radii, elevation and azimuth angles, each with

L, M and N values, respectively. This type of descriptor is especially well suited for image

modalities where there is no intensity scale consistency across images (e.g. MR images),

since they encode the intrinsic surrounding geometry of a point, rather than their absolute

intensity values. In this way we move away from an intensity-based characterization towards

a geometric-based characterization of feature points.

5.2.2 Feature analysis

Since not all descriptors are informative, we have to remove non-informative ones. There-

fore, we aim to identify which parts of the image do not contain any informative features

at all (e.g. structureless regions). We employ two different techniques to reduce the feature

space: (1) using the 3D structure tensor of the image we define regions that contain poten-

tially relevant and stable features, hence reducing the feature calculation burden and (2) we

measure the energy distribution and level of SS of the calculated features and ignore features

for which the energy distribution or level of SS falls below a certain threshold in order to fur-

ther reduce the number of potential stable feature points. Using a subset of salient features

determined by the two mentioned tests, we employ a forward-backward feature matching

algorithm [81] to determine feature correspondences of stable points.

Image structure tensor

The image structure tensor or matrix of second-order moments defines the predominant

directions of the image gradient around a particular point q [176]. The discrete version of

the 3D structure tensor Γ can be written as Γw[q] = ∑rw[r]Γ0[q− r] where r defines a set of
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indices centered around q, w[r] is a weight within the window such that ∑w[r] = 1 and Γ0[q]

is the matrix given by:

Γ0[q] =













(Ix[q])
2

Ix[q]Iy[q] Ix[q]Iz[q]

Ix[q]Iy[q] (Iy[q])
2

Iy[q]Iz[q]

Ix[q]Iz[q] Iy[q]Iz[q] (Iz[q])
2













(5.4)

Here Ix, Iy and Iz are the partial derivatives of image I. The eigenvalues λ1, λ2 and

λ3 of Γw[q] and their corresponding eigenvectors e1, e2 and e3 describe the distribution of

gradients of the image within a small, pre-specified region around q. The values obtained

from the structure tensor can be then used to define regions that contain structure in a robust

way, and hence might contain stable features. Potentially stable features will lie in regions

where the structure tensor’s eigenvalues are not zero, i.e. in regions where there is high

contrast.

Measures on the descriptors

Once the 3D self similarity features are calculated, there are two tests that are applied di-

rectly to the descriptor vectors in order to assess if they are considered informative. First, we

only consider feature vectors that contain certain level of SS, that is, the similarity between

the patch around the voxel for which the descriptor is calculated and the patches in the lager

volume being considered, should be above a certain threshold 0 ≤ C ≤ 1. Secondly, we

also evaluate the energy distribution of the feature vectors. Specifically, we use a sparsity

measure to check whether the energy distribution of the feature descriptor contains peaks or

is homogeneous. The sparsity metric [105] used is defined as:

σ
(

SSq
)

=

√
n−
(

∑
∣

∣SSqi

∣

∣

)

√

∑SS2qi√
n−1

, (5.5)

where n is the number of bins of the descriptor SSqi , and 0≤ σ ≤ 1. If the descriptor does

not meet both criteria the feature vector is considered non-informative and is ignored.
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Finding feature matches

The forward-backward matching algorithm (see Algorithm 1) was originally designed to

find distinctive and stable point between two stereoscopic images [81]. Given a set of points

p = {p1, p2, ..., pn} belonging to image IA, point pi is considered stable if its best match in

a set of points q = {q1,q2, ...,qn} belonging to image IB, say q j (forward), also has as best

match the original point pi in image IA (backward). If the previous condition is met, then

both points considered stable, if not, the points are discarded. The Euclidean distance is

used as a measure of similarity between feature point descriptors.

Algorithm 1 Forward-backward matching.

Input: p,q
Output: StablePoints p,StablePoints q

StablePoints p← /0
StablePoints q← /0
for all p in p do

q← findBestFeatureMatch of p in q

p′← findBestFeatureMatch of q in p

if p= p′ then
StablePoints p← StablePoints p∪ p
StablePoints q← StablePoints q∪q

end if

end for

5.2.3 Point-based affine registration

Feature correspondences that have been established in the previous stages are used as input

for a point-based image registration algorithm that fits an affine transformation model to the

set of features by minimizing the RMS error between feature correspondences. The image is

then transformed and interpolated according to this affine transformation model. It is worth

noting that only the RMS error between the feature correspondences drives the registration

procedure and not the image intensities.

A reasonable assumption is that feature correspondences are noisy. That means that

they are likely to be contaminated by outliers, e.g. matching features do not correspond to

matching anatomical structures. Using RANSAC we can learn the parameters of an affine

transformation model that is robust against outliers. Initially developed by [67], RANSAC
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Figure 5.2: From left to right, four successive iterations of RANSAC. Models are randomly

initialized, the best model is kept until convergence or exit criteria is met.

is a non-deterministic algorithm that iteratively estimates parameters of a model in the pres-

ence of large amounts of outliers. Rather than using the full set of points to estimate a

model, RANSAC uses a minimal random subset to estimate an initial model. This model

is then tested on the remainder of the data points and if any other point is well represented

by the model (up to an error tolerance) it is added to the subset. This process is repeated

on different subsets until the rank of the model is above a certain predefined threshold. The

rank is determined by the number of points contained in the subset. The higher the number

of points, the higher the rank and the better the model explains the data. Figure 5.2 shows a

basic example of RANSAC.

5.3 Data and Results

Images used to evaluate the proposed method where obtained from the OAI public use

dataset (groups 1.C.0 and 1.E.0, available at http://www.oai.ucsf.edu). A subset of 75 im-

ages were randomly selected and manually annotated by an expert using three orthogonal

views by placing four landmark points on the anterior collateral ligament (ACL) and poste-

rior collateral ligament (PCL) insertions on the femur and the tibia (see Appendix C for a de-

scription on how the landmarks are defined). The central voxel of each ligament insertion is

selected at the bone interface. The OAI dataset consists of multiple image sequences for each

subject. In the following, the fat-suppressed, sagittal 3D double echo steady state (DESS)

sequence with selective water excitation was used. The images have an in-plane resolution

of 0.36 x 0.36mm and slice thickness of 0.7mm [158] (see Appendix B for more details).

We followed the work flow outlined in Figure 5.1: Using down-sampled images, we
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filtered out smooth regions of the image using the structure tensor (Section 5.2.2). After

this, we calculated 3D local SS features in the remaining regions for a regular grid for every

second voxel in the in-plane direction and for each slice using a correlation window and

a patch size of radius of 5 voxels. We empirically found these values to be adequate for

representing the structures at hand. We then reduced the number of features using sparsity

and SS thresholds of 0.25 and 0.9 respectively (Section 5.2.2). For a each pair of images we

used a forward-backward matching algorithm to find stable points, using a search window

of ±30 voxels.

Further to this pre-processing two different variants for the matching were explored:

In the first variant we use the matching features as input for a point-based affine registra-

tion in order to obtain a affine transformation between the images, which we call feature

based registration (FBR). In the second variant we used RANSAC to estimate the param-

eters of the affine transformation model. We refer to this as feature based registration with

RANSAC (FBR+). Since the 3D local SS descriptors are not completely rotationally in-

variant, an iterative process could prove to be beneficial, as feature matches would become

more accurate as the images are increasingly better aligned. Using the output from FBR and

FBR+, the process was repeated using the transformed image as input for a second iteration.

At this point, two different search window sizes, ±15 and ±40, in the forward-backward

matching algorithm where tested. The method referred to as FBR2a used a ±15 voxel win-

dow, while the methods FBR2b and FBR+
2b+

(using RANSAC on both iterations) used ±40

voxel window. To assess the performance of the proposed method, the FRE of the previ-

ously defined landmarks was compared to an intensity based affine registration (AfR), that

minimizes the normalized mutual information using gradient descend optimization [198].

FRE values where calculated for all the possible pairwise registration (n=5550).

Table 5.3 shows FRE for the proposed methods. Our method shows a very substantial

improvement in terms of mean FRE and standard deviation, 2.13 and 2.47 mm respectively,

∼36% over AfR. In Figure 5.3 (a) and Figure 5.4 (a) the FRE distributions of the proposed

method and AfR are shown. In both cases the proposed method distribution is more skewed

towards zero (specially in Figure 5.4) than AfR, indicating an overall improvement. Figure
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Figure 5.3: FRE comparison between the proposed method without using RANSAC and

intensity based affine registration.
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Figure 5.4: FRE comparison between our method using RANSAC as an estimator and in-

tensity based affine registration.
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Landmark AfR FBR FBR+ FBR2a FBR2b FBR+
2b+

ACL femur 5.62(3.88) 4.43(2.75) 3.15(1.94) 3.52(2.11) 3.66(1.74) 3.05(1.41)

ACL tibia 6.17(4.10) 5.70(3.72) 4.50(2.73) 4.75(3.03) 5.03(2.62) 4.12(2.04)

PCL femur 6.08(3.97) 5.04(2.97) 3.68(2.11) 4.19(2.38) 4.42(2.25) 3.68(1.79)

PCL tibia 5.56(3.82) 4.86(3.03) 4.36(2.58) 4.38(2.51) 4.12(2.17) 4.07(2.00)

All mean error 5.86(3.53) 5.00(2.58) 3.92(1.77) 4.21(1.93) 4.38(1.41) 3.73(1.06)

Table 5.1: Accuracy of the proposed methods. Errors in mm with standard deviation in

brackets.

5.3 (b) and 5.4 (b) show scatter plots of the FRE obtained by the proposed method FBR2b vs

AfR and FBR+
2b+

vs AfR, respectively. Values above the diagonal line indicate and improve-

ment of the proposed method over AfR. Furthermore, outliers (in regards to the FRE of the

four landmarks) are almost completely removed in the cases of FBR2b and FBR+
2b+

, which

shows the robustness of the algorithm. Figure 5.5 shows a comparison between AfR, FBR2b

and FBR+
2b+

. In the background is the target image, while the overlaid contours correspond

to the source image after registration, a clear improvement is shown.

(a) (b) (c)

Figure 5.5: Registration results after using (a) AfR, (b) FBR2b and (c) FBR+
2b+

. Average

FRE of 25.19, 7.08 and 3.15mm, respectively.)

5.4 Conclusions

We have proposed a method that uses SS features instead of image intensities in order to es-

tablish feature correspondences between a pair of images. This enables us to register images

in a more robust and accurate way. We have shown quantitative results that demonstrate the

improvements obtained over intensity-based registration. This has been demonstrated using
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a subset of images from the OAI database consisting of 75 randomly sampled MR images.

Using exhaustive pairwise registration we obtained a FRE improvement in ∼82% of the

cases, while virtually eliminating any outliers. It was observed that a two-iteration approach

in which two consecutive feature matching/transformation are done, that is the output of the

first iteration (after transformation) is the input of the next one, helped to eliminate outliers.

We also observed that adding a further intensity-based registration only degrades the quality

of the registration. This confirms that the use of the 3D local SS features play a key role

in the robust registration. However, a week point of the evaluation done is that it relies in

the calculation of the FRE for only four landmarks, which is far from ideal to measure true

registration error. Additionally, the four landmarks used do not cover the whole volume of

the image and focus on a rather specific part knee (the ligament insertions). An interest-

ing avenue for further work would be to use the proposed model for non-rigid registration.

However, non-rigid transformation models usually have a high degree of parameters and

RANSAC might not be able to estimate a meaningful model from the relatively low number

of matching features. This could be addressed using a piecewise affine model. The follow-

ing chapter retakes the brain MR image landmark localization task introduced in Chapter 4.

Here, a machine learning framework that, leveraging on manifold learning and regression,

estimates the direction and distance to the landmark at every location. This is in contrast to

the use of a sliding window approach that detects (or not) the location of the landmark.
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Chapter 6

Laplacian eigenmaps for automatic

landmark localization

This Chapter is based on:

• R. Guerrero, R. Wolz, D. Rueckert. Laplacian eigenmaps manifold learning for land-

mark localization in brain MR images. Medical image computing and computer-

assisted intervention (MICCAI), volume part II, pages 566-573, 2011.
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Abstract

In this chapter we propose to address the problem of identifying anatomical landmarks in

medical images. A manifold learning approach based on Laplacian eigenmaps that learns

an embedding from patches drawn from a training set of annotated images is introduced.

The position of the patches in the manifold can be used to predict the location of the land-

marks via regression. New image patches are embedded in the manifold and the resulting

coordinates are used to predict the landmark position in the new image. The output of

multiple regressors is fused in a weighted fashion to boost accuracy and robustness. We

demonstrate this framework localizing 20 anatomical landmarks in 3D brain MR images

from the ADNI database. In addition we locate 7 landmarks in a database of face images

in order to demonstrate the method’s ability to generalize beyond medical images. We com-

pare the proposed method to two alternative approaches, a Sliding window detector with

Haar features and non-rigid registration-based landmark localization. The proposed ap-

proach has an average landmark localization accuracy of ∼1.24mm for brain MR images

and ∼1.75 pixels for facial images. This demonstrates improved performance compared to

sliding-window and registration-based approaches.

6.1 Introduction

The localization of anatomical landmarks is a crucial step in many medical imaging appli-

cations. In registration, landmarks can be used to define corresponding anatomical points

in different images. Matching the landmarks across images and interpolating the correspon-

dences between landmarks, e.g. using thin-plate splines [20, 89, 19], yields a registration

that represents faithfully the anatomy of the structures that the landmarks belong to. Simi-

larly, several segmentation algorithms require seed point initialization and anatomical land-

marks can be used to initialize such algorithms [159, 237]. In morphometry, landmarks

can be used to obtain quantitative measures from anatomical structures and compare them

across different images; e.g. in [75], PCA of the distribution of 24 brain landmarks across

different subjects is analyzed and a statistically significant difference between left and right
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hemispheres is revealed (the landmarks are located on a 3D reconstruction of the brain’s

cortical surface).

In this work we propose a manifold learning approach that is capable of learning a low-

dimensional embedding of image patches. The assumption is that the local anatomy around

a particular landmark is well-represented in this embedding. We can then learn a regression

model that predicts the displacements between the patch location and the landmark. Image

patches from unseen images are mapped to the learned manifold using an out-of-sample

approach [18] and the regression model is then used to obtain an estimate of the landmark’s

position. Finally, a consensus of the predictions made by several patches (belonging to the

same image) is formed by computing a weighted average of all the estimates. The approach

has been evaluated by training on a large dataset of 100 brain MR images from CN subjects,

MCI and AD patients from the ADNI1 study. A different set of 100 images from ADNI is

used for testing the proposed approach. Additionally, in order to demonstrate the method’s

ability to generalize to different types of images, we also evaluate it using 400 face images

from a publicly available database for facial expression analysis [154]. The face data was

randomly split into two independent subsets of 300 images for training and 100 for testing.

6.2 Method

6.2.1 Manifold Learning

Manifold learning in general refers to a set of machine learning techniques that aim at find-

ing a low dimensional representation of high dimensional data while trying to faithfully

represent the intrinsic geometry of the data. Some of the most popular manifold learning

techniques include MDS [209], Isomap [203], LLE [180] and Laplacian eigenmaps [17]. A

review and comparison of different manifold learning techniques can be found in Chapter 3.

In our framework, given a set of NI images, we extract NP equally sized patches from

each image in a ROI around a landmark. Each of these patches, consisting of D voxels,

is stored as a vector of intensities xn = {x1, ...,xD} ∈ R
D. The set of patches is denoted

1www.loni.ucla.edu/ADNI
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as X = {x1, ...,xN}, where N = NI ·NP. Our aim is to learn the underlying manifold in R
d

(d≪D) that represents the relationship between patches in the vicinity of a given landmark.

Specifically, we intend to learn a manifold that can be used to predict the displacement ∆n =

{δx,δy,δz} between the center of the patch and the landmark in question. Manifold learning

techniques offer a powerful approach to find a representation of images that facilitates the

application of statistical machine learning techniques such as regression. Since the patches

are expected to lie on or near to a non-linear manifold, the Euclidean distance between

patches in the original space is not necessarily meaningful and cannot be used for regression.

After uncovering the manifold structure in the data, the Euclidean distance in the embedded

space provides a more meaningful approximation of the geodesic distance in the original

space and is thus more suitable for regression.

Laplacian eigenmaps

Laplacian eigenmaps can be used to find a low-dimensional representation of the data f :

X→ Y, yi = f (xi) while preserving the local geometric properties of the manifold [17].

Laplacian eigenmaps use a local neighborhood graph to approximate geodesic distances

between data points. In this work we use the Euclidean norm as a distance (similarity)

metric to identify the k-neighborhood around each point. From these distances a sparse

neighborhood graph G is constructed. Furthermore, a weight matrix W assigns a value to

each edge in G, and is computed using a Gaussian heat kernel

wi, j = K(xi,x j) = exp

(

−
∥

∥xi−x j

∥

∥

2

2σ2

)

, (6.1)

with standard deviation σ.

Laplacian eigenmaps aim to place points xi and x j close together in the low-dimensional

space if their weight wi, j is high, e.g. if they are close in the original, high-dimensional

space. This is done by means of minimizing the cost function given by

φ(Y) = argmin∑
i, j

‖yi−y j‖2wi, j , (6.2)
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under the constraint that yTDy= 1 which removes an arbitrary scaling factor in the embed-

ding and prevents the trivial solution where all yi are zero. The minimization of Equation

(6.2) can be formulated as an eigenproblem [10], through the computation of the degree

matrix M, which is a diagonal matrix that contains information about the degree of each

vertex of W, and the Laplacian L, where L =M−W and mi,i = ∑ jwi, j. Hence, the low-

dimensional manifold Y that represents all data points can be obtained via solving a gener-

alized eigenproblem

Lν = λMν , (6.3)

where ν and λ are the eigenvectors and eigenvalues, and in turn the d eigenvectors ν corre-

sponding to the smallest (non-zero) eigenvalues λ represent the new coordinate system.

Approximate nearest neighbors (ANN)

Since we are learning a manifold from a large number of examples (in our case 133100 ex-

amples, see Section 6.4), the similarity matrixW that needs to be calculated in the Laplacian

eigenmaps algorithm is very large (∼18 billion elements). Even though it is strictly k-sparse,

calculating exact nearest neighbors would mean that a non-sparse matrix would need to be

calculated first, in order to find the k nearest neighbors and then sparsify W; making the

calculation of all the exact pairwise distances computationally unfeasible. We therefore,

instead calculate approximate nearest neighbors using a hierarchical k-means tree, in order

to speedup the nearest neighbor search. A k-means tree is constructed by splitting all the

data points into km distinct regions using the k-means clustering algorithm (of complexity

O(NDkm+1 logN), where D is the dimensionality) for a given number of iterations where

the km seed points are chosen randomly. This is repeated recursively (on each of the newly

formed clusters) until the number of data points in each region falls below km [150]. This is

implemented in the fast library for approximate nearest neighbors (FLANN) [149]. Queries

are computed by exploring the tree in a best-bin-first manner, as this has been shown to

improve the exploration of kd-trees by up to two orders of magnitude. This search has a

complexity of O(N1−1/d + k), where d is the dimension of the tree.
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Out of Sample Extension

For the application considered in this work, it is necessary to map new patches into the

manifold in order to use the embedded coordinates to make a prediction via regression. For

linear dimensionality reduction techniques like PCA this is straightforward, as they provide

a projection matrix for exact transformation between the original and the embedded space.

Unfortunately, this is not the case for most non-linear methods. Therefore, approximation

techniques must be used. We address this problem by using an out of sample technique that

employs the Nyström approximation [163], which approximates the eigenvectors of a large

matrix based on the eigendecomposition of a submatrix of the large matrix, to formulate

a training set dependent normalized kernel. Using this kernel K̃, an approximate mapping

from the high dimensional space to the low dimensional manifold is obtained. To embed a

point into a manifold first we find the nearest neighbors of the new point, belonging to the

test set X′, in the training set X. Then, the kernel K̃ is used to assign a weight to each of

its nearest neighbors. Finally an approximate mapping to the manifold is calculated using

the weighted average of the low dimensional coordinates of its high dimensional nearest

neighbors. The equivalent, training set dependent normalized kernel, is given by:

K̃(x′i,x j) =
1

N

K(x′i,x j)
√

EX′[K(x
′
i,X)]EX[K(x j,X)]

, (6.4)

where K is a Gaussian heat kernel (Equation (6.1)), x j and x′i are points from the training

X and test X′ datasets, respectively. The expectations are taken over the empirical data and

N is the number of training samples (see [18] for full analysis). For every new patch we

embed in the manifold we need to find its k nearest neighbors. This is done using either

exact nearest neighbors or approximate nearest neighbors using the search tree defined in

Section 6.2.1.

6.2.2 Spatial Prior Probabilities

Assuming that the structure of interest is in some approximately known orientation and

position, a landmark’s spatial location is bounded, to a certain extent, to a particular volume
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or area within the image. That is, once the images have been affinely registered, the possible

locations of each of the n landmarks is bounded within this space. Thus, we can restrict

the search for each landmark to those locations which have a non-zero probability for the

location of the landmark. We model the spatial prior probabilities of each landmark, based

on the position of the landmark in the training set, using kernel (or parzen window) density

estimation. This can be formulated as:

(6.5)

where p are either the 3D voxel coordinates (x,y,z) or 2D pixel coordinates (x,y), ιi ∈

{ι1, ..., ιn} are all the landmarks in the training set, Kp(·) is the the kernel function in a d-

dimensional space such that
∫

ℜd Kp(x)dx = 1, and hn > 0 is the width of the kernel. The

kernel function Kp(·) is modeled as a Gaussian function. Figure 6.1 shows an example of

the prior probability map of 20 landmarks in a brain MR image.

(a) (b)

(c)

Figure 6.1: Estimated prior probability distribution for all the landmarks. (a) Splenium

and genu of corpus callosum, superior and inferior tip of the cerebellum, fourth ventricle,

anterior and posterior commisure, and superior and inferior aspect of the pons. (b) Anterior

and inferior tip lateral ventricle (only left side shown). (c) Superior and inferior tip of

the putamen (left and right). Contrast in probability maps has been enhanced to facilitate

visualization.
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6.2.3 Landmark Prediction

Using the low-dimensional coordinates Y = {y1, ...,yN} of each patch (that are estimated

from the training set) and their corresponding displacements ∆n (between the center of the

patch in image space and the position of the landmark), we fit a linear regressor, using Y as

independent variables and ∆n as dependent variables, to obtain an estimated displacement

∆′n = {δ′x,δ′y,δ′z},

∆′n = Y′b+ ε≃
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, (6.6)

where the error term ε has been neglected.

A test dataset X′ is built by extracting patches from an unseen images at random loca-

tions within its specified non-zero prior probability region. These patches are embedded

in the landmark specific-manifold (e.g. a separate manifold is constructed for each land-

mark) using the out-of-sample approach, described in Section 6.2.1, to obtain their low-

dimensional representation Y′. Using the learned regressor coefficients β, an estimate of

the displacement from patch n to the landmark is obtained. Since patches that predict

small displacements tend to have a higher accuracy than those that make large displace-

ment predictions, a weighted average is calculated, where the weights of individual pre-

dictions’ are based on the magnitude of the displacement ∆′n. We use a Gaussian kernel,

Kw(∆
′
n) = exp(−∆′n/2σw

2), to calculate the weight of each prediction.

6.3 Comparison to other landmark detection approaches

In this section we briefly describe two other different methods commonly used for land-

mark localization: (a) Sliding window detector with Haar features (SW) and (b) nonrigid

image registration (REG). This two other methods were used as a comparison to the method

proposed here (Section 6.5).
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6.3.1 Sliding window detector with Haar features (SW)

A sliding window detector consists of testing a classifier in a subregion of an image (win-

dow) to see whether or not the object of interest is in this subregion, storing the result,

moving the window to another location and testing again, until the whole image (or ROI)

has been tested. In this work, a detector for each landmark was built using a variation of

the Viola-Jones face detector [218]. In this approach, Haar-like features as shown in Figure

4.2 have been used due to their simplicity and fast computational speed. See Section 4.3.1

for further details on this type of landmark detector. The 3D sliding window detector, was

trained using 400 positive examples, from randomly chosen images from the ADNI dataset

(96 AD, 192 MCI and 112 CN patients) and 4000 negative ones, taken from the vicinity

(within the ROI of the landmark and outside ±4 voxels from it) of the positives to improve

robustness. The classifiers were built as a single monolith (instead of a cascade of classifiers

as in [218]) 100 feature (3D Haar features) classifier.

6.3.2 Nonrigid image registration (REG)

Registration can be used to propagate the annotation (e.g. a set of points or labels) present

in a reference image to a new image. In this case the annotated reference image acts as a

template (or atlas). Hence, landmarks that are annotated in the template can be propagated

to new images. Figure 4.3 in Chapter 4 illustrates the landmark propagation procedure.

An initial set of landmark annotations are carried out on the MNI152 template and once

the images have been registered to this template, the locations of the landmarks can be

determined by applying the non-rigid transformation to their position. In this work we used

the method proposed in [182], where a FFD model based on B-splines is used to deform

the underlying mesh of control points until an intensity similarity measure is optimized

(in this case normalized mutual information). We used a hierarchical FFD approach in

which the control point mesh is refined from a 20 mm spacing to 10 mm and then 5 mm.

Preliminary experiments using an even finer control point spacing of 2.5 mm showed little

or no improvement.
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6.4 Data

Two different datasets were used to evaluate the proposed method: A 3D brain MR image

dataset and, in order to show the generalization capabilities of the method, a 2D facial

dataset.

6.4.1 Brain MR images

The images that were used to evaluate the proposed method were obtained from the ADNI

database [148], see Appendix A. In this work, we used a subset of 1.5T T1-weighted images

of 100 randomly chosen subjects for training and another 100 randomly chosen subjects for

testing. In both (training and testing) datasets there are 24 AD, 48 MCI and 28 healthy

subjects, to truthfully represent the full ADNI dataset. All images were acquired at base-

line. Brain images were skull-stripped, affinely aligned to the MNI152 brain template and

normalized using linear intensity rescaling, prior to landmark localization.

In total 20 landmarks were used to learn 20 different landmark specific manifolds. Fig-

ure 4.5 in Chapter 4 shows the location of the 20 anatomical landmarks used in this chapter.

Landmarks were manually annotated by an expert using three orthogonal views, Appendix

C.1 gives their description. The high-dimensional training set X= {x1, ...,xN}, is obtained

by collecting 3D image cubic patches of 213 voxels around a regular grid that is centered

at the landmark, from 100 different brain MR images. The regular grid has a spacing of 3

voxels and a displacement of ±18 voxels in each axis from the landmark. This volume is

chosen so that it includes the non-zero probability volume obtained from the PDF estima-

tion. For each image in the training set we sample 113 (1,331) patches from this grid, as this

amount was deemed sufficient to learn the subspace. Doing this for the 100 images in the

training set and rearranging them so that each patch is represented as a column vector (with

213 intensity values), yields a 133,100 by 9,161 (N,D) matrix that contains all the patches,

from all the training images, around the landmark in question.
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6.4.2 Facial images

The database is comprised of 400 color images of faces (taken from the web-based database

for facial expression analysis [154]), with various expressions and different styles of head

and facial hair. Seven landmarks (see Table 6.5.2 for listing) have been manually annotated

by an expert. Based on this annotations we first rigidly aligned the faces, crop them, convert

to grayscale and normalized both intensity and size. Each of the preprocessed images has a

size of 1282 pixels. The 400 images where randomly split in to two independent sets, 300

for training and 100 for testing.

The high-dimensional training set, X = {x1, ...,xN}, used in this work, is obtained by

collecting image patches of 272 pixels around a regular grid that is centered at the landmark,

from the 300 training facial images. The grid has a spacing of 2 pixels and a displacement

of±10 pixels in each direction from the landmark. This area is chosen so that it includes the

non-zero probability area obtained from the PDF estimation. For each image in the training

set we sample 112 (121) patches from this grid. Doing this for the 300 images in the training

set yields a 36,300 by 729 (N,D) matrix that contains all the patches, from all the training

images, around the landmark in question.

6.5 Results

6.5.1 Brain dataset

From the training set X we learn the underlying low-dimensional manifold, using Lapla-

cian eigenmaps (Section 6.2.1). The parameters k (nearest neighbors in the neighborhood

graph), d (the output dimensionality of the data) and σ from the Gaussian heat kernel, were

empirically set to 50 (except for the case of the inferior aspect of pons, which required 130

nearest neighbors), 80 and 1, respectively. The parameter k was chosen to yield a fully con-

nected neighborhood graph. This ensures that all the displacements, ∆n, from the landmark

were equally represented. That is, any patch left out would mean an under representation

of its associated displacement in final graph (largest connect component). The coefficient
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Figure 6.2: Diagram of method’s training and testing steps.

of determination, R2, for the linear regression was used as an indicative to determine the

final dimensionality d of Y, with values of around 0.9 obtained for 80 dimensions, with sta-

ble behavior of the algorithm observed for final dimensionalities between 30-400. Finally,

varying the parameter σ showed little improvement.

For each new test image, we sampled 100 patches at random locations, within a non-

zero probability ROI obtained from the estimated PDF and not necessarily belonging to

the grid used in the training. We then embedded the new points (patches) into the learned

low-dimensional manifold using the out-of-sample technique described in Section 6.2.1 and

used the learned regression model to obtain a prediction from each point. A final landmark

prediction for each image is obtained using a weighted average, as described in Section

6.2.3, where σw from the weighting Gaussian kernel Kw(∆
′
n) was tuned to each landmark-

specific case (with σw 1-1.35). An overview of the whole process is shown in Figure 6.2.

Table 6.1 shows results comparing the proposed method, landmark specific manifold

(LM), with the two other possible approaches described in Section 6.3: SW and REG. A

five random subsample cross-validation of the method was carried out in order to asses the

results and ensure reproducibility (the average of the five tests is shown, with a variability

among tests of ∼0.1mm). Stable behavior was observed in the five tests. To embed new

patches in the manifold for testing, we used the search tree to find approximate nearest
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neighbors learned in the training phase. Our methods shows relatively consistent result with

all landmarks throughout the tested dataset.

A statistical comparison of the three classes of patients (AD, MCI and CN) was per-

formed on the training set. It was observed that, obtaining the average landmark position

(for each landmark) and comparing intra-class distance variation, shows no statistical dif-

ferences between classes. Also, the average intra-class landmark prediction error shows no

statistically significant variation across the groups. In an attempt to achieve higher accu-

racy we explored using exact nearest neighbors in the testing stage, as the similarity matrix

calculated here is substantially smaller, thus making its computational cost more feasible.

However, a lower accuracy was obtained with this method (as well as higher computation

times).

As can be seen in Figure 6.3, landmarks with higher variability, that is, their location

in the brain is less constrained, e.g. the superior aspect of cerebellum (L8), tend to have

a higher prediction error than those landmarks with a more stable location, e.g. anterior

and posterior commissure (L14, L15), in terms of the prediction accuracy by the proposed

algorithm. A 2D visualization of the splenium of corpus callosum’s (outer aspect) manifold

is shown in Figure 6.4. In order to facilitate visualization, only 1000 points where plotted

(instead of the 133,100). The corresponding MR image (a sagital slice of the patch) of

four pairs of points are displayed in order to show that local neighborhoods in the manifold

represent patch-similarity (structural significance) in the input space.

The proposed method was implemented in Matlab, using a combination of the FLANN

[149] and the Matlab Toolbox for Dimensionality Reduction [212], as well as some code

optimization of the latter, mainly the out-of-sample implementation. Training a landmark-

specific manifold requires around 3 hours on a 2.67GHz 12-core machine with 64Gb of

RAM. Although only the eigensolver takes advantage of more than one core, most of the

process runs on a single core. For testing, if exact nearest neighbors are found for the out-of-

sample extension, embedding new points in the learned manifold takes about 0.16 seconds,

meaning that each landmark is located in about 16 seconds (100 patches are used to predict

each landmark). If instead of exact nearest neighbors, we use the learned search tree used
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Anatomical landmark LM SW REG

Splenium of corpus callosum (outer aspect) 1.27(0.63)+* 1.75(1.04) 3.95(1.43)

Splenium of corpus callosum (inferior tip) 1.13(0.43)+* 1.46(0.75) 2.10(0.89)

Splenium of corpus callosum (inner aspect) 1.30(0.57)+* 1.81(0.99) 2.31(1.31)

Genu of corpus callosum (outer aspect) 1.13(0.50)+* 1.58(1.09) 1.73(1.01)

Genu of corpus callosum (inner aspect) 1.03(0.47)+* 1.28(0.67) 1.47(0.64)

Superior aspect of pons 1.15(0.54)* 1.22(0.63) 2.79(1.26)

Inferior aspect of pons 1.16(0.49)+* 1.86(0.92) 1.70(0.85)

Superior aspect cerebellum 1.68(0.72)+* 2.27(1.71) 2.99(1.64)

Fourth ventricle 1.33(0.54)+* 1.09(0.65) 5.57(2.70)

Putamen posterior (left) 1.14(0.47)+* 2.21(1.22) 4.36(1.81)

Putamen anterior (left) 1.24(0.48)+* 1.86(1.13) 2.48(1.29)

Putamen posterior (right) 1.08(0.48)+* 2.20(1.22) 3.53(1.78)

Putamen anterior (right) 1.28(0.52)+* 2.31(1.61) 2.79(1.43)

Anterior commissure 1.00(0.79)+* 1.27(0.72) 1.05(0.42)

Posterior commissure 0.88(0.36)* 0.79(0.60) 1.85(0.48)

Inferior aspect cerebellum 1.35(0.64)+* 2.13(1.69) 3.71(1.68)

Anterior tip of lateral ventricle (left) 1.28(0.58)+* 1.86(1.14) 3.67(1.72)

Anterior tip of lateral ventricle (right) 1.50(0.85)+* 1.84(1.20) 3.65(1.73)

Inferior tip of lateral ventricle (left) 1.47(0.85)+* 2.28(1.42) 4.44(2.07)

Inferior tip of lateral ventricle (right) 1.11(0.54)+* 2.18(1.18) 4.01(1.79)

Table 6.1: Accuracy of the proposed method (LM) on the ADNI database, for the specified

landmarks, and comparison SW and REG approaches. Errors in mmwith standard deviation

in brackets. Statistical significance (to %5, results not corrected for multiple comparisons)

is indicated by + and *, for comparisons between LM and SW or REG, respectively.

to find the approximate nearest neighbors in the training stage, each landmark is detected in

about 5.8 seconds.

A direct comparison between the method presented in this chapter and Chapter 4 (land-

mark localization using SS features) is not possible due to the fact that slightly different

datasets where used. Nonetheless, on average manifold learning landmark localization

clearly outperforms 3D local SS. The main disadvantage of manifold learning landmark

localization is the memory requirements of the manifold.

6.5.2 Face dataset

Experiments where also carried out on a face database covering 400 subjects, as detailed

in Section 6.4. The parameters k, d, σ and σw empirically set to 50, 20 (except for the left

and right side of the mouth, which required 100 to ensure a fully connected graph), 1 and

1, respectively. The dataset was split into 300 images for training and 100 testing. For each

landmark we predict, 100 patches are drawn from the non-zero probability area and embed
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Figure 6.3: Average landmark predicted error vs. standard deviation of distance from aver-

age landmark position. More variable landmarks tend to have a higher prediction error.

them in the manifold to obtain a prediction from the learned regressors. The results of using

the proposed method on this database are shown in Table 6.5.2, along with a comparison of

localization accuracies of the same points by Martinez et al. [142]. A direct comparison to

the work presented by Martinez et al. is not entirely possible, as the dataset used in their

work is a combination of several datasets (including the one used for the evaluation of the

proposed method). However, results are added for illustration purposes. Results are given

in an interocular normalized distance in order to ease comparison between the methods.

Figures 6.5 show some comparisons between the predicted landmarks and the ground truth.

Landmark LM Martinez et al. [142]

Lower lip 0.034(0.021) 0.061(0.098)

Upper lip 0.033(0.023) 0.037(0.041)

Left side of mouth 0.031(0.018) 0.041(0.079)

Right side of mouth 0.036(0.022) 0.036(0.040)

Nose 0.030(0.018) 0.035(0.36)

Left eye (pupil) 0.025(0.015) —

Right eye (pupil) 0.025(0.014) —

Table 6.2: Intermolecularly normalized accuracy of the proposed method on the facial im-

ages database and a comparison the the accuracies obtained by Martinez et al [142]. Best

results in bold and standard deviation in brackets.
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Figure 6.4: 2D visualization of the splenium of corpus callosum’s (outer aspect) manifold.

1000 points used for visualization.
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Figure 6.5: Results on face dataset. In red the landmarks predicted with the proposedmethod

and in green the manually annotated landmarks. Best seen in color.
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6.6 Conclusions

We have proposed a method that uses Laplacian eigenmaps to learn a low-dimensional

manifold that represents local anatomy around a specific landmark in brain MR images

and human faces with different styles of facial and head hair. The landmark specific low-

dimensional manifolds were learned using image patches (around the vicinity of the land-

mark) from 100 brain MR images belonging to the ADNI dataset and also from 400 facial

images from the web-based database for facial expression analysis. Prior knowledge of the

spatial distribution of the landmarks was used to reduce the search space. Our results show

that the proposed method significantly outperforms the 3D sliding-window and non-rigid

registration approaches mentioned in Section 6.3 in the MR image landmark localization

task. Additionally, the method was shown to compare favorably to another state-of-the-art

method in the face database. A key drawback of the presented approach is its high mem-

ory requirements as each manifold, along with its high dimensional data points, need to be

preserved in order to embedded new patches to estimate a landmarks position.

Further improvement to the framework could be achieved using a more powerful re-

gression techniques such as support vector regression or a multiple output regression. An

interesting avenue to explore for future research is to extend the manifold learning approach

from ROIs to the whole image. This would allow the fast identification of an arbitrary, dense

set of landmarks. The located landmarks could then be used to establish correspondences

and provide a fast, initial registration. However due to the need large amount of expert

knowledge required to annotate training images, this seems unlikely to be done. If the ap-

proach is extended to pseudo-landmarks (e.g. control points as they are used in free-form

deformation-based registration), this would enable learning the correlation between the ap-

pearance of image patches appearances and the associated deformations, similar to the work

proposed in [121]. This may significantly reduce the computational cost and improve the

robustness to local minima by finding subject-specific patch correspondences.

In this chapter we have described a very accurate way of locating landmarks in both

brain MR and face images via linear regression on a learned subspace manifold. In Chapter

4 another method to locate landmarks in brain MR images was presented, where 3D local
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SS features where used as image point descriptors. However, the implicit assumption that

brain MR landmarks can be well represented using generic feature descriptors does not

necessarily hold. In the following chapter we will explore the idea of learning descriptors

specially suited to represent the data at hand, rather than making assumptions on how the

data should be best represented.
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Chapter 7

Data-specific feature point descriptor

matching

This Chapter is based on:

• Ricardo Guerrero, Daniel Rueckert. ”Data-specific Feature Point DescriptorMatching

Using Dictionary Learning and Graphical Models”. SPIE Medical Imaging, pages

866921-8, 2013.
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Abstract

Matching landmarks in a pair of images is a challenging task. Although off-the-shelf feature

point descriptors are powerful at describing points in an image, they are generic by nature,

as they have been usually developed for applications in a general computer vision setting

where there is little prior knowledge about the images. This chapter describes a general

framework that leverages recent developments in the machine learning community with an

aim of building feature point descriptors that are data-specific. The proposed approach

describes landmarks as feature descriptors based on a sparse coding reconstruction of a

patch surrounding the landmark (or any point of interest), using a data-specific learned dic-

tionary. Since strong spatial constraints exist in medical images, we also combine spatial

information of surrounding point descriptors in an online built graphical model. We demon-

strate accurate results in matching one-to-one anatomical landmarks in brain MR images.

This is in contrast to the methods for landmark localization developed in Chapters 4 and

6, where several annotated target images are used to estimate the landmark position in a

source image (several-to-one).

7.1 Introduction

The detection of landmarks is a crucial step in manymedical imaging applications, including

registration, shape modeling and morphometry. Approaches to landmark detection can be

roughly classified into three main categories: geometric-, classification- and regression-

based techniques.

Recently dictionary learning and sparse coding have emerged as powerful tools in image

analysis and machine learning. They have been successfully used in denoising [2], inpaint-

ing [139], classification [233], segmentation [171] and reconstruction [173]. Sparse coding

aims to represent a given signal as a sparse mixture model of some basis, while dictionary

learning tries to find which set of basis best represents the signals to be reconstructed. In this

work we propose to leverage ideas from dictionary learning and sparse coding to learn data-

specific feature point descriptors that are based on sparse reconstructions of the dictionary
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Figure 7.1: Overview of the proposed method.

elements.

7.2 Methods

Given an image with known anatomical landmark positions, we can use the sparse coding

coefficients as feature point descriptor of its known landmark positions. Then, using these

descriptors their matching counterparts can be found in another unseen source image. To do

this we adopt a multi-resolution pyramid approach (see Figure 7.1).

A dictionary for each level in the resolution pyramid is learned either on-line using the

pair of images or off-line using a set of training images. Feature vectors are obtained from

the sparse coding coefficients of: A patch around the known landmark in the target image,

a fixed number of randomly sampled support points from the target image and the complete

source image. Initially this is carried out for images at the coarsest level of the resolution

pyramid. A similarity map between the reconstruction coefficients from the target image

(landmark plus support points) and all the coefficients belonging to each voxel in the source

image is calculated; we expect that similarly looking patches should have similarly sparse

coding coefficients. Using a graphical model, built from the configuration of the landmark
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and support points in the target image (see Figure 7.2), we then find the most likely location

of this model (all points) in the source image. The most likely location of the landmark in

the source image defines a search window for the next level in the resolution pyramid and

the process is repeated until the finest level is reached.

7.2.1 Sparse coding

Sparse coding seeks to represent a signal x ∈ R
n as a sparse linear combination of basis

signals that belong to an over-complete dictionary D ∈ R
n×κ that contains κ basis signals

or atoms as column vectors, {d j}κ
j=1. Typically this representation is an approximation

x≈ Dα, subject to ‖x−Dα‖2 ≤ ε, where ε is the error tolerance and the vector α ∈ R
κ are

the sparse coefficients that act on D to reconstruct signal x. In the case where n < κ the

number of possible solutions is infinite. A common constraint to the problem is to look for

the sparsest solution by minimizing

min
x
‖x‖0 s.t. ‖x−Dα‖2 ≤ ε (7.1)

where ‖·‖0 is the l0 norm that counts the number of non-zero entries of a vector. Given a

3D image I of size N = Nx ·Ny ·Nz, we can break up image I into N small patches centered

around each voxel xi ∈ R
n. The sparse representation of each patch in x can then be found

solving Equation (7.1) independently

min
xi
‖xi‖0 s.t. ‖xi−Dαi‖2 ≤ ε (7.2)

where the coefficients αi provide a linear combination of atoms for each voxel and its sur-

rounding patch. Since αi represents a basis mixture model, one can expect that patches that

have a similar appearance will have similar mixture models and hence one can regard αi as

a feature point descriptor.

111



7.2.2 Dictionary learning

State-of-the-art results indicate that in general is better to learn a dictionary from the data

itself [171], rather than using an off-the-shelf dictionary, e.g. wavelets or discrete cosine

transform. Given a set of signals X= {xi}Ni=1, the assumption is that there exist a dictionary

D, from which a mixture of its elements can represent all signals in X via a sparse linear

combination of them. Dictionary learning aims at finding the best possible set of basis to

sparsely represent the signals in X, by minimizing

min
D,ααα

∑
i

‖αi‖0 s.t. ‖x−Dααα‖2F ≤ ε , (7.3)

or similarly

min
D,ααα

{

‖x−Dααα‖2F
}

s.t. ∀i,‖αi‖0 ≤ T0 (7.4)

for a fixed error tolerance, ε, or sparsity, T0.

The K-SVD [2] algorithm aims to solve Equation (7.4) iteratively. First, using an of-the-

shelf dictionary (discrete cosine transform, wavelets, curvelets, etc.) as an initial estimate

of the dictionary, D is fixed and the best coefficient matrix ααα is found using the orthogonal

matching pursuit [32] algorithm. Then a dictionary update step is performed, by fixing all

columns of D except one, dk, and finding a new best representation for dk. The process is

repeated for every column in D. If the algorithm has not converged or an early exit criteria

met, then the whole process is repeated (find α, then D).

7.2.3 Graphical model

In order to incorporate spatial constraints into the landmark matching problem, we define

a pictorial structure [64] for the image. The graphical model is built as a tree of depth two

with the root node being a patch around the anatomical landmark and additional support

point patches drawn at random from the image acting as the leaves on the tree. Following

the notation of Felzenszwalb et al. [64], the graphical model is defined as a undirected tree-

shaped graph G = (V,E), where the vertices V = {vr,v1,v2, ...vn} correspond to the parts
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(nodes in the graphical model) defined as image patches around the landmark vr and support

points vi, and the edges E connect the root patch vr to every other patch vi. An instantiation

of the model is given by the configuration L = (lr, l1, l2, ..., ln), where lr and li specify the

location of the landmark and support points respectively (Figure 7.2). Since our aim is to

build a graphical model on-line and from just one example, we cannot learn the parameters

of the model from the data. Instead we simply model the relationship between patches Ψi, j

as a Gaussian distribution (represented by the spring in Figure 7.2 right).

Figure 7.2: Graphical model: The red and white points indicate the landmark and support

points respectively.

7.2.4 Model matching

The problem of finding the best match across images, not for an individual point, but rather

an ensemble of points in the form of a graphical model can be defined by the following

optimization problem:

L∗ = arg min
L

(

n

∑
i=1

mi(li)+ ∑
(vr,vi)∈E

Ψr,i(lr, li)

)

(7.5)

Here Ψr,i(lr, li) is a function that models the relationship between patch vr and patch vi, and

mi(li) is a function that associates a cost of placing patch vi at location li. In our case we

model mi(li) as the L2-norm between the target patch descriptor αT and the descriptor αS

at every point in the source image, mi(li) = ‖αT −αS(li)‖2. As stated before, Ψr,i follows a

Gaussian distribution.
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In general, solving Equation (7.5) for a graph of arbitrary shape is an NP-hard problem

[22]. However, if the graphG= (V,E) is restricted to a tree-shaped topology it can be solved

using an algorithm based on the Viterbi recurrence [221]. Defining a root vertex vr ∈ V in

the graph (in our case is the landmark sought), every other vertex in the graph vi ∈ V has a

depth ki. In our case ki = 1 which implies that only the root and leaves are nodes in our tree.

For leave vertices vi, the only edge incident to them is (vr,vi), thus the only contribution

of li to the energy in Equation (7.5) is mi(li)+Ψr,i(lr, li) and quality of the best location is

given by

Bi(lr) =min
li
{mi(li)+Ψr,i(lr, li)} , (7.6)

Here the best location l∗i for patch vi, as a function of its parent’s location lr, can be found

by replacing “min” by “arg min” in Equation (7.6):

l∗i = arg min
li

(mi(li)+Ψr,i(lr, li)) . (7.7)

For the root node vr the value Bc(lr) is known for each of its children, hence the best location

can be found as

l∗r = arg min
lr

(

mr(lr)+ ∑
vi∈C j

Bi(l j)

)

. (7.8)

Equation (7.6) describes the quality of the optimal location l∗i for patch vi as a function of

its parent patch vr. Using the known parent’s location and Equation (7.6), we can back-trace

from the root to the leaves to obtain the optimal location L∗ for the whole model.

7.3 Comparison to other landmark detection approaches

In this section we briefly describe two other different methods that can be used for landmark

localization in a one-to-one matching approach: (a) 3D local SS descriptors and (b) REG.

These two methods were used as a comparison to the method proposed.
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7.3.1 3D local SS descriptors

3D local SS descriptors define a landmark based on the structural pattern of its neighbor-

hood. In 3D this is done by computing the similarity between a small spherical patch around

the landmark and every other point (another small sphere patch) in a larger surrounding

spherical image region, which results in an internal similarity map. This similarity map is

then binned into a log-spherical representation. Each bin is filled with the highest similarity

that falls within its supported range. A detailed description of SS descriptors can be found

in Chapter 4.

7.3.2 Non-rigid image registration

Intensity-based registration can be used to propagate a set of annotated landmarks from a

source image to a target image. Figure 4.3 in Chapter 4 illustrates the landmark propagation

procedure. In this work we used the method proposed in [182], where a FFD model based on

B-splines is used to deform the underlyingmesh of control points until an intensity similarity

measure is optimized (in this case normalized mutual information). We used a hierarchical

approach with a control point mesh that is refined from a 20 mm spacing to 10 mm and then

5 mm.

7.4 Data and Results

The proposed method has been tested using brain MR images from the ADNI database [148]

(see Appendix A). In particular, we used a subset of 1.5T T1-weighted baseline images of

100 randomly chosen subjects to learn a dictionary for each of the three resolution levels

and another 100 randomly chosen subjects for testing. Both (training and testing) datasets

include 24 AD, 48 MCI and 28 healthy subjects, to faithfully represent the full spectrum

of subjects in the ADNI dataset. All brain MR images were skull stripped, affinely aligned

to MNI space and normalized using linear intensity rescaling. To validate the proposed

method 20 landmarks (Table 7.2) were manually annotated by an expert observer using

three orthogonal views. The landmarks defined in the MNI template can be seen on Figure
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4.5 (see Appendix C for a detailed description).

We have evaluated four different approaches: In the first approach, we search for the

best matches for the manually selected landmarks’ descriptors at the coarsest level of the

resolution pyramid. In this scenario (called one path (OP)) we discarded the feature vectors

from previous levels. Also, an experiment using graph-based spatial constraints was carried

out (called one path plus graphical model (OPGM)). In another approach we follow the

same structure as before, except that we concatenated the descriptors from previous levels

with the current ones and subsequently find the best matches based on these descriptors

(called keeping previous vectors (KPV)). As before, we also tested using graph-based spatial

constraints (called keeping previous vectors plus graphical model (KPVGM)). Table 7.1

illustrates the main characteristics of the four different approaches.

OP OPGM KVP KVPGM

Graphical model ✗ ✓ ✗ ✓

Combined level descriptors ✗ ✗ ✓ ✓

Table 7.1: Different approaches and their associated characteristics.

An experiment was carried out were one of the test images was used as source and its

landmarks were matched to the remaining 99 (source) images, the process was repeated 100

times. The three dictionaries used in all experiments (one for each level) were learned from

patches extracted from down-sampled versions of the training images, and each dictionary

consisted of 130 atoms. The average accuracy results for the four mentioned approaches are

presented in Table 7.2.

It is clear that the approach that discards descriptors from previous levels and incorpo-

rates spatial knowledge (OPGM) outperforms the other approaches for every landmark both

in terms of accuracy and standard deviation. Results of a comparison to other landmark

detection approaches are summarized in Table 7.4. It should be noted that the SS approach

used in this chapter follows the same validation strategy as OPGM (one-to-one matching),

this is in contrast to how it was implemented in Chapter 4 (several-to-one matching). The

proposed method achieves on average a better landmark localization error. However accu-
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Anatomical landmark OP OPGM KPV KPVGM

Splenium of corpus callosum (outer aspect) 8.57 (6.90) 3.57 (2.10) 6.40 (3.73) 5.12 (2.91)

Splenium of corpus callosum (inferior tip) 7.21 (7.44) 2.80 (1.18) 4.67 (2.65) 3.36 (1.72)

Splenium of corpus callosum (inner aspect) 7.28 (7.58) 3.10 (1.17) 4.83 (2.70) 3.51 (1.70)

Genu of corpus callosum (outer aspect) 6.41 (6.84) 2.39 (1.64) 5.98 (5.83) 2.58 (1.79)

Genu of corpus callosum (inner aspect) 4.80 (6.83) 1.81 (1.03) 4.01 (4.34) 1.97 (1.20)

Superior aspect of pons 1.63 (1.56) 1.60 (1.70) 2.27 (2.09) 2.27 (2.15)

Inferior aspect of pons 2.29 (0.84) 2.32 (1.05) 3.03 (1.77) 3.07 (1.78)

Superior aspect cerebellum 11.89 (7.80) 4.90 (1.41) 7.43 (3.16) 6.13 (2.62)

Fourth ventricle 2.82 (2.58) 2.04 (1.45) 2.89 (1.81) 2.85 (1.71)

Putamen posterior (left) 8.24 (9.43) 4.02 (1.38) 6.21 (2.81) 4.96 (1.23)

Putamen anterior (left) 4.89 (5.27) 3.02 (0.97) 5.86 (1.63) 4.93 (1.26)

Putamen posterior (right) 8.59 (8.79) 3.62 (1.03) 5.79 (2.892) 4.19 (1.31)

Putamen anterior (right) 4.26 (3.56) 3.04 (1.21) 4.66 (1.58) 4.33 (1.38)

Anterior commissure 4.18 (7.92) 1.48 (0.90) 3.29 (3.11) 2.69 (2.12)

Posterior commissure 3.49 (5.31) 1.25 (0.53) 2.74 (2.64) 1.97 (1.86)

Inferior aspect cerebellum 5.52 (1.93) 5.42 (1.85) 6.59 (2.40) 6.44 (2.35)

Anterior tip of lateral ventricle (left) 5.28 (6.42) 2.85 (2.14) 5.09 (4.71) 3.73 (2.69)

Anterior tip of lateral ventricle (right) 4.25 (5.22) 2.45 (1.34) 3.32 (5.89) 2.62 (1.44)

Inferior tip of lateral ventricle (left) 5.89 (5.88) 3.76 (1.55) 6.03 (4.18) 4.84 (2.64)

Inferior tip of lateral ventricle (right) 4.01 (3.05) 2.82 (0.88) 3.37 (1.47) 3.01 (0.90)

Mean 5.58 (5.71) 2.91 (1.33) 4.72 (3.07) 3.73 (1.84)

Table 7.2: Accuracy of some variations of the proposed method. Mean error in mm with

standard deviations in brackets.

racy results on individual landmarks are more evenly distributed, with OPGM (proposed

method) being the most accurate in 35% of the cases, while SS and REG being the most

accurate in 25% and 40% of the cases, respectively.

7.5 Conclusions

In this work we have proposed a framework that combines dictionary learning, sparse coding

and graphical models in order to develop a data-specific feature point descriptor matching

algorithm that is spatially consistent between target and source images. To our knowledge,

this is the first time that dictionary learning along with sparse coding have been used to

address the problem of learning feature point descriptors. By using the learned dictionary

basis to reconstruct a patch, feature descriptors are specially tailored to represent the imaging

data at hand (brain MR images in our case).

In addition, using on-the-fly constructed graphical models, we have shown that the pro-

posed method produces accurate results in a one-to-one landmark matching setting. This is

in contrast to learning appearance from several training examples, as it is generally the case
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Anatomical landmark OPGM SS REG

Splenium of corpus callosum (outer aspect) 2.38 (2.65)* 2.12 (1.97) 4.18 (1.52)

Splenium of corpus callosum (inferior tip) 2.40 (1.33)+* 3.50 (2.43) 2.08 (1.15)

Splenium of corpus callosum (inner aspect) 3.21 (2.07)+* 5.79 (4.30) 2.52 (1.40)

Genu of corpus callosum (outer aspect) 1.59 (0.97)* 1.79 (1.62) 2.04 (1.37)

Genu of corpus callosum (inner aspect) 1.50 (0.89)+ 4.34 (3.34) 1.46 (0.93)

Superior aspect of pons 1.60 (0.75)* 1.67 (1.54) 2.80 (1.24)

Inferior aspect of pons 5.10 (4.59)+* 2.57 (2.27) 1.71 (1.07)

Superior aspect cerebellum 3.67 (3.24)+* 8.46 (6.20) 3.03 (1.40)

Fourth ventricle 1.52 (0.83)* 1.34 (1.24) 5.97 (2.98)

Putamen posterior (left) 4.46 (2.19)+ 3.74 (2.47) 4.62 (2.15)

Putamen anterior (left) 3.79 (3.04)+* 4.50 (3.33) 2.58 (1.55)

Putamen posterior (right) 4.20 (2.31)+* 4.84 (3.30) 3.31 (1.51)

Putamen anterior (right) 2.30 (1.67)+* 4.17 (2.76) 2.87 (1.58)

Anterior commissure 1.07 (1.18)+ 2.37 (1.78) 1.10 (0.41)

Posterior commissure 4.71 (2.79)+* 1.39 (1.16) 1.91(0.51)

Inferior aspect cerebellum 4.81 (3.86)+* 6.33 (5.04) 3.98 (1.96)

Anterior tip of lateral ventricle (left) 1.44 (0.95)+* 2.39 (2.16) 3.83 (1.58)

Anterior tip of lateral ventricle (right) 2.39 (1.35)* 2.22 (1.51) 3.83 (1.76)

Inferior tip of lateral ventricle (left) 3.74 (2.68)+ 5.68 (5.26) 4.13 (1.79)

Inferior tip of lateral ventricle (right) 2.44 (1.37)+* 3.83 (2.83) 3.75 (1.84)

Mean 2.91 (2.04) 3.65 (2.83) 3.08 (1.48)

Table 7.3: Accuracy of some variations of the proposed method. Mean error in mm with

standard deviations in brackets. Statistical significance (to %5, results not corrected for

multiple comparisons) is indicated by + and *, for comparisons between OPGM and SS or

REG, respectively.

when using a sliding window classifier, manifold learning or a voting scheme using other

descriptors (e.g. self similarities). One of the main disadvantages of the proposed approach

is high computational cost of the sparse coding of the source image. Due to the highly par-

allelizable nature of the sparse coding we believe this could greatly be ameliorated using a

graphics processing unit.

A direct comparison between the methods presented in this chapter and Chapter 6 (man-

ifold learning landmark localizations) is not strictly speaking possible due to the fact that

slightly different datasets were used. Additionally, the methods presented in this chapter find

landmarks doing a one-to-one matching, while manifold landmark localization (Chapter 6)

uses information from several-to-one images. Nevertheless, it can be observed that on av-

erage manifold learning landmark localization clearly outperforms the OPGM, 3D local SS

and REG methods. As stated before, the main disadvantage of manifold learning landmark

localization is the memory requirements of the manifold and in comparison to the methods

presented here, the prior higher expert input requirements.

Chapters 4, 6 and 7 have presented methods for brain landmark localization, while Chap-
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ter 5 presented an automatic feature point matching framework for knee MR image affine

registration. In the following chapter a framework, that leverages the machine learning

expertise developed in previous chapters, to extract MR brain imaging AD biomarkers is

presented.
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Chapter 8

Manifold population modelling as an

imaging biomarker

This chapter is based on:

• Ricardo Guerrero, Robin Wolz, Amil Rao, Daniel Rueckert. ”Manifold population

modelling as a neuro-imaging biomarker: Application to ADNI and ADNI-GO”. Neu-

roImage 2013, submited.
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Abstract

We propose a framework for feature extraction from learned low-dimensional manifold sub-

spaces that represent anatomical inter-subject variability. The manifold subspace is built

from data-driven regions of interest rather than regions that are specified using a-priori

knowledge. In this chapter we present an application of this framework in the context of

AD. Specifically, regions are learned via sparse regression using the mini-mental state

examination (MMSE) score as an independent variable which correlates better with the ac-

tual disease stage than a discrete class label. Sparse regression is used to perform variable

selection and we use a re-sampling scheme to reduce sampling bias. We then use the learned

manifold coordinates to perform classification of the images. Results of the proposed ap-

proach are shown using the ADNI and ADNIGO datasets. Two types of classifier, including

a new MRI-DSS classifier, are tested in conjunction with two learning strategies: In the

first case, subjects with AD and progressive mild cognitive impairment (pMCI) are grouped

together, while subjects that are CN or have stable mild cognitive impairment (sMCI) are

also grouped together. In the second approach, the classifiers are learned using the original

class labels (without grouping). We show that the results obtained using the ADNI database

are comparable to other state-of-the-art methods. A classification rate of 71%, of arguably

the most clinically relevant subjects, sMCI and pMCI, is obtained. Additionally, we present

classification results for CN and early MCI (eMCI) subjects using the ADNIGO database

and show a classification accuracy of 65%. To our knowledge this is the first time that

results for CN/eMCI classification have been reported.

8.1 Introduction

AD is the most common form of dementia, usually associated with the elderly population

(over 65 years of age). AD has a world-wide prevalence of around 26.6 million cases re-

ported in 2006 and predictions suggest that this figure will increase four-fold to over 100

million by the year 2050 [28]. If intervention or treatment could achieve even a modest one

year delay of both disease onset and progression, there would be nearly nine million fewer
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cases of the disease by 2050 [28]. One of the challenges in the management of AD is that

postulated interventions are more likely to be effective in the very early stages of the disease.

These figures underline the huge impact advances in early diagnosis might have on the over-

all well being of the population, the burden to caregivers and family members, as well as

the associated financial costs to the world’s health systems. Several studies over the recent

years have concluded and confirmed that AD can be diagnosed by clinical assessment alone

accurately in 90% of the cases when validated against neuropathological standards [172].

However, by the time a patient is diagnosed he/she may already suffer from substantial loss

of quality-of-life and chances for improvement, or even deceleration disease progression,

may have deteriorated. Hence, the diagnosis of very early onset dementia is crucial.

Several medications are currently approved by the U.S. Food and Drug Administration

(FDA) to treat people who have been diagnosed with AD. Treating the symptoms of AD

can provide patients with comfort, dignity, and independence for a longer period of time and

can encourage and assist their caregivers as well. Disease modifying treatments are more

likely to have a significant impact in earlier stages of the disease. Population stratification

is important to allow the recruitment of appropriate subjects for clinical trials, and explore

the effects of novel treatments in subjects where results are expected to be most effective,

hence, reducing overall costs of the trial by removing unsuitable subjects in an earlier stage.

Of special interest are subjects withMCI, which is a prodromal form of AD. Existing studies

have suggested that about 10-12% of subjects with MCI progress to probable AD per year

[160]. However, individual patients can remain in a stable MCI (sMCI) condition for years.

From a clinical perspective it is therefore particularly interesting to identify those subjects

that are at immediate or medium-term risk of progressing from MCI to AD (pMCI).

ADNI is a study with the primary goal of testing whether longitudinalMR imaging, PET,

other biological markers and clinical and neuropsychological assessment can be combined

to measure the progression of MCI and AD. Recent studies focus on identifying subjects at

risk at a much earlier stage. In the ADNIGO and ADNI2 studies, a group of eMCI patients

is included [3] which represents individuals with milder degrees of cognitive and functional

impairment than theMCI subjects included in ADNI. With a slower rate of progression, they
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form an especially interesting subject group as biomarker manifestation could potentially be

different at such an early stage of the disease.

Imaging biomarkers play an increasingly important role in the early diagnosis of neu-

rodegenerative diseases like AD. MR imaging often forms part of clinical assessment for

patients with MCI or suspected AD. Biomarkers based on MR imaging are considered to

be more sensitive to change after symptoms from amyloid-based biomarkers start to appear

(e.g. accumulation of amyloid-β) [79]. Figure 8.1 illustrates the rate of change of several

types of AD biomarkers at different disease stages. Imaging biomarker measurements can

be key in the development of disease-modifying therapies and interventions. They can be

used to explore the modifying effects these therapies may have on the disease progression

across time, and also as a screening tool to select a more homogeneous prodromal patient

population that is expected to have higher risk for rapid imminent clinical progression, thus

increasing the efficiency of clinical trials [97]. Recently, there have been many studies with

a main focus on automatically identifying such imaging biomarkers. Many of the well-

established and well-known biomarkers used in dementia that are derived from MR imaging

are based on morphological measurements of specific a-priori defined brain structures (e.g.

hippocampus, amygdale, cortex, enthorhinal cortex) and include features such as volumes

or shapes ([43, 229, 130, 37, 232, 124, 226, 169, 34, 48]). However, patterns of neurode-

generation may not necessarily follow strict standard definitions of anatomical structures

or functional regions. Hence, limiting the analysis to predefined regions could potentially

reduce the power of the biomarker to detect subtle differences or changes over time.

More recently, the problem of learning clinically useful biomarkers has been cast as a

machine learning problem. Models that derive from developments in the machine learning

community have been put forward as alternatives which seek for discriminative features

that could act as AD biomarkers independent from a predefined parcellation of structures

([63, 62, 84, 216, 235, 230, 146, 50, 61]). This independence could potentially lead to a

better modelling of a disease trajectory for the whole brain and across time. Furthermore,

this would account for the fact that the disease trajectory manifests itself at different regions

at different times.
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Figure 8.1: Different biomarkers of the Alzheimers pathological cascade (from [109]).

Some of the potential pitfalls when working with high-dimensional data, such as medical

images, can be associated to the curse of dimensionality. This describes a general paradox

that occurs in high-dimensional space, where if a neighborhood is considered “local”, then

it will be most likely “empty”, while a “non-empty” neighborhood will probably be “non-

local”. This implies that in high-dimensional space the variance-bias trade-off cannot be

accomplished very well, unless there is a very large amount of samples available. That

is, to keep variance low the neighborhood has to be made large enough to include enough

samples, but then a very large bias is introduced due to the large neighborhood, and vice

versa [186].

Learning a low-dimensional subspace representation of complex, high-dimensional ob-

jects (e.g. images) is a central problem of machine learning and pattern recognition. Several

methods have been proposed to find the underlying low-dimensional space of intrinsically

low-dimensional data that is embedded in a high-dimensional space. A low-dimensional

representation of the data allows the use of modelling techniques that suffer from the small

sample size problem in high-dimensional spaces. There is a long history in the use of lin-

ear dimensionality reduction techniques, like PCA and MDS [44], across different domains.

Recently, nonlinear techniques like principal curves [98], ISOMAP [203], LLE [180] or

Laplacian eigenmaps [17] have been proposed to better capture the variation of highly non-

linear data. For a comprehensive and recent review of dimensionality reduction techniques
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see [213].

In recent years these techniques have been applied increasingly to medical images:

Working with brain MR images and using concepts from dimensionality reduction, Aljabar

et al. [6] applied spectral analysis to pairwise label overlaps obtained from a structural seg-

mentation to discriminate AD patients from CN subjects. Klein et al. [122] used vectors

defined by the similarities between a given test subject and a set of training images as fea-

tures from which to learn a classifier. Some dimensionality reduction techniques aim to

model global variabilities over the whole dataset, which could potentially limit their gen-

eralization power of the learned subspace when dealing with complex datasets. In recent

work, it has been suggested that this is indeed the case when dealing with brain MR images

and that nonlinear methods better capture the natural variabilities of such images [85, 96].

Wolz et al. [230] propose to classify a subjects state in a manifold that is learned from image

similarities measured over an a-priori defined ROI and (clinical) meta-information related to

the subject. However, as stated before, patterns of neurodegeneration may not necessarily be

best observed in the predefined ROI, since useful information could potentially be ignored.

On the other hand the ROI will most likely contain regions that are not associated with the

patterns of neurodegeneration and this could confound the learned subspace. Furthermore,

subject classification is performed by applying a SVM approach to the manifold coordinates.

SVM finds a separation hyperplane defined by only a subset of subjects (support vectors)

that lie close to the hyperplane in the learned subspace.

There are two fundamental problems when dealing with high dimensional data such as

3D brain MR images: First, there is a large amount of variables (voxels) available in images

and not all contribute equally (or at all) to the modelling of the disease status and trajectory.

Relevant variable selection from this large pool of potential predictor variables is a way to

tackle this problem. We assume that the underlying disease trajectory manifests itself in a

small subset of variables in an image and so it can be modelled using a sparse set of vox-

els. In this context, the L1 norm has been proposed as an effective solution to the variable

selection problem [206, 239]. Secondly, this variable selection process often is an ill-posed

problem, where the sample size is much smaller than the number of variables and variables

125



are highly correlated. That is, the L1 norm can only select up to N uncorrelated variables,

where N is the number of samples. Although the dimensionality reduction techniques men-

tioned before can deal this issue, all variables contribute to the manifold estimation process.

We propose to use sparse regression to learn a ROI in which a distance metric allows

to define a manifold that better describes the different stages of AD. The resulting ROI

defines the brain regions where the disease trajectory can be best observed and quantified.

The compact manifold representation allows us to model different populations directly from

the learned manifold coordinates. Population distribution models of the observed data can

be used to infer the disease state of a new patient by embedding it in the manifold and

obtaining a probabilistic score for the class correspondence as opposed to a discrete label

as in classification approaches. This probabilistic estimation allows us to move away from

a discrete decision based on hyperplanes to a continuous characterization or modelling of

disease progression. The proposed MRI-DSS formulation aims at modelling the disease

progression while fully taking advantage of manifold coordinates. The MRI-DSS metric

yields a continuous variable on the disease trajectory.

8.1.1 Biomarkers for AD

The methods used to assess the possibility of a given individual to be affected by dementia

can be broadly divided into two categories: (I) psychological tests and (II) quantitative mea-

surements. Psychological tests such as MMSE [72] or clinical dementia rating (CDR) [147]

are used in most memory clinics to assess the cognitive state of a patient. They typically

involve several questions testing the short-term memory of the patient. While an existing

impairment can be identified in most cases, a much earlier identification of people at risk is

necessary to enable a potentially successful treatment.

AD is caused by neurofibrillary tangles and neuritic plaques [23]. In the later stages

of the disease these degenerative changes in the human neurotransmitter system lead to

atrophy in selected brain regions [225]. The study of the generation of tangles and plaques

has emerged as a promising approach for detecting the disease while at its earlier stage.

Another commonly associated AD risk factor is the concentration of the tau-protein and the
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amyloid-beta-peptide Aβ42 in the cerebrospinal fluid (CSF) [210]. Although obtaining a

patient’s CSF sample is invasive, measurements of this biomarker can give a good insight of

the patient’s state.

PET, in combination with the use of a Fludeoxyglucose 18F tracer, can detect the de-

crease in brain metabolism of glucose and oxygen caused by AD [33]. An alternative tracer

that has shown promising results as an AD biomarker is the Pittsburgh Compound B (PiB)

tracer [107], which selectively binds to Aβ deposits and thereby can be used to visualize

beta-amyloid deposits in the brain. Structural images acquired with MR on the other hand

allow the analysis of the current morphology of brain degeneration. The volume of brain

structures and their change over time are widely accepted as biomarkers for AD, e.g., [112].

A more detailed introduction to biomarkers for AD can be found in, e.g., [210].

8.2 Material and Methods

8.2.1 Data

In this work, we used the subset of 523 subjects for which T1-weighted 1.5T MR images

were available at baseline, 12 and 24 month follow-up, as of June 2012. Experiments in

this work were performed using baseline images. 12 of those subjects where discarded

due to label ambiguities (subjects whose labels changed from MCI to CN or from AD to

MCI). The remaining 511 subjects consisted of 106 patients diagnosed as probable AD,

230 as MCI (114 sMCI and 116 pMCI) and 175 CN (see Table 8.1 for a description of the

demographics). Patients considered as pMCI where those that had converted from MCI to

AD as of June 2012. The remaining 315 out of the 838 baseline images (CN = 56, sMCI =

119, pMCI = 49 and AD = 91) that did not contain all time points where used as training

data in the variable selection scheme (Section 8.2.2).

Additionally, experiments where carried out using the ADNIGO dataset [3]. From this

dataset, all the available baseline MR images labeled as CN or eMCI, as of June 2012, were

selected and preprocessed in the same way as with ADNI (see Table 8.2 for a description of

the demographics).
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N Age MMSE Men CDR Weight

CN 175 76.34±5.11 29.17±0.97 52% (91) 0±0.1 74.43±15.57
sMCI 114 75.12±6.67 27.29±2.25 66% (75) 0.49±0.05 77.02±12.83
pMCI 116 74.73±6.93 26.64±1.7 63% (73) 0.5±0.05 74.56±14.41
AD 106 75.4±7.39 23.25±1.97 53% (56) 0.77±0.25 72.58±13.81

Table 8.1: Subject group’s mean age, sample size, MMSE scores, gender distribution, CDR

scores and weight data (with standard deviation in brackets) from the ADNI database.

N Age MMSE Men Weight

CN 134 73.77±10.85 28.99±1.23 51% (68) 75.68±15.08
eMCI 229 67.42±18.61 28.29±1.53 54% (124) 81.47±15.89

Table 8.2: Subject group’s mean age, sample size, MMSE scores, gender distribution and

weight data (with standard deviation in brackets) from the ADNIGO database.

Image preprocessing

In this study, all the images used were skull stripped using multi-atlas segmentation [132]

and intensity normalized at a global scale using a piecewise linear function [153]. Intensity

normalization was carried out following an iterative scheme, where all images are normal-

ized to a common template/subject, then the template was changed and all the images were

re-normalized to the new template. This was repeated N times, where N is the number of

subjects to aid in removing normalization bias [43]. Also, all images were transformed to a

common space, the MNI152 template, and hence re-sliced and re-sampled to isotropic voxel

size of 1mm. A coarse free-form-deformation [182], using a control point spacing of 10mm,

was carried out to remove gross anatomical variability while aligning anatomical structures

in order to focus on more local variation. In order to account for disease manifestation and

progression in left-handed and right-handed populations, and hence find more generalizable

regions, the selected variables from Section 8.2.2 are mirrored along left-right hemisphere

prior to the subsequent steps.

8.2.2 Relevant variable selection

Regression techniques allow the modelling and analysis of several variables, where the focus

is on modelling the relationship between a dependent variable and one or more independent
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variables. Over the years, several regression methods have been proposed [207, 239, 206],

with arguably the simplest method being OLSR. generalize well beyond the training data.

In ridge regression, this is achieved by incorporating an L2 penalty into the OLSR objective

function, which leads to a unique solution in which correlated predictors are given similar

regression weights. LASSO regression, on the other hand, uses an L1 penalty which regular-

izes the problem by encouraging a sparse solution in which most of the estimated regression

weights are zero. This is a highly desirable trait when dealing with high dimensional data

because it allows for variable selection. Two of the main problems with LASSO are that it

does not perform well in the presence of highly correlated variables (e.g. neighboring voxels

in an image would probably be very well correlated) and that it can only select a number

of variables that is up to the number of samples (a significant problem for high dimensional

data). Elastic net regression [239] seeks to address the drawbacks of the LASSO [206], e.g.

it allows to select a number of variables that is greater than the number of samples. This is

done by adding an additional L2 penalty term on the model’s coefficients to the L1 penalty

term of LASSO.

Elastic net

Viewed as an image regression problem, elastic net regression identifies regions of interest

(predictor variables) within the images X that are useful to regress against variable l associ-

ated with each image. This could be the clinical label or the MMSE score associated with a

patient. The elastic net objective function in Equation (3.38) can be solved efficiently using

the LARS-EN algorithm [239], which allows for the number of steps or number of vari-

ables selected to be easily incorporated as an early termination criteria. Is worth noting that

Equation (3.38), in the special cases where λR and λL are set to zero, becomes the ordinary

least square regression. If λL is set to zero then it describes a ridge regression and if λR is

set to zero we obtain a LASSO regression. Another special case arises when λR → ∞: It

can be shown ([239]) that for each predictor variable xi, minimizing Equation (3.38) has a

closed-form solution that can be written as:

129



β̂ββiii
λR→∞

=

(

∣

∣lTxi
∣

∣− λL

2

)

+

sign
(

lTxi
)

, i= 1,2, ..., p , (8.1)

where (·)+ denotes the positive part.

This can be solved very efficiently, since lTxi is the univariate regression coefficient of

the ith predictor, the estimates β̂i are obtained by applying a soft threshold to the univariate

regression coefficients. Equation (8.1) is also known as univariate soft thresholding.

As stated before, the L2 regularization term (ridge) encourages the selection of correlated

variables. In medical images it can be expected that voxels (variables) that belong to the

same anatomical structure will have a high degree of correlation within each other. Choosing

λR→ ∞ imposes a maximal grouping condition on Equation (3.38). In this setting elastic

net regression can be used as a ROI learning algorithm.

As λR→ ∞, we are left with only one free parameter λL, from which we will drop the

subindex and refer to it only as λ from now on. Equation (8.1) can be solved for a range of

regularization parameters λ when we find the full regularization path, λmin≤ λ≤ λmax up to

the desired stopping criteria in the same way as one would using the LARS-EN algorithm.

In our case we limit the step size on the path such that we ensure that at each step we add

only one variable.

Training re-sampling

In order to increase robustness against sampling errors from the dataset, we adopt a re-

sampling scheme. In this approach, the regularization path is found on B random subsets,

solving Equation (8.1) over a range of values λ ∈ [λmax,λmin], such that zero variables are

included at λmax, K variables are included at λmin and with each step only one variable is

added. At each step k on a subset b we obtain a set of regression coefficients β̂ββb,k(λb,k),

where b= 1,2, ...,B and k = 1,2, ...,K. We define an indicator variable Ψbk(λb,k) which is

set to one if the coefficient corresponding to variable x j is non-zero and to zero otherwise.

The relevance of each variable is measured by defining the probability of it being selected
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by the regressor as

Pv j(λB,K) =
1

B ·K
B

∑
b=1

K

∑
k=1

Ψb,k(λb,k), j = 1,2, ..., p. (8.2)

Thresholding the probabilities Pv at τ to keep the most relevant voxels yields a mask that

defines a ROI that correlates with the disease progression.

8.2.3 Manifold Learning

Manifold learning in general refers to a set of machine learning techniques that aim at find-

ing a low dimensional representation of high dimensional data while trying to faithfully

represent the intrinsic geometry of the data. For example, if we have an image dataset and

each image is considered a single point in a very high dimensional space, then this high

dimensional space is probably overcomplete in the sense that a sub-manifold (most likely

to be non-linear) of far fewer dimensions may represent most of the variation in the dataset.

In manifold learning, a distance matrix is typically used to represent the relations between

pairs of data items, which can be assumed to be either the original images or some set of

features derived from the images. This matrix can be interpreted as a graph in which each

node corresponds to an image and the weight of each edge encodes the distance between

images or derived features.

In our framework, given a set of N vectors of length D that define the most relevant

voxels (variables) V = {v1,v2, ...,vN} ∈ R
D from a set of images, the aim is to learn the

underlying manifold in R
d (d ≪ D) that best represents the relationship of images in the

population using V. Here vi = {v1,v2, ...,vD} are the weighted, most relevant voxels in

image i.

Laplacian eigenmaps

Let us recall from Chapter 3 howLaplacian eigenmaps can be used to find a low-dimensional

representation of the data f : X→ Y, yi = f (xi) while preserving the local geometric prop-

erties of the manifold [17]. This can be formulated as an eigenproblem [10]. Hence, the
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low-dimensional manifold Y that represents all the data points can be obtained via solving

a generalized eigenproblem

Lν = λMν , (8.3)

where M is the degree matrix, L is the Laplacian, ν and λ are the eigenvectors and eigen-

values. In turn the d eigenvectors ν corresponding to the smallest (non-zero) eigenvalues λ

represent the new coordinate system.

8.2.4 Population distribution modelling

It is now widely accepted that both pathological processes and clinical decline occur grad-

ually over time, with AD being the end stage of the accumulation and progression of these

pathological changes. Additionally, the current consensus on AD is that these changes be-

gin years before the earliest clinical symptoms occur [109]. Hence, AD biomarkers need to

reflect this temporal progression, and imaging biomarkers are not an exception.

The aim in this work is to model the different discrete stages using continuous proba-

bilistic Gaussian mixture models in order to make predictions of group assignment or dis-

ease evolution of unseen samples. This modeling is done using the coordinates of the low-

dimensional representation found using Laplacian eigenmaps in order to avoid the curse

of dimensionality associated with the high-dimensional space. In Parzen kernel density

estimation (KDE), each observation sample is treated as a component in a mixture model.

Treating each sample as a single Dirac delta function, which can be written as a Gaussian

with zero covariance, with its probability concentrated at the point itself, we can define a

multivariate and N-component Gaussian mixture model of the sample distribution as [127]:

Ps(y) =
N

∑
i=1

= αiφΣi
(y−yi) , (8.4)

where φΣsi
defines a Gaussian of mean yi and covariance Σi that belongs to the sample

mixture model distribution.

Defining the KDE, P̂KDE(y), as the convolution between the sample distribution Ps(y)

and a Gaussian kernel with a covariance matrix (also known as the bandwidth)H, we get:
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P̂KDE(y) = φH(y)∗Ps(y) =
N

∑
i=1

αiφH+Σi
(y−yi) , (8.5)

where * denotes a convolution.

Considering the case where the sample distribution Ps is a Gaussian mixture model, with

Σi = 0 (Dirac delta functions), Equation (8.5) can be rewritten as

P̂KDE(y) =
N

∑
i=1

αiφH (y−yi) . (8.6)

The asymptotic mean integrated squared error (AMISE) allows us to measure the fit

of the estimated distribution P̂KDE(y) to the unknown underlying distribution Pu(y) and is

defined as

AMISE= (4π)−d/2 |H|−1/2N−1α +
1

4
d2

∫
tr2 {HGPu(y)}dy (8.7)

where tr{·} is the trace, GPu(y) is the Hessian of the unknown probability Pu(y) and Nα =

(∑N
i=1 α2

i )
−1

We can use AMISE to determine the optimal bandwidthH (according to the observable

data) of the kernel used in P̂KDE(y) to estimate Pu(y). Defining H in terms of scale ξ and

structure F as H= ξ2F, the AMISE measure is minimized by

ξopt =
[

d(4π)d/2Nα|F|1/2R(Pu,F)
]−1/(d+4)

, (8.8)

with

R(Pu,F) =

∫
tr2 {FGPu(y)}dy . (8.9)

Since Pu is unknown, R(Pu,F) is approximated as

R̂(Pu,F,G) =

∫
tr{FGPG(y)} tr{FGPs(y)} . (8.10)

Here Ps is the sample and PG is the so-called pilot distribution with covariance matrix

Σg j = G+Σs j and G is the pilot bandwidth estimated using the multivariate normal scale
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rule as

G= Σ̂smp

(

4

(d+2)Nα

)2/(d+4)

. (8.11)

Here Σ̂smp is the estimated covariance from all available samples and the structure F of

the bandwidth H is approximated using the covariance matrix of the samples as F = Σ̂smp

[222].

If the number of samples N is large and is made available to the population density

estimation procedure described above, then the Gaussian mixture model defined by P̂KDE(y)

can be unnecessarily complex and may over fit the data. Hence a model compression step

can be used to reduce the model components [127] from N to M, where M < N, as long as

the compressed distribution P̂′KDE(y) is within a certain Helliger distance [165]. This means

that if K ∈ N sample points are close to each other, then their corresponding Gaussians in

the mixture model can be combined into a single Gaussian with a weight α̂i = ∑K
j=1α j.

8.2.5 MRI Disease-State-Score

We propose to model different stages in the disease trajectory using the probabilistic dis-

tribution of different classes that can be estimated from different class populations (Section

8.2.4) and from the samples’ coordinates in the low-dimensional manifold (Section 8.2.3).

We then construct a probabilistic scoring function that determines the class likelihood in the

low-dimensional space, and hence, model the disease trajectory as a continuous variable.

Thus

f (y) = PB(y)−PA(y)

f (y) =
NB

∑
i=1

αBiφΣBi
(y)−

NA

∑
i=1

αAiφΣAi
(y) ,

(8.12)

where PA and PB are the estimated probability distributions of classes A and B, respectively,

α∗i and Σ∗i are the weights and covariances associated to the i-th element in the Gaussian

mixture model and NA and NB are the number of components in each model.

The difference between class probability functions (mixture of Gaussians) evaluated at
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a test point y (the unseen or test subject embedded in the manifold), can be written as the

logarithm of their division. Normalizing the difference (logarithmic division) and rewriting

this using a sigmoid (logistic) function we obtain the following scoring function:

S(y) =





2

1+
PA(y)
PB(y)



−1 . (8.13)

Here S(y) ranges from -1 to 1, and the sign represents the class while the absolute value

indicates the class likelihood probability. The continuous nature of the proposed metric pro-

vides a richer variable that can be used to define “heat” maps in the manifold associated with

a particular class, e.g. AD, CN, sMCI or pMCI. This could be used to define high certainty

regions in the manifold where predictions can be made with a high degree of confidence.

Additionally, the “heat” maps provide a color coded visualization tool of a patients current

“state” for clinicians. Restricting classification/prediction to high confidence areas can be

used for patient enrollment in clinical trials, e.g. it might be of particular interest to find

subjects that with a certain (high) degree of confidence will convert from MCI to AD in a

certain amount of time.

8.3 Results

Using sparse regression (elastic net) as described in Section 8.2.2, we obtain a probabilistic

mask of the relevance of each variable or voxel in the image. This mask relates the impor-

tance of each voxel in a regression that models the MMSE score. We have used MMSE

scores instead of the disease label since they offer a more continuous representation of dis-

ease progression. An example of the probabilistic mask obtained from the voxel selection

using elastic net regression can be seen in Figure 8.2: This shows three orthogonal 2D views

of the MNI template and the voxel importances. In this image, it can be observed that the

variables with higher probability cluster around the hippocampus, which is a well known

marker of AD. Thresholding this mask at a certain probability of a voxel being “picked” by

the sparse regression, produces a ROI. In our experiments we found empirically that a 10%

threshold produces the best results, which yields a mask of 1,331 voxels. This parameter
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can be also tuned using cross validation.

(a) (b)

(c)

Figure 8.2: (a) Sagittal, (b) axial and (c) coronal orthogonal views of MMSE probabilis-

tic variable selection mask in MNI space (best seen in color). Brighter colors (light blue)

indicate a higher probability of the voxel being selected by Equation (8.1).

Using the obtained mask to define the ROI in the images, we learn a low-dimensional

representation of the ROI using Laplacian eigenmaps (see Section 8.2.3). Within the ROI

we compute cross correlation as a similarity metric between subjects’ ROIs. Finally, the

population distribution modelling is carried out directly on the learned subspace using the

methodology described in Section 8.2.4. An overview diagram of the methods main steps is

shown in Figure 8.3.

In order to measure the different aspects of the proposed methodology, a number of ex-

periments were designed. Although the proposed MRI-DSS metric allows for a continuous

disease modelling, experiments based on classification tasks are presented in order to allow

easy comparison to previous work. In the following sections we report the classification per-

formance for the clinically relevant class separations of the ADNI and ADNIGO datasets.

Additionally, the value of performing variable selection as well as manifold learning are

illustrated by showing an overall improved classification accuracy. We also show accurate
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Figure 8.3: Diagram showing the three main stages of the method: variable selection, man-

ifold learning and population modelling (best seen in color).

MMSE score prediction using the proposed MRI-DSS.

8.3.1 ADNI Classification

All classification tasks were carried out in the manifold subspace learned from the selected

variables according to Section 8.2.2. In order to incorporate new subjects, the manifold sub-

space must be re-learned using all available subjects. Two types of classifiers were explored

in this work: A SVM approach [42] and the proposed probabilistic distribution threshold,

MRI-DSS.

SVM uses training data to find an optimal separating hyperplane between two classes

in an n-dimensional feature space. Using this n-dimensional hyperplane, test subjects are

classified according to their relative position in the manifold. We used a SVM with a linear

kernel function as well as Matlab’s default settings.

The probabilistic distribution threshold was obtained by combining the estimated dis-

tribution from both classes and normalizing values to form a sigmoid shaped MRI-DSS

function. Values range from -1 to 1 and the absolute value indicates class likelihood proba-

bility. Thresholding this scoring function (Equation (8.12)) at zero allows us to binarize the

scores in order to obtain a classification.

We used both methods to measure classification ACC, SEN and SPE. The results for
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the comparisons CN vs AD, sMCI vs pMCI and CN vs pMCI, using the ADNI dataset

(see Table 8.1) are presented in Table 8.4. Results for CN vs eMCI, using the ADNIGO

dataset (see Table 8.2) are shown in Table 8.6. In all experiments we used a leave 10% out

cross-validation strategy and the results presented reflect the average over 1,000 runs.

Two classifier learning paradigms were explored in order to obtain classification accu-

racy: One, which is referred to as classifier A, where the classifier is learned on single

classes (CN, sMCI, pMCI and AD), and another, called classifier B, where we group to-

gether similar classes and treat them as one (CN-sMCI and AD-pMCI). Table 8.3 highlights

how the classifier paradigms are employed.

P
P
P
P
P
P
PP

Train

Test
AD vs CN pMCI vs sMCI pMCI vs CN

A

AD, CN ✓ ✗ ✗

pMCI, CN ✗ ✓ ✗

pMCI, sMCI ✗ ✗ ✓

B pMCI-AD, sMCI-CN ✓ ✓ ✓

Table 8.3: Classifier paradigms A and B with their associated testing and training classes.

Considering a disease progression that follows a trajectory from CN to MCI to AD, and

assuming that sMCI subjects tend to be more CN like, while at the same time pMCI subjects

tend to be more AD like, grouping them together in order to boost the classifier training data

can be justified. By doing so we can train a classifier or probability distribution as a class

that includes CN and sMCI, and pMCI and AD in another group. From this point these two

classification paradigms will be referred to as classifier A and classifier B, respectively.

In this work we used SVM with a linear kernel function, soft-margin constant C = 1

and quadratic programing optimization. Fine tunning the soft-margin constant provides

slightly better results, however results are generally robust for a very large range of values

(1e−6 < C < 1e5). Figure 8.4 shows a boxplot of a grid search of C for sMCI vs pMCI

classification using a type B classifier. Here, instances are an average of the accuracies

obtained in manifolds with 1-50 dimensions, while the red line, box, whiskers and crosses

represent the median, the 75th percentile, the extremes and the outliers, respectively, of

100 runs were done for every value of C. Preliminary experiments showed that using non-

linear kernels provided little to no improvement, while adding more tuning parameters to the
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Figure 8.4: Boxplot of results from a grid search of the soft margin parameter C in linear

SVM. Instances are an average of the accuracies obtained across 50 manifolds (with 1-50

dimensions). The middle red line, box, whiskers and crosses represent the median, the 75th

percentile, the extremes and the outliers, respectively. 100 runs done for every value ofC.

framework. Results for type A classifiers as well as other classification tasks show similar

robustest to the setting ofC.

The parameter for the Laplacian eigenmaps algorithm were set empirically based on

previous experience [232, 230, 92]. The number of nearest neighbors used to build the sim-

ilarity graph was set to 20, although similar results are obtained for values between 10-25.

Finally, the dimensionality of the manifold was explored systematically from 1-50 dimen-

sions and the best values are reported. We also found that the results are robust against the

choice of these parameters, with stable SVM classification results in manifold dimension-

alities from 10-30 while for the case of MRI-DSS the best performing dimensionalities are

consistently in the 1-10 range. This is due to the relatively low number of samples used to

learn the higher dimension probabilistic models.

Table 8.4 shows classification results on the manifold learned from the selected variables,

which in the table are referred to as learned mask SVM and learned mask MRI-DSS. It can

be seen that the results are comparable to the state-of-the-art (see Table 8.9). In general,

results indicate that SVM performs on average better than MRI-DSS, however, it must be

noted that the proposed metric tries to model a more complex variable (the whole population
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distribution) with the added benefit of providing good visualization capabilities of the results

that can potentially be used to show progression from a “low-risk” zone to a “mild“ or

”high-risk“ zone in the manifold. In order to asses the value of doing variable selection,

as opposed to using a predefined structural mask, we repeated the experiments using the

same structural mask used in [232], which defines a ROI of around 30,000 voxels around

the hippocampus. The results of classification on the manifold learned based on this ROI

and in the same manner as before are presented in Table 8.4 (Hippocampal mask SVM and

Hippocampal mask MRI-DSS). It can be seen that, in every case, using the learned mask

provides more accurate results. Furthermore, we can notice that classifier paradigm B on

average produces a slightly higher accuracy than paradigm A in the AD vs CN and pMCI vs

sMCI classification tasks. We believe this due to the added training samples which should

provide a more robust classifier. However, this trend seems to reverse for the pMCI vs

CN classification task. A paired t-test reveals mixed results on the statistical significance

between classifier paradigm A and B (see Table 8.3.1), with the highest significance seen

in the pMCI vs sMCI classification. We also note that the testing data belongs only to the

groups specified, regardless of classifier paradigm. Figure 8.5, shows a 2D visualization

of the subjects in the learned subspace manifold, based on the learned ROI, and Figure 8.6

shows the probability distribution mixture of classes.

Another important part of the proposed methodology is the use of manifold learning.

We have evaluated the importance of this by performing a comparison of classifiers trained

and tested on the subjects without manifold learning. The results for this experiment are

presented in the bottom line of Table 8.4. Again it can be observed that for every case learn-

ing classifiers on the manifold space outperforms classifiers learned in their original space.

Note that only a classifier like SVM that is able to deal with relatively high dimensional data

can be used for comparison.

8.3.2 ADNIGO classification

Experiments were carried out using the learned ROI from the ADNI database to classify the

ADNIGO subjects performing manifold learning and population modelling, see Table 8.2.
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Figure 8.5: 2D visualization of the manifold of AD (red outline) and CN (blue outline)

subjects for the ADNI dataset (best seen in color).

Probability estimates: AD−PMCI red, CN−SMCI blue
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Figure 8.6: 2D visualization of the probability estimates in the manifold for the ADNI

dataset (best seen in color). Dark red indicates high AD probability and dark blue very low

AD probability.
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AD vs CN pMCI vs sMCI

ACC SEN SPE ACC SEN SPE

Learned mask SVM 84/86 84/86 85/85 69/71 77/75 60/67

Learned mask MRI-DSS 81/81 80/83 82/82 66/67 72/71 59/64

Hippocampal mask SVM 81/81 79/83 82/79 60/66 67/70 53/61

Hippocampal mask MRI-DSS 76/78 82/87 71/69 58/61 53/60 63/62

No manifold learning SVM 84/75 91/76 77/73 61/62 61/69 61/55

pMCI vs CN

ACC SEN SPE

Learned mask SVM 82/81 81/86 83/76

Learned mask MRI-DSS 77/78 72/85 82/70

Hippocampal mask SVM 76/75 75/71 77/79

Hippocampal mask MRI-DSS 70/69 63/55 77/82

No manifold learning SVM 68/66 77/77 59/55

Table 8.4: Classification results in percentage on the manifold built using the learned ROI

(Learned mask SVM and Learned mask MRI-DSS) and on a manifold built from the hip-

pocampal mask used in [232] (Hippocampal mask SVM and Hippocampal maskMRI-DSS).

In all cases results for classifiers A and B are presented separated by “/“. Best results shown

in bold numbers.

AD vs CN pMCI vs sMCI pMCI vs CN

Learned mask SVM p=0.006 p<0.001 p=0.367

Learned mask MRI-DSS p=0.593 p=0.745 p=0.415

Hippocampal mask SVM p=0.255 p<0.001 p<0.001

Hippocampal mask MRI-DSS p<0.001 p<0.001 p<0.001

No manifold learning SVM p=0.041 p<0.001 p=0.180

Table 8.5: p-values from paired t-tests between classifier paradigms A and B.

Preprocessing was carried out in the same manner as for ADNI. The results are presented

in Tables 8.6, 8.7 and 8.8. Table 8.6 presents the results obtained using the same ROI as

for the experiments using ADNI. The p-values indicate the probability that the manifold

coordinates from both classes belong to the same distribution. Two permutation tests were

used to assess this, multivariate analysis of variance (MANOVA) and the Cramer test [14].

The former assumes a normal distribution of the data, while the latter does not make such

an assumption. As can be seen in Figure 8.7, the normality assumption of the data distribu-

tion does not necessarily hold. Nevertheless results from both tests are presented. Table 8.7

presents the results of using the hippocampal mask used in [232], again to show the added

value of the variable selection step. The results shown in Table 8.8 use a ROI obtained

from the variable selection procedure with a threshold of 1% on the probabilistic soft mask.

This thresholding yielded 17,428 voxels that includes more varied areas of the brain other

142



than the hippocampus and its vicinity. The improvement in the results as a result of using

the learned ROI is hypothesized to be due to the subtle contributions of areas of the brain

other than the hippocampus. Figure 8.7 shows the population in the manifold and Figure

8.8 shows the class probability distributions. As expected, we see that the classes’ probabil-

ity distributions pose more challenging questions, hence, accounting for the relatively low

classification accuracy.

eMCI vs CN

ACC SEN SPE p-value (MANOVA/Cramer)

SVM 61 76 46 0.0003/0.001

MRI-DSS 61 66 56 0.0002/0.004

Table 8.6: Classification results using selected variable mask from ADNI thresholded at

10% to learn a manifold for ADNIGO. Best results shown in bold numbers.

eMCI vs CN

ACC SEN SPE p-value (MANOVA/Cramer)

SVM 57 59 54 0.0041/0.004

MRI-DSS 57 54 59 0.0019/<0.0001

Table 8.7: Classification results using hippocampal mask to learn a manifold for ADNIGO.

Best results shown in bold numbers.

eMCI vs CN

ACC SEN SPE p-value (MANOVA/Cramer)

SVM 65 61 69 <0.0001/<0.0001

MRI-DSS 61 50 72 <0.0001/<0.0001

Table 8.8: Classification using selected variable mask fromADNI thresholded at 1% to learn

a manifold for ADNIGO. Best results shown in bold numbers.

8.3.3 MMSE prediction

An additional experiment was carried out to estimate MMSE scores from the manifold.

Using a linear regression model built from the MRI-DSS obtained from the learned low

dimensional population distributions yielded an average error of 1.5 points. From Table 8.1

we can see that in ADNI class mean MMSE values are separated by 2.2 points for AD-MCI,

3.72 points for MCI-CN, and a smaller separation of 0.65 points exists between pMCI-sMCI
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Figure 8.7: 2D visualization of the estimated manifold of eMCI (red outline) and CN (blue

outline) subjects for the ADNIGO dataset (best seen in color).

Probability estimates: EMCI red, CN blue
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Figure 8.8: 2D visualization of the probability estimates in the manifold for the ADNIGO

dataset (best seen in color). Dark red indicates high AD probability and dark blue very low

AD probability.
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MMSE values. Furthermore, in ADNIGO (Table 8.2), a separation between CN-eMCI mean

MMSE scores of 0.7 points can be observed. When originally proposed, the MMSE [72]

was shown to have test-re-test mean variation of 1.1 points when the same tester performs

both examinations within a 24 hour period on the same patients while a slightly higher mean

variation of 1.3 can be observed when one tester performs the first examination and another

the second. Thus, the prediction accuracy of the presented method is comparable to the

variability of the test itself.

8.4 Conclusions

Recently the task of predicting conversion to AD has received a lot of attention, particu-

larly for subjects in the MCI group. Several approaches that seek to classify the data in

order to carry out this prediction task have been proposed in the literature. The proposed

method learns a ROI using elastic net regression with a richer response variable (MMSE

scores) rather than what could be considered over-simplistic class labels that do not fully

explain the disease stage. In a database such as ADNI the MMSE scores should be highly

correlated with the class labels since MMSE scores form part of the inclusion and diag-

nostic criteria of the study. Another important point to note is that the proposed MRI-DSS

metric parameterizes the class likelihood as a continuous score. This could potentially be

used to define areas of high or low diagnostic certainty. An added benefit of the proposed

MRI-DSS is the intuitive visualization of the probability maps in lower dimensional spaces

(1-3 dimensions). Classification results reported for other methods are shown in Table 8.9.

A direct comparison between methods is difficult due to differences in the datasets, prepro-

cessing steps, validation techniques, etc. However, some observations can be made about

the advantages and disadvantages of the different methods. Here we focus the discussion on

studies that report results on the sMCI/pMCI classification task, as this is arguably the most

clinically relevant.

Cho et al. [34] classified subjects based on cortical thickness features using the same

dataset as used in Cuingnet et al. [48], obtaining an accuracy of 71% but with relatively
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low sensitivity of 63%. Chupin et al. [37] obtain a classification accuracy of 64% using

hippocampal volumes as features, but also report a low sensitivity of 60%. Coupé et al. [43]

use patch-based segmentation to segment the hippocampus while at the same time scoring

voxels as AD-like or CN-like. To our knowledge their results represent the best results

achieved so far using all available images from the ADNI cohort. They have reported an

accuracy of 74% although they have a more complex preprocessing pipeline. Cuingnet

et al. [48] evaluated various structural methods, for which the obtained accuracies range

from 57% to 71% with relatively low sensitivities. Davatzikos et al. [50] used voxel-based

morphometry (VBM) to classify subjects. They achieved an accuracy of 56% with a high

sensitivity of 95% but at the cost of a very low specificity of 38%. Eskildsen et al. [61]

used tensor-based morphometry (TBM) along with cortical ROIs: Subjects with similar

time to conversion were pooled together and tested independently achieving high accuracies

(∼79%), however when the features selected were used on the whole dataset the accuracy

obtained was 68%. Koikkalainen et al. [124] used TBM with a combination of classifiers

to achieve an accuracy of 72%. However it is suggested by [61, 43] that this high accuracy

might be biased since the ROI used are obtained using the training and testing dataset.

Misra et al. [146] use VBM to find discriminative ROI in the images, the highest accuracy

reported is of 82%, however the low number of subjects included in the study makes it hard

to compare it to other methods. Querbes et al. [169] used cortical thickness features within

ROI to achieve an accuracy of 73%. As in [124], the ROI is learned from both training and

testing dataset. Westman et al. [226] used predefined cortical ROIs and subcortical structure

volumes to predict conversion, achieving and accuracy of 59%. Wolz et al. [232] used a

combination of methods and features to obtain classification accuracies between 64-68%.

Zhang et al. [235] used longitudinal images to learn ROIs within the whole brain. Their

highest accuracy reported is 78%. However, as in [146, 169] the small number of subjects

used in this study makes it hard to compare with other methods.

As it can be seen, the proposed method offers comparable classification and predic-

tion results to other state-of-the-art techniques. One of the main strengths of the proposed

method is the ability to model the entire population. This provides good visualization prop-
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erties in the learned manifold, which can also be used to define ”hot“ spots where there is a

high degree of confidence in the classification/prediction made. However, as with any other

method it has some disadvantages, mainly the fact that the manifold an distribution have to

be relearned every time a new subject is added to the cohort.
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Chapter 9

Conclusions and future work

This thesis has proposed several new learning-based methods for landmark localization,

feature matching and biomarker extraction. We have described the methodological aspects

of the novel approaches and have compared them to other well-established state-of-the-art

techniques. We have demonstrated the applicability of the methods to different clinical

problems. The evaluation of the proposed methods has been carried out on several large and

diverse datasets including 3D MR images of the brain, 3D MR images of the knee and 2D

facial images.

One of the drawbacks of classical approaches to medical image analysis, is that they tend

to require large amounts of expert knowledge. Machine learning-based techniques have the

ability to learn complex patterns from the data. This enables methods to require less expert

input. The three main areas of contribution of this thesis, presented in Chapters 4, 5, 6, 7

and 8, are as follows:

• Anatomical landmark localization in brain and knee MR images, as well as in facial

images, using techniques such as boosting, manifold learning, regression, 3D local SS

descriptors, dictionary learning and sparse coding.

• Feature matching and affine transformation estimation in knee MR images based on

a combination of 3D local SS descriptors, forward-backward matching and RANSAC

as robust estimator.
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• AD biomarker discovery in brain MR images using machine learning: Sparse regres-

sion for data-driven variable selection, manifold learning for dimensionality reduc-

tion, and non-parametric density estimation for population modeling.

The validation of the proposed methods has been carried out using large datasets in or-

der to show not only accuracy, but also robustness, which is considered an important factor

throughout this work. The ADNI (see Appendix A) study is the biggest study on MR imag-

ing in dementia so far [148]. With around 830 participants and dozens of imaging sites,

using several types of scanners, ADNI provides a very rich dataset that comes close to real

clinical practice. Similar to ADNI in its scope, the ADNIGO dataset provides more brain

MR images and has approximately 360 participants. The OAI (see Appendix B) is an obser-

vational study of knee osteoarthritis (OA), with aim to facilitate the scientific evaluation of

OA biomarkers. The OAI established a database that included clinical, radiological (x-ray

and MR) and a biospecimen repository from 4796 men and women ages 45-79.

The work presented in Chapters 4, 6 and 7 mainly dealt with the localization of land-

marks in brain MR images that were manually annotated by an expert. The most accurate

method was presented in Chapter 6: This technique is based on Laplacian Eigenmaps, with

prior knowledge of the spatial distribution of the landmarks regression. The results showed

that the proposed method significantly outperforms a 3D SW classifier, data-specific feature

descriptors, SS feature descriptors and non-rigid registration in localizing the landmarks.

The main drawback of this approach is that is not very scalable, as it requires a landmark-

specific manifold to be learned. This would require very large amounts of memory to be

stored, while at the same time requiring a high degree of expert knowledge.

Chapter 5 presented a method that uses self-similarity features, rather than raw intensi-

ties, to establish feature point matches between a pair of images. This, in combination with

RANSAC, enables the registration of images in a more robust and accurate way. Using a

subset of 75 randomly selected 3D baseline MR images from the OAI public dataset, quan-

titative results about the improvements made over raw intensity based registration, were

presented. Landmark alignment accuracy improvements are reported in ∼82% of the cases,

while virtually eliminating all misregistrations. However, the main disadvantage of the pro-
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posed framework is that it can currently only handle affine registrations, which can limit its

applicability.

The biomarker presented in Chapter 8, which is based on sparse regression, manifold

learning and non-parametric density estimation, provides an AD classification methodol-

ogy that is more data-driven than traditional biomarkers. The accuracy of the developed

biomarker in classifying the different stages of AD is comparable to other well established

biomarkers. Another important point to note is that the proposed biomarker parameterizes

the class likelihood as a continuous score. This could potentially be used to define areas of

high or low diagnostic certainty. An added benefit of the proposed method is the intuitive

visualization of manifold coordinates’ probability maps associated to each class. A draw-

back of the proposed framework is the fact that the manifold has to be recalculated every

time a new subject is added and, hence, the class probabilities also need to be re-estimated.

Additionally, even though the use of the estimated probability distribution provides a good

visualization tool, lower classification accuracies are observed using this metric over a SVM

classifier.

9.1 Future work

Landmark localization methods presented in this thesis provide accuracies in the range of

1.2-3.1 mm for the 20 subcortical brain landmarks described in Appendix C.1. According to

Rueckert et al. [181], the average intra-observer variability for the same 20 brain landmarks

in 25 schizophrenic subjects is 0.84 mm while the inter-observer variability is 1.05 mm.

Although caution must be taken as this measures are derived from a different dataset than

the one used in this thesis, it is at least an indicative that there might be room for improve-

ment in terms of accuracy in most of the landmark localization methods presented in this

thesis. Taking this into account, we could consider the fact that landmarks that belong to

specific structures, e.g. the brain, knee or the face, are not only constrained in their position

within the structure at hand, but they are also constrained by the position of other landmarks.

For example, the inner and outer aspect, and the inferior tip of the splenium of the corpus
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callosum, are part of the same anatomical structure, so their locations with respect to each

other are strongly correlated. A graphical model of the joint spatial distribution probabilities

of related landmarks, e.g. representing the fact they belong to the same anatomical struc-

ture, in the form of a Markov random field, could be used to introduce spatial awareness

to the model. The joint spatial probabilities between related landmarks could be modelled

as a multivariate Gaussian. Choosing the most probable configuration of all the landmarks

according to the graphical model would allow the estimation of landmarks with sub-pixel

accuracy. The marginal spatial probabilities of the landmarks, e.g. a Gaussian fit to the out-

put from all the predictions made from the one of the proposed method, could act as a weight

on the joint spatial probabilities. For the method presented in Chapter 7, this would only

require using other landmarks as support points, rather than performing a random selection.

Another interesting avenue to explore for future research is to extend some of the proposed

landmark localization techniques to work with arbitrary points or features. This would al-

low the fast identification of an arbitrary, dense set of landmarks. The located landmarks

could then be used to establish correspondences and provide a fast, initial registration. If

the approaches are extended to pseudo-landmarks (e.g. control points as used in free-form

deformation registration) which are arranged as a dense regular grid over the image voxels,

this would enable its use as a similarity metric for a dense image registration algorithm.

There are several fundamental open questions that need to be answered in AD classi-

fication/analysis. In the ADNI database, there is no definitive ground truth about subject

labeling, only gold standards provided by experts. Diagnosis by clinical assessment alone

is accurate in 90% of the cases when validated against neuropathological standards [172].

Hence, there is always a level of uncertainty associated to a subject’s label, e.g. it could be

that although the subject suffers from dementia, it might not be necessarily AD but instead

another form of dementia, e.g. fronto-temporal dementia (FTD) or dementia with Lewes

bodies. In terms of classification accuracy this must be taken into account, as any improve-

ment over the intrinsic label error in the data might be due to over fitting rather than an

overall improvement in accuracy. A method that could detect outliers in the data could po-

tentially point to possible mislabeling of specific data instances. It would be interesting if
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such data driven approach could reach an agreement with clinical experts. Additionally, in

realtion to the work on biomarker extraction detailed in Chapter 8, there are several ways

to extend the proposed methodology. For instance, in the work presented a 10 mm FFD

[182] grid was used to align images to a common space. The justification of doing so is

the removal of coarse non-linear inter-subject anatomical variations, while aligning smaller

structures. There is no guarantee that a 10 mm control point spacing of a FFD is optimal, or

furthermore, there is no guarantee that there exists any optimal one. Future work could in-

clude a multilevel variable selection step, where each observation can be a concatenation of

the same image with different levels of alignment (e.g. from 20 to 5mm FFD control point

spacing). Sparse regression could be used to select variables from this extended observations

set. Another avenue to explore would be incorporation of longitudinal features, variable se-

lection could be done also on longitudinal images in similar fashion, that is, concatenating

longitudinal images.
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Appendix A

ADNI and ADNIGO

ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute

of Biomedical Imaging and Bioengineering (NIBIB), the FDA, private pharmaceutical com-

panies and non-profit organizations, as a $60 million, 5-year public-private partnership. The

primary goal of ADNI has been to test whether serial MR imaging, PET, other biological

markers, and clinical and neuropsychological assessment can be combined to measure the

progression of MCI and early AD. Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians to develop new treatments

and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical

Center and University of California San Francisco. ADNI is the result of efforts of many

co-investigators from a broad range of academic institutions and private corporations, and

subjects have been recruited from over 50 sites across the United States and Canada. The

initial goal of ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research,

approximately 200 CN older individuals to be followed for 3 years, 400 people with MCI

to be followed for 3 years and 200 people with early AD to be followed for 2 years. For

up-to-date information, see www.adni-info.org.

The purpose of the ADNIGO study is to build upon the information obtained in the orig-

inal ADNI study and examine how brain imaging can be used with other tests to measure the

progression of MCI and early AD. ADNIGO seeks to define and characterize the mildest
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symptomatic phase of AD, referred to in this study as early amnestic MCI (eMCI). How-

ever, generally no formal sub-categorization between eMCI and MCI (or late MCI) exists.

The eMCI subjects represent individuals with milder degrees of cognitive and functional

impairment than the MCI subjects, and their rate of progression is slower [3].

A.1 MR image acquisition

In the ADNI study, image acquisition was carried out at multiple sites based on a standard-

ized MRI protocol [110] using 1.5T scanners manufactured by General Electric Healthcare

(GE), Siemens Medical Solutions, and Philips Medical Systems. Out of two available 1.5T

T1-weighted MR images based on a 3D MPRAGE sequence, we used the image that has

been designated as “best” by the ADNI quality assurance team [110]. Acquisition parame-

ters on the SIEMENS scanner (parameters for other manufacturers differ slightly) are echo

time of 3.924 ms, repetition time of 8.916 ms, inversion time of 1000 ms, flip angle 8◦, to

obtain 166 slices of 1.2-mm thickness with a 256 × 256 matrix.

All images were preprocessed by the ADNI consortium using the following pipeline:

1. GradWarp: A system-specific correction of image geometry distortion due to gradient

non-linearity [118].

2. B1 non-uniformity correction: Correction for image intensity non-uniformity [110].

3. N3: A histogram peak sharpening algorithm for bias field correction [193].

Since the Philips systems used in the study were equipped with B1 correction and their

gradient systems tend to be linear [110], the preprocessing steps 1 and 2 were applied by

ADNI only to images acquired with GE and Siemens scanners.
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Appendix B

The Osteoarthritis Initiative (OAI)

The OAI is a multi-center, longitudinal, prospective observational study of knee OA com-

prised of five public-private partnership (N01-AR-2-2258; N01-AR-2-2259; N01- AR-2-

2260; N01-AR-2-2261; N01-AR-2-2262), funded by the National Institutes of Health (NIH),

a branch of the Department of Health and Human Services, and conducted by the OAI Study

Investigators. Private funding partners includeMerck Research Laboratories; Novartis Phar-

maceuticals Corporation, GlaxoSmithKline; and Pfizer, Inc. Private sector funding for the

OAI is managed by the Foundation for the National Institutes of Health. The overall aim of

the OAI is to develop a public domain research resource to facilitate the scientific evaluation

of biomarkers for OA as potential surrogate endpoints for disease onset and progression.

OA is a joint debilitating pathology characterized by erosion of the articular cartilage. It

is a widespread disease which causes joint pain, tenderness and stiffness in patients. Around

35 million people in the United States (13 % of the population) are 65 or older, and more

than half of them have radiological evidence of osteoarthritis in at least one joint. By 2030,

20 % of Americans (about 70 million) will be over 65 and will be at risk for OA. Hence, in

addition to the impact on individuals it also represents a significant financial cost to society.

At present, therapies available to treat osteoarthritis are limited. Most current treatments

are designed only to relieve pain and reduce or prevent the disability caused by bone and

cartilage degeneration. Drug therapies target the symptoms but not the cause of this disease;

no treatment inhibits the degenerative structural changes that are responsible for its progres-
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sion. Furthermore, clinical testing of new therapies is complicated by the highly variable

way in which OA is manifested in individual patients.

Four clinical centers and a data coordinating center conducted the OAI, a public-private

partnership that bring together new resources to help find biochemical, genetic and imaging

biomarkers for development and progression of OA. The OAI established and maintained a

natural history database for osteoarthritis that included clinical evaluation data, radiological

(x-ray and magnetic resonance) images, and a biospecimen repository from 4796 men and

women ages 45-79 enrolled between February 2004 and May 2006. Three 3.0 Tesla MR

imaging scanners, one at each clinical center (with one shared between locations), where

dedicated to imaging the knees of OAI participants annually over four years. The project re-

cruited participants who had, and those who where at high risk for developing symptomatic

knee osteoarthritis. All data and images collected are be available to researchers worldwide

to help quicken the pace of biomarker identification, scientific investigation and OA drug

development. Access to biospecimens is given through application to the National Institute

of Arthritis, Musculoskeletal and Skin Diseases (NIAMS).

This manuscript uses an OAI public use dataset and does not necessarily reflect the

opinions or views of the OAI investigators, the NIH, or private funding partners.

B.1 MR image acquisition

In the OAI study acquisition was carried out at multiple sites using dedicated 3T Siemens

Trio MR scanners. In this study we used only Sagittal 3D DESS with water excitation

sequences. Parameters on these scanners where echo time of 4.7 ms, repetition time of 16.3

ms, inversion time of 4.7 ms, flip angle 25◦, to obtain 160 slices of 1.2-mm thickness with a

384 × 384 matrix.

Sagittal 3D DESS with water excitation enables quantization of cartilage volume over

the entire knee (patellofemoral and femorotibial joints). Another primary use of the 3D

DESS acquisition is to identify osteophytes in both the original sagittal (superior-inferior

patella, anterior-posterior femur and tibia) as well as in the coronal (medial / lateral femur
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and tibia) and axial medial-lateral patella (MPR). Secondarily, it also potentially provides

assessment of sub-articular marrow edema and cysts both in the original sagittal plane as

well as in the coronal (central femur and tibia) and axial (patella) MPR. This latter mar-

row assessment does not have proven sensitivity and specificity, but is presumed to be less

sensitive than a fat suppressed IW or T2W.
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Appendix C

Landmark definition

C.1 Brain landmarks

Landmarks where manually selected by an expert observer using 3 orthogonal views. They

are defined in the MNI space as follows:

From a sagittal view, along the mid-sagittal plane (MSP). The outer aspect, inferior tip

and inner aspect of the splenium of the corpus callosum are the most anterior, lowest and

inflection point of this structure. The outer aspect of the genu of the corpus is the most

posterior point of the outer wall of the structure and the inner aspect is the most posterior

point of the inner wall. The superior aspect of the pons is located by following the superior

edge of the pons until the recess at the juncture of the pons with the tegmentum of the

mesencephalon is found, the inferior aspect of the pons is found similarly, but following the

inferior edge. The superior and inferior aspect of the cerebellum are defined as the most

superior and inferior points of the structure. The fourth ventricle extends from the aqueduct

of the midbrain to the central canal of the upper end of the spinal cord, the most inner point

in the cerebellum is chosen. The anterior commissure can generally be found at the tip of the

fornix. The posterior commissure is located at top of the superior colliculus. The anterior

tips of the lateral ventricles (left and right) are located at the most anterior point of the lateral

ventricles. The inferior tips of the lateral ventricles (left and right) are defined as the lowest

points of the lateral ventricle while in the same sagittal plane as the inferior tips.
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From an axial view. The putamen posterior and anterior (left and right) are defined as

the most frontal and most posterior points of the putamen, which can be easily found using

an axial view.

C.2 Knee landmarks

75 MR images were randomly selected from the OAI dataset for testing the methodology.

These images were manually annotated by an expert using three orthogonal views by placing

four landmark points on the ACL and PCL insertions on the femur and the tibia. These where

chosen since they are clearly identifiable in the subject’s joint space. The middle voxel of

each ligament insertion is selected on the bone interface.
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