24 research outputs found

    An incremental dual nu-support vector regression algorithm

    Full text link
    © 2018, Springer International Publishing AG, part of Springer Nature. Support vector regression (SVR) has been a hot research topic for several years as it is an effective regression learning algorithm. Early studies on SVR mostly focus on solving large-scale problems. Nowadays, an increasing number of researchers are focusing on incremental SVR algorithms. However, these incremental SVR algorithms cannot handle uncertain data, which are very common in real life because the data in the training example must be precise. Therefore, to handle the incremental regression problem with uncertain data, an incremental dual nu-support vector regression algorithm (dual-v-SVR) is proposed. In the algorithm, a dual-v-SVR formulation is designed to handle the uncertain data at first, then we design two special adjustments to enable the dual-v-SVR model to learn incrementally: incremental adjustment and decremental adjustment. Finally, the experiment results demonstrate that the incremental dual-v-SVR algorithm is an efficient incremental algorithm which is not only capable of solving the incremental regression problem with uncertain data, it is also faster than batch or other incremental SVR algorithms

    State feedback based fractional order control scheme for linear servo cart system

    Get PDF
    Fractional order control schemes are being actively investigated for various systems. Fractional order concept is incorporated in integral (I), proportional integral (PI), proportional derivative (PD) or proportional integral derivative (PID) controller to investigate the performance of different state variables of the system. These techniques are often used for the purpose of technology transfer but very scanty research has so far been conducted using state space approach. The current investigation is initiated to observe the effect of fractional order controller using state space approach for the system's performance while tracking the position and regulating the speed of a linear servo cart system. Integer order controller based on proportional derivative (PD) approach is also shown for comparison. Simulation responses are presented and analyzed, in this investigation. The superiority of state space approach based fractional order controller is shown in the results. The paper contains a literature review on several control techniques used to control position and speed of a servo-cart system. An over view of mathematical modeling of servo cart system and a description of a proposed fractional controller is presented in this paper. A brief description of integer order control scheme is also presented. Simulated results are compared and discussed for both fractional order controller and integer order controller at the end of this paper

    Robust object representation by boosting-like deep learning architecture

    Get PDF
    This paper presents a new deep learning architecture for robust object representation, aiming at efficiently combining the proposed synchronized multi-stage feature (SMF) and a boosting-like algorithm. The SMF structure can capture a variety of characteristics from the inputting object based on the fusion of the handcraft features and deep learned features. With the proposed boosting-like algorithm, we can obtain more convergence stability on training multi-layer network by using the boosted samples. We show the generalization of our object representation architecture by applying it to undertake various tasks, i.e. pedestrian detection and action recognition. Our approach achieves 15.89% and 3.85% reduction in the average miss rate compared with ACF and JointDeep on the largest Caltech dataset, and acquires competitive results on the MSRAction3D dataset

    Sequential fault detection for sealed deep groove ball bearings of in-wheel motor in variable operating conditions

    Get PDF
    Sealed deep groove ball bearings (SDGBBs) are employed to perform the relevant duties of in-wheel motor. However, the unique construction and complex operating environment of in-wheel motor may aggravate the occurrence of SDGBB faults. Therefore, this study presents a new intelligent diagnosis method for detecting SDGBB faults of in-wheel motor. The method is constructed on the basis of optimal composition of symptom parameters (SPOC) and support vector machines (SVMs). SPOC, as the objects of a follow-on process, is proposed to obtain from symptom parameters (SPs) of multi-direction. Moreover, the optimal hyper-plane of two states is automatically obtained using soft margin SVM and SPOC, and then using multi-SVMs, the system of intelligent diagnosis is built to detect many faults and identify fault types. The experiment results confirmed that the proposed method can excellently perform fault detection and fault-type identification for the SDGBB of in-wheel motor in variable operating conditions

    Safe Sample Screening for Robust Support Vector Machine

    Full text link
    Robust support vector machine (RSVM) has been shown to perform remarkably well to improve the generalization performance of support vector machine under the noisy environment. Unfortunately, in order to handle the non-convexity induced by ramp loss in RSVM, existing RSVM solvers often adopt the DC programming framework which is computationally inefficient for running multiple outer loops. This hinders the application of RSVM to large-scale problems. Safe sample screening that allows for the exclusion of training samples prior to or early in the training process is an effective method to greatly reduce computational time. However, existing safe sample screening algorithms are limited to convex optimization problems while RSVM is a non-convex problem. To address this challenge, in this paper, we propose two safe sample screening rules for RSVM based on the framework of concave-convex procedure (CCCP). Specifically, we provide screening rule for the inner solver of CCCP and another rule for propagating screened samples between two successive solvers of CCCP. To the best of our knowledge, this is the first work of safe sample screening to a non-convex optimization problem. More importantly, we provide the security guarantee to our sample screening rules to RSVM. Experimental results on a variety of benchmark datasets verify that our safe sample screening rules can significantly reduce the computational time

    Machine Vision Approach for Arrhythmia Classification using Incremental Super Vector Regression

    Get PDF
    A huge piece of the biomedical research range is devoted to create electrocardiogram (ECG) signal preparing procedures to add to early conclusion. Numerous cardiovascular variations from the norm will be showed in the ECG including arrhythmia which is a general term that alludes to an unusual heart musicality. The premise of arrhythmia conclusion is the ID of typical versus anomalous individual heart thumps and their right order into various analyses, in view of ECG morphology. In any case, the majority of the past investigations revealed the execution of either the SVMs or the ANNs without inside and out examinations between these two strategies. We have actualized super vector regression (SVR) which gives preferable outcome over other. Likewise, a substantial number of highlights can be removed from ECG signs and some might be more applicable to heart arrhythmia than the others. This paper is to upgrade the execution of heart arrhythmia arrangement by choosing applicable highlights from ECG signals. The viability, precision and capacities of our strategy ECG arrhythmia identification are shown and quantitative examinations with various models have likewise been done.The outcomes got from disarray lattice tests yielded on-line order exactness of 96% (ANN), 94% (SVM), 91% (NMD) and 99% (Proposed SVR). The outcomes propose that the strategy and model displayed is reasonable

    Rolling element bearings localized fault diagnosis using signal differencing and median filtration

    Get PDF
    With the increase complexity of bearings’ processing algorithms and the growing trend of using computationally demanding algorithms, it is advantageous to provide analysts with a simple to use and implement algorithm. In this spirit, this paper combines simple functions to provide machine condition analysts with the capacity to diagnose bearing faults without all the complexity and jargon that comes with existing methods. The paper proposes a simplified surveillance and diagnostic algorithm for diagnosing localized faults in rolling element bearings using measured raw vibration signals. The proposed algorithm is based on analyzing the frequency content obtained from applying a median filter on the squared derivative signal (first or higher derivatives) of the vibration signal. The combination of signal differencing and median filters provides a squared envelope signal, which can be used directly to diagnose faults. Signal differencing gives a measure of jerk forces and lifts the high frequency content of the signal. To select the optimum order of differentiation, Kurtosis and maximum correlated kurtosis (MCK) are proposed. Median filter usage represents a better alternative of normal low pass filtration. This completely suppresses impulses with large magnitudes, which may interfere with the diagnosis. The length of the median filter (odd number 3, 5, 7 etc.) is selected as such to include the first 10 harmonics of the defect frequency. Simulated signals are used to demonstrate the efficiency of the proposed algorithm and give insights into the choices of the differentiation and smoothening orders. The proposed processing algorithm gives a first measure (surveillance) for detecting localized faults in rolling element bearings in a very simple way and can be employed in online learning and diagnosis systems. Results obtained from applying the algorithm on complex vibration signals from two types of gearboxes are compared with a well-established semi-automated technique with good correspondence

    Knock detection in spark ignition engines based on complementary ensemble improved intrinsic time-scale decomposition (CEIITD) and Bi-spectrum

    Get PDF
    Engine knock limits the thermal efficiency improvement of spark-ignition (SI) engines. Thus, the extract research of the knock characteristics has a great significance for the development of gasoline engines. The research proposes a novel knock detection and diagnosis method in SI engines using the CEIITD (Complementary Ensemble Improved Intrinsic time-scale decomposition) and Bi-spectrum algorithm. The CEIITD algorithm is used to extract the knock characteristics. The results show that the CEIITD algorithm can effectively and clearly extract the knock shock characteristics (including light knock) through the vibration signals. A Bi-spectrum analysis can further distinguish between the light knock signal and normal combustion signal. The Bi-spectrum results also show that knock characteristic has a strong non-Gaussian property. At last, the Band pass filter and Improved ITD method were employed to identify the knock characteristics from these cylinder block vibration signals. The comparison result shows that the CEIITD method proposed in this paper is more suitable to detect the knock characteristic
    corecore