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Abstract. This paper presents a new deep learning architecture for robust object representation, 

aiming at efficiently combining the proposed synchronized multi-stage feature (SMF) and a 

boosting-like algorithm. The SMF structure can capture a variety of characteristics from the 

inputting object based on the fusion of the handcraft features and deep learned features. With the 

proposed boosting-like algorithm, we can obtain more convergence stability on training multi-layer 

network by using the boosted samples. We show the generalization of our object representation 

architecture by applying it to undertake various tasks, i.e. pedestrian detection and action 

recognition. Our approach achieves 15.89% and 3.85% reduction in the average miss rate 

compared with ACF and JointDeep on the largest Caltech dataset, and acquires competitive results 

on the MSRAction3D dataset. 

Key words: boosting, deep learning, object representation, synchronized feature 

1 Introduction 

Existing pattern recognition methods generally include two major steps: feature extraction and 

classifier design. The quality of visual features is crucial for a wide range of computer vision topics, 

e.g., scene classification, object detection and human action recognition. Handcrafted feature and 

learning based feature are two commonly used features feeding into a decision-making algorithm. 

Handcrafted features are usually inspired by the domain and the particular application, intending to 

capture certain morphological, statistical or texture attributes of objects. Therefore, the rules of 

handcrafted feature extraction are varied according to different application fields. Many famous 

handcrafted features, such as HOG [1], Haar-like [2], SIFT [3], covariance descriptors [4], integral 

channel features [5] and 3D geometric characteristic feature [6], have been successfully applied in 

pedestrian detection. Moreover, the spatio-temporal features [7, 8, 9, 10] and depth images-based 

features [11, 12, 13] are widely utilized for human action recognition. Differently, the learning-based 

features are captured with data-driven tending to be domain agnostic. These feature extraction methods 

attempt to automatically obtain intrinsic representations from training samples, which generally learn 

additional feature bases that cannot be represented through any of the handcrafted features. Sermanet et 

al. [14] initially propose ConvNet using the original pixel values as the input to train multi-stage 
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automatic sparse convolution encoder by combining unsupervised and supervised methods. ConvNet 

shows an impressive result on the INRIA pedestrian database. UDN [15] is a deep neural network 

model jointly combined with the deformation and occlusion models. The approach achieves a new 

state-of-the-art result by giving a lower miss rate on Caltech and ETH dataset than other existed 

methods. In [16], deep features learned by CNN are extracted from training samples and integrated 

with support vector machine [17, 18] to obtain a higher performance on the pedestrian detection. 

From the above brief reviews of previous work, it is clear that the handcrafted feature extraction 

methods are specifically designed for the particular application or the domain. Although it has superior 

description ability for the textural objects, it cannot learn the intrinsic characteristic of the signal and is 

generally with a poor adaptability. In contrast, the learned features can overcome these weaknesses. 

However, they normally require a large number of training samples and are expensive in terms of the 

computational load and the hardware cost. Therefore, a straightforward idea is to fuse these two 

features, which is naturally a promising way toward more robust and adaptable representations. 

However, to our best of knowledge, few works are done along this direction. In this paper, the 

low-level handcrafted feature is used as the input of the networks to learn higher representations. In 

addition, the convergence speed and stability are two other major problems in the deep networks with a 

propagation feedback scheme. Existing methods [19, 20] fail to solve these issues. In order to address 

the above problems, we propose a new deep learning framework, which only requires a small-scale 

CNN but achieves higher performance with less computational costs. The proposed synchronized 

multi-stage feature (SMF) structure can lead to an ensemble of the heterogeneous models, thus 

speeding up the training process and making our model more powerful by deeply investigating into the 

diversity among different features. Moreover, the proposed boosting-like algorithm gradually tunes the 

sample weights in the feedback propagation, thereby gaining more stability and performance 

improvement. Based on convolutional neural network (CNN) [21], our proposed deep structure 

contains two convolutional layers to obtain higher-level feature representations. The final classifier is 

only a simple single neural network. The performance of this framework is verified by two challenging 

applications: pedestrian detection and action recognition.  

The contributions made in this paper are three-fold: firstly, a feature fusion scheme is proposed to 

extract more intrinsic and adaptive features, which provides a feasible way of combining the traditional 

handcrafted features and newly invented deep learned features. Secondly, a synchronized multi-stage 

features feed-forward structure is introduced into deep neural network, which can capture different 

kind of structure information, and thus improve the network convergence speed. Thirdly, the 

boosting-like algorithm helps to generate more stable and effective deep networks. Revealed by the 

classification results, the weights of the training samples in the feedback propagation are gradually 

adjusted to improve the system stability and the classification performance.  

The rest of this paper is organized as follows. In section 2, our deep convolution framework is 

described. In section 3, the proposed boosting-like algorithm is elaborated. In section 4, synchronized 

multi-stage feature structure is presented. The handcrafted features are concisely introduced in section 

5. Experimental results are provided and analyzed in section 6. Finally, the paper is concluded in 

section 7. 



3 
 

2  Deep convolutional structure 

CNN consists of sequentially placed pairs of convolutional and sub-sampling layers. The fundamental 

deep structure used in this paper is shown in Fig.1.  

 

Fig.1. Overview of our fundamental deep convolutional structure 

Let us now look at one example showing how the CNN works. At certain layer, the 𝑤 × ℎ ×

𝑝1 previous layer’s features maps are convolved with e×e kernels 𝜔𝑖,𝑗 and put through the activation 

fuction 𝑓(∙) to form the (𝑤 − 𝑒 + 1) × (ℎ− 𝑒 + 1) × 𝑝2 output feature maps. For ease of explanation, 

the 𝑗-th feature map of the 𝑙-th layer 𝑀𝑗
𝑙  is given as 

 𝑀𝑗
𝑙 = 𝑓 (∑ 𝑀𝑖

𝑙−1 ∗ 𝜔𝑖,𝑗𝑖∈𝐼𝑗
+ 𝑏𝑗

𝑙) , (1) 

where  𝐼𝑗  denotes a selection of input maps. The sub-pooling can be represented as 

 𝑆𝑗
𝑙 = 𝑓(𝛽𝑗

𝑙𝑑𝑜𝑤𝑛(𝑀𝑗
𝑙−1) + 𝑏𝑗

𝑙) . (2) 

Here, each output map 𝑆𝑗
𝑙 is given its own multiplicative bias 𝛽𝑗

𝑙  and an additive bias 𝑏𝑗
𝑙. The second 

convolutional layer 𝐶4 is same to 𝐶2 except for the kernel size. The classifier should be differentiable 

with respect to weights so that we can employ the back propagation algorithm to train the network. 

In this paper, 𝐶2 uses sigmoid and 𝐶4 uses hyperbolic tangent. The kernels in 𝐶2  layer own the 

same size, but they are different in the 𝐶4 layer. We adopt mean-pooling with 𝛽𝑗
𝑙 = 1 4⁄ . The final 

classifier is a simple single neural network. When we use Caltech dataset to train our network, the 

visualization of the kernels and feature maps are shown in Fig.2 and Fig.3. 

 

Fig.2. Visualization of convolution kernels for C2 and C4 layers on Caltech-train  

In Fig.2, the visual maps of kernels in 𝐶2 mainly contain edges information as shown in the first row. 

However, the visual maps of kernels in 𝐶4 mainly include the corner information as shown in the 

second row. It demonstrates that deep network can acquire higher-level essential and detailed features 

with layers increasing to represent more intrinsic characteristics of objects. 
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Fig.3. Visualization of convolution feature maps for C2 and C4 layers on Caltech-train  

In Fig.3, one single grayscale image of pedestrian is used as the input channel, and we visualize 

the 𝐶2 convolution feature maps. From the results we can see that it contains more details than manual 

features in Fig.6. 

3 Boosting-like deep learning algorithm 

Multi-layer and feed-forward CNN trained with the back propagation (BP) algorithm are by far the 

most commonly used architecture in the literature. There is a trade-off between the convergence 

stability and speed of the training algorithm. The standard BP algorithm shows a very slow rate of 

convergence and a high dependency on the value of the learning rate parameter [22]. The learning rate 

should be sufficiently large to allow a fast convergence. However, the large value can result in falling 

into local minimum and causing oscillation [23]. To cope with the problem, we propose the 

boosting-like deep learning algorithm (BDL) shown in Fig.4. 

 

Fig.4. The convolutional structure with boosting-like algorithm, it shows how the algorithm operates in the deep 

network. 

We first review the derivation by traditional neural network with the back propagation algorithm. 

Generally, mean squared error function is used as the objective function of CNN. For a multiclass 

problem with 𝑐 classes, the n-th sample error is expressed as 

 𝐸 =
1

2
∑ (𝑜𝑘

𝑛 − 𝑦𝑘
𝑛)2𝑐

𝑘=1 . (3) 

Here 𝑜𝑘
𝑛  is the k-th output layer unit, and 𝑦𝑘

𝑛 denotes the label of k-th dimension of the n-th sample. 

Assuming that the input sample is multiplied by a penalty weight α, the input 𝑢𝑙 of the l-th layer of the 

(𝑙 − 1)-th layer is subjected to 

 𝑢𝑙 = 𝛼𝑤𝑙𝑥𝑙−1 + 𝑏𝑙 ,    𝑥𝑙 = 𝑓(𝑢𝑙) . (4) 
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Here, 𝑤𝑙  denotes the weight of the 𝑙 layer and 𝑏𝑙 refers to the bias. 𝑥𝑙−1  is the output of the (l-1) 

layer, and 𝑓(∙) is the excitation function. Then we have 

 𝛿𝑙 = 𝑓 ′(𝑢𝑙)(𝑦𝑛 − 𝑜𝑛) . (5) 

The derivative of 𝐸 against 𝑤𝑙  is shown as follows 

 
𝜕𝐸

𝜕𝑤𝑙 = 𝛿𝑙 𝜕𝑢

𝜕𝑤𝑙 = 𝑥𝑙−1𝑓 ′(𝑢𝑙)(𝑦𝑛 − 𝑜𝑛)𝛼. (6) 

Finally, the delta updating rule is applied to each neuron to gain new weights given by 

 𝑤𝑙+1 = 𝑤𝑙 − 𝜂𝑥𝑙−1𝑓 ′(𝑢𝑙)(𝑦𝑛 − 𝑜𝑛)𝛼. (7) 

Here, 𝜂 is the learning rate. Actually, the convolution neural network itself can be regarded as different 

level of cascaded feature extractors. The extracted features are changed from low level to high-level, 

and all results have a mutual complimentary. The output of one layer links to both previous layer and 

its successive layer. According to Eq. (7), we redistribute the feedback weights of the correctly and 

mistakenly classified samples, and feedback propagated them from the last layer to the starting layer. 

 (𝛿𝑙) 𝜏+1 = ((𝑜𝑛) 𝜏 − (𝑦𝑛) 𝜏)𝛼𝜏, (8) 

where (𝑜𝑛) 𝜏 − (𝑦𝑛) 𝜏 is the output error and it is also the output sensitivity in our CNN, (𝑜𝑛) 𝜏 is the 

actual output of the network, and (𝑦𝑛) 𝜏) is the target. 𝛼𝜏 is the penalty coefficient of correct and 

wrong classified samples. When the sample output value differs with its label, the penalty weight tends 

to be increased. Otherwise, it is decreased. Basically, this idea is similar to the boosting concept, which 

trains different classifiers through updating the weights of training samples to avoid over-fitting. The 

boosting-like way in deep learning can make the network performance more stable.   

The solution of 𝛼 is crucial to our method. According to new classification results of samples, there 

will be a new weights distribution 𝐷𝜏 of samples. In order to optimize the error function, boosting is 

integrated into the network calculation at the training stage, which not only strengthens the 

convergence stability, but also improves the performance. The details of our solution are formulated as 

follows. The distribution of samples weights is initialized as 

 𝐷1 = (𝑑11, ⋯ 𝑑1𝑖 , ⋯ , 𝑑1𝑁),   𝑑1𝑖 =
1

𝑁
 , 𝑖 = 1,2, ⋯ , 𝑁 . (9) 

For the iteration  𝜏 = 1,2, ⋯ , 𝑇 , we use samples with distribution  𝐷𝜏 to train the CNN 

classifier 𝐺𝜏(𝑥). The classification error rate 𝑒𝜏 on the training dataset is calculated as 

 𝑒𝜏 = 𝑃(𝐺𝜏(𝑥𝑖) ≠ 𝑦𝑖) = ∑ 𝑑𝜏,𝑖𝐼(𝐺𝜏(𝑥𝑖) ≠ 𝑦𝑖)𝑁
𝑖=1 . (10) 

Here, 𝐼(𝑥, 𝑦) is the indicative function, and 𝑑𝜏,𝑖 is the weight of the 𝑖-th sample. The classification 

performance 𝛽𝜏  is calculated as 

 𝛽𝜏 =
1

2
𝑙𝑛

1−𝑒𝜏

𝑒𝜏
 . (11) 

Here,  𝛽𝜏  is the inverse function of the variable  𝑒𝜏 indicating the classified performance. The new 

distribution 𝐷𝜏+1 = (𝑑𝜏+1,1, ⋯ 𝑑𝜏+1,𝑖 , ⋯ , 𝑑𝜏+1,𝑁) is shown as 

 𝑁𝜏 = ∑ 𝑑𝜏𝑖𝑒𝑥𝑝 (−𝛽𝜏𝑦𝑖𝐺𝜏(𝑥𝑖))𝑁
𝑖=1   (12) 

 𝑑𝜏+1,𝑖 =
𝑑𝜏𝑖

𝑁𝜏
𝑒𝑥𝑝(−𝛽𝜏𝑦𝑖𝐺𝜏(𝑥𝑖)) , 𝑖 = 1,2, ⋯ , 𝑁 , (13) 

where 𝑁𝜏 denotes the1-norm normalized factor. During the training process, the new sample weight 

distribution 𝐷𝜏+1 is used to update the parameter 𝛼 shown as follows 

 𝛼𝜏+1 = 1 + 𝑑𝜏+1,𝑖. (14) 

javascript:void(0);
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From Eq. (14), it can be deduced that α decreases when the sample is correctly classified as we 

expected. On the contrary, it increases when the sample is wrongly classified. 

4 Synchronized multi-stage features 

Multi-stage features are generated by a concatenating the outputs at different stages in the network to 

enrich features. In this paper, in order to extract more discriminative features of the sample with 

different views, we propose a synchronized multi-stage feature structure (SMF) through combining the 

multi-stage structure with the convolutional connection mode. Input images/features from different 

channels are separately and synchronously convolved with corresponding kernels shown in Fig.5. 

Through sub-sampling and cascading, the middle output is used as the first-stage feature. The output of 

the second convolutional layer is used as the second-stage feature, as shown in Fig.5. Since we feed 

various features into the networks separately, we need to align them after each layer in order to 

concatenate them properly. That interprets why we call our feature as a sort of synchronized feature. In 

general, SMF is able to separately and synchronously capture features of input channels with different 

meanings, and then to efficiently extract sufficient representations at different stages. In addition, we 

employ Depth Motion Map (DMM) [12] on MSRAction3D [24] dataset as input images for human 

action recognition.  

4.1 Depth motion map 

The concept of DMM was initially introduced in [25]. The same approach was adopted in [12] while 

the procedure for generating DMM was modified to reduce the computational complexity. In this paper, 

we adopt the method introduced in [12] due to its computational efficiency. Specifically, given a depth 

video sequence with N frames, each frame in the video is projected onto three orthogonal Cartesian 

planes to generate three 2D projected maps corresponding to the front, side and top views, denoted 

by 𝑚𝑎𝑝𝑓, 𝑚𝑎𝑝𝑡  and 𝑚𝑎𝑝𝑠. DMM are then generated as follows 

   𝐷𝑀𝑀{𝑓,𝑡,𝑠} = ∑ |𝑚𝑎𝑝{𝑓,𝑡,𝑠}
𝑗+1

− 𝑚𝑎𝑝{𝑓,𝑡,𝑠}
𝑗

|𝑁−1
𝑗=1 ,  (15) 

where 𝑗 is the frame index，the motion characteristics can be effectively captured by DMM. An 

example of the three DMM is shown in Fig.5 as the input channels.   

4.2 SMF  

The SMF structure is shown in Fig.5. Low-level handcrafted features maps {𝐻𝐹_𝑓，𝐻𝐹_𝑡，𝐻𝐹_𝑠} are 

firstly extracted from the front, side, and top views {𝐷𝑀𝑀𝑓 , 𝐷𝑀𝑀𝑡 , 𝐷𝑀𝑀𝑠} on action dataset. The 

handcrafted feature maps of the three views are then convolved independently and synchronously with 

the corresponding kernels, as  

 {

𝐶𝑜𝑛𝑣𝑓 = 𝐻𝐹_𝑓 ∗ 𝜔𝑖,𝑓 ,         𝑖 = 1, ⋯ , 𝑙1 

𝐶𝑜𝑛𝑣𝑡 = 𝐻𝐹_𝑡 ∗ 𝜔𝑖,𝑡 ,          𝑖 = 𝑙1 + 1, ⋯ , 𝑙2  

𝐶𝑜𝑛𝑣𝑠 = 𝐻𝐹_𝑠 ∗ 𝜔𝑖,𝑠,         𝑖 = 𝑙2 + 1, ⋯ , 𝑙3 

. (16) 

The sub-sampling function 𝑆(∙) is then applied on the convolution operator to get the first-stage 

features, which are further used to train the second-stage feature 𝐶4. The ultimate human action 

features 𝐹𝑎𝑙𝑙  fed into the classifier are generated by 
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 𝐹𝑎𝑙𝑙 = {𝐶4, 𝑆(𝐶𝑜𝑛𝑣𝑓), 𝑆(𝐶𝑜𝑛𝑣𝑡), 𝑆(𝐶𝑜𝑛𝑣𝑠)}.  (17) 

The input images from different views are traditionally convolved with all kernels regardless of the 

input channel signification, and then they are forced to be accumulated as the next stage input, which 

largely mitigates the representation ability. Aiming at solving this problem, SMF improves the 

recognition accuracy, since the combination of heterogeneous features can extract more discriminative 

information. The SMF is further proved to quickly converge on the training process because of the 

sufficient features. The red dashed box in Fig.5 indicates the common structure of general input 

channels, such as pedestrian dataset.  

Convolution

HF_f

HF_t

HF_s

DMMf

DMMt

DMMs

Convolution

Mean pooling

Multi-stage 

Full connection

Output

Sub sampling

Boosting-like

First-stage

Second-stage

 

Fig.5. The synchronized multi-stage feature and boosting-like convolutional framework, it is the complete 

structure used in this paper. 

  It is worth mentioning that the boosting-like algorithm only changes the back propagation 

coefficient in the output layer of the deep network as introduced in section 3. Since the training method 

of our network is BP, this change can be automatically propagated back to all the previous layers in 

sequence shown in Fig.5.  

5   Handcrafted features 

The fusion of the traditional handcrafted features and deep learning features are introduced to extract 

robust features. According to different kinds of applications, various low-level handcrafted features are 

chosen as the input of network. They are then used as the input of the deep network to extract 

high-level features. In order to make this paper self-contained, two kinds of handcrafted features, i.e. 

aggregate channel features (ACF) and completed local binary patterns (CLBPs), are used for pedestrian 

detection and action recognition respectively. However, the framework can be applicable to any other 

different features.  
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5. 1   Aggregate channel features for pedestrian detection 

Channel features can be obtained through different linear/non-linear transformation of the 

input image 𝐼, such as Gabor filters and canny edge detection. Assuming the channel output is 𝐶 , we 

get channel features 𝐶 =  𝑓(𝐼) , which denotes a simple first-order feature function such as the sum of 

pixels in a fixed rectangular area. High-order features can be calculated by combining several 

first-order functions via a variety of strategies.  

In this paper, we extract low-level channel features in order to acquire superior. Firstly, we change 

the RGB input image into LUV color image; secondly, the gradient magnitude channel |𝐺| is calculated 

from the LUV image; and thirdly, six channels of histogram of gradient oriented 𝐺1~𝐺6 are gained 

through conversion processing on input images. 

 𝐺𝜃(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) ∙ 𝐼[𝜗(𝑥, 𝑦) = 𝜃] (18) 

Here, 𝐺(𝑥, 𝑦) is the gradient magnitude. Through multiplying with indication function, we get 

gradient oriented channels 𝐺𝜃(𝑥, 𝑦). For pedestrian images influenced seriously by illumination, the 

data in each channel is processed to be zero mean and unit variance. Since our network activation 

function is Sigmoid, this processing can also increase the convergence rate in the gradient descent 

process [26]. Fig.6 shows the visualizations of ACF. The first column is the original input image, the 

second to the tenth column correspond to LUV, |G| and the G1~G6 channel features. The first row is 

the original channel features, and the second row is the one after normalization. The results show that 

regularization not only enhances the image resolution significantly, but also highlights the details of 

pedestrian.  

 

Fig.6. Comparison of channel features 

5.2   Completed local binary patterns (CLBPs) for action recognition 

LBP has been applied to various image classification applications, e.g. [20, 27, 28]. The traditional 

LBP operator only considers the sign information of the local difference vector. Therefore, structures 

with different values in magnitude may result in the same LBP codes. Aiming at addressing this 

problem, [20] proposes a more efficient local description operator completed LBP (CLBP), which 

simultaneously considers the local difference sign and magnitude. A local region is represented by its 

center pixel and a local difference sign-amplitude transforming (LDSMT). Fig.7 shows an example. 

The center pixels represent the image gray level and they are converted into a binary code by global 

thresholding namely CLBP-Center (CLBP_C). LDSMT decomposes the image local differences into 

two complementary components: the signs and the magnitudes, and two operators, namely CLBP-Sign 

(CLBP_S) and CLBP-Magnitude (CLBP_M), are proposed to code them. Especially, the traditional 

LBP is equivalent to the CLBP_S part of CLBP.  

javascript:void(0);
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Fig.7. Samples of LDMST 

Given a pixel in the image, CLBP_SP,R operator is computed by comparing it with its neighbors 

shown as follows  

 𝐶𝐿𝐵𝑃_𝑆𝑃,𝑅 = ∑ 2𝑝𝑠(𝑔𝑝, 𝑔𝑐) 𝑃−1
𝑝=0 , (19) 

 𝑠(𝑥, 𝑦) = {
1, 𝑥 ≥ 𝑦
0, 𝑥 < 𝑦

 . (20) 

Here, 𝑔𝑐 is the gray value of the central pixel, and gp is the value of its neighbors. 𝑃 is the total 

number of involved neighbors, and  𝑅  is the radius of the neighborhood. Since the CLBP_M 

components are of continuous values instead of the binary values, they cannot be directly coded as that 

of CLBP_S. In order to code CLBP_M in a consistent format with CLBP_S, it is defined as follows  

 𝐶𝐿𝐵𝑃_𝑀𝑃,𝑅 = ∑ 2𝑝𝑠(𝑚𝑝, 𝑐) 𝑃−1
𝑝=0 , (21) 

where 𝑚𝑝 is the local absolute difference, 𝑐 is an adaptive threshold. Here we set 𝑐 to be the mean 

value of the whole local absolute difference image. 𝐶𝐿𝐵𝑃_𝐶 operator is calculated as follows 

 𝐶𝐿𝐵𝑃_𝐶𝑃,𝑅 = 𝑠(𝑔𝑐 , 𝑎𝑣). (22) 

𝑔𝑐  is the gray value, and the threshold 𝑎𝑣 is set as the mean value of the whole image. In order to 

reduce the computation, we only extract  CLBP_SP,R and CLBP_MP,R low-level feature channels in this 

paper. The same normalized method as section 5.1 is adopted. A visualization example of CLBP 

feature and its normalization are shown in Fig. 8. 

 

Fig.8. CLBP_M (middle) and CLBP_S (right) coded images corresponding to top, front and side in DMM (left) of 

a high wave depth sequence. 

6   Experiment results and discussion 

In this section, the proposed method (SMF-BDL) is evaluated on two different challenging tasks: 

Caltech pedestrian dataset [29] and MSRAction3D dataset [24]. The Caltech-test is the largest one 

among commonly used pedestrian datasets. It covers diverse complicated scenes including occlusion, 
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illumination, deformation, and so on. While set00~set05 are used to train our model containing about 

60000 training samples, set06~set10 are adopted as test sets. Usually sliding windows methods are 

used in detection stage. But it is well known that the feedback propagation in the deep learning network 

takes a lot of time. Therefore, we adopt HOG+CSS and linear SVM [15] to prune candidate detection 

windows for efficiency. These candidate windows have a high recall rate, but at the same time contain 

a lot of false positive windows. Moreover, MSRAction3D dataset is captured by commercial depth 

camera which includes 557 action sequences with 240 × 320 resolution. The depth motion maps 

(DMM) [12] on MSRAction3D are utilized as the input images.  

6.1   Caltech dataset 

The evaluation criterion proposed in [29] is adopted to check detection performance of our framework, 

which demonstrates the log-average miss rate versus false positive rate per image (FPPI). In the 

experiment, we evaluate the detection performance using the subset with pedestrians more than 49 

pixels in height and less than 35% in occlusion. We compare our method with the popular related 

approaches such as VJ [30], ConvNet [31], HOG [1], ACF [32], HOGCSS [15] and JointDeep [15]. 

These methods use various kinds of features, classifiers and deformation models. Our method is 

denoted by SMF-BDL. 

 

Fig.9. Comparison of log-average miss rate versus false positives per image (FPPI) between our method 

(SMF-BDL) and the related methods on Caltech dataset. 

Fig.9 shows that the average miss rate of our method (SMF-BDL) is 35.47%. ACF is the low-level 

handcrafted channel features used in our network input, and HOGCSS is the method we used to prune 

candidate windows. Our method (SMF-BDL) gets 15.89% and 10.01% performance gains compared 

with the ACF and HOGCSS, respectively. Our method also performs 3.85% better than JointDeep, 

which also uses low-lever channel features and CNN. It should be noted that there are deformation and 

visibility reasoning layer in Jointdeep. Fig.10 shows some samples of pedestrian detection results on 

Caltech dataset using our SMF-BDL method and ACF.   
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Fig.10. Detection examples on Caltech dataset, where bounding boxes with red color represent our method 

(SMF-BDL), and green ones represent ACF.  

6.2   MSRAction3D 

The dataset contains 20 actions performed by 10 persons, and each action is repeated 2~3 times by each 

person, including horizontal wave, beat, racket and so on. In order to compare with other 

state-of-the-art methods, we adopt experimental setting reported in [24]. The actions are divided into 

three subsets AS1, AS2 and AS3, and each subset contains eight actions. There are three test strategies: 

Test 1: For each subject, 1/3 samples are used for training and the rest for testing.  

Test 2: For each subject, 2/3 samples are used for training and the rest for testing.  

Test 3: The subjects with odd number (1, 3, 5, 7, 9) are used for training, and the rest for testing. 

In order to show the impact of different structures in SMF-BDL on system performance, we 

perform all of the three tests. Table 1 reports the experimental results of four methods. MS refers to the 

method that only adopts the multi-stage structure without neither synchronous operation nor 

boosting-like algorithm. SMF indicates that we use the synchronized multi-stage features structure 

without applying boosting-like algorithm. BDL denotes the approach that only employs the 

boosting-like algorithm without SMF. It is worth noting that these four methods are all designed based 

on the same fundamental deep structure elaborated in section 2. Table 1 demonstrates that MS achieves 

the least accuracy gains, while SMF largely improves the system accuracy average by 3%. The 

boosting-like algorithm also has a positive effect on accuracy and primarily enhances the system 

stability. The SMF-BDL we proposed achieves the superior performance on all the three settings. 
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Table 1. Comparison of recognition accuracies (%) of different structures on MSRAction3D dataset 

method Test 1(average) Test 2(average) Test 3(average) 

MS 93.6 94.3 86.3 

SMF 96.7 98.7 89.1 

BDL 94.1 95.6 87.6 

SMF-BDL 97.3 99.1 90.8 

 

Table 2 shows the accuracy comparison of our method with the existing methods. It shows that the 

result of our method is highly competitive, achieving superior accuracies on both Test 1 and Test 2. 

Although DMM-HOG [25] is also based on DMM, its accuracies are 1.5% and 1.7% lower than that of 

our method on Test1 and Test2, respectively. But the advantage is not significant on Test 3, probably 

because the small training sets are hard to cover all the variations across different subjects. As we know, 

deep structure needs abundant samples to be sufficiently trained. 

Table 2. Comparison of accuracies (%) our method SMF-BDL with other public methods on MSRAction3D 

dataset 

Method 
Test 1 Test 2 Test 3 

AS1 AS2 AS3 Average AS1 AS2 AS3 Average AS1 AS2 AS3 Average 

Li et al.[24] 

DMM-HOG[25] 

89.5 

97.3 

89.0 

92.2 

96.3 

98.0 

91.6 

95.8 

93.4 

98.7 

92.9 

94.7 

96.3 

98.7 

94.2 

97.4 

72.9 

96.2 

71.9 

84.1 

79.2 

94.6 

74.7 

91.6 

HOJ3D[33] 98.5 96.7 93.5 96.2 98.6 97.2 94.9 97.2 88.0 85.5 63.6 79.0 

Space-Time[34] 98.2 94.8 97.4 96.8 99.1 97.0 98.7 98.3 91.7 72.2 98.6 87.5 

SMF-BDL 97.3 98.0 96.6 97.3 98.6 98.7 100 99.1 96.2 84.1 92.0 90.8 

6.3   Stability analysis 

In order to prove the effect on the stability using the proposed boosting-like algorithm, we evaluate it 

on both datasets. Fig.11 (a) shows the performances of the proposed algorithm with/without using 

boosting-like algorithm for pedestrian detection. The x-coordinate denotes training epochs, and the 

y-ordinate indicates average miss rate on Caltech-test, which is evaluated by protocol in [29] as well. 

Fig.11 (b) shows the similar results on MSRAction3D. 
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(a) Caltech dataset 

 

(b)  MSRAction3D dataset 

Fig.11. Comparison of Boosting-like in terms of stability and detection performance 

Fig.11 (a) shows that: firstly, the oscillation is smaller and the curve is relatively stable when using 

boosting-like algorithm in the feedback propagation. On the contrary, system stability is poor without 

using the boosting-like method. Secondly, the boosting-like algorithm achieves 0.48% performance 

gain on pedestrian detection. The same conclusion holds for the MSRAction3D as shown in Fig.11 (b), 

and 0.15% miss rate improvement is achieved by integrating the boosting-like algorithm. Therefore, 

the boosting-like algorithm not only improves the network stability without reducing convergence 

speed, but also slightly improves the detection accuracy. 

6.4   Convergence speed 

In this section, experiments are carried out to test the convergence speed of boosting-like algorithm. 

Fig.12 shows the convergence speed of the algorithm with/without SMF using the MSRAction3D data 

34

36

38

40

42

44

46

48

50

52

54

1 2 3 4 5 6 7 8 9 10 11 12

m
is

s 
 r

at
e
（

%
）

 

epcoh number 

Without boosting-like

With boosting-like

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

m
is

s 
 r

at
e

 

epoch number 

Without
boosting-like



14 
 

set. From Fig.12 (a) we can see that the accuracy of SMF is basically stable after the 6th epoch, 

whereas it does not stabilize until the 13th epoch when SMF is not used. At the same time, the 

recognition accuracy of the proposed algorithm with SMF is 2.8% higher than that of the algorithm 

without SMF, which significantly increases the convergence speed, probably because features are 

sufficient to train a superior classifier. In addition, the same conclusion holds for the pedestrian 

detection from Fig.12 (b). 

 

(a) MSRAction3D dataset                         (b) Caltech dataset 

Fig.12. Convergence speed comparison of whether or not using SMF on MSRAction3D dataset and Caltech 

dataset. The horizontal axis denotes the epoch number, and the vertical axis is the accuracy. 

Apart from testing the convergence speed of the algorithm, we also measure the running-speed of the 

entire system on the application of pedestrian detection. The training for 70k samples with the 

resolution of 84x28 at each epoch spends roughly 35 minutes, which implies that we only need 

0.03 second to train each sample. On the test side, our algorithm has detected pedestrians on 11k 

images within 5 minutes, which is far more than a real-time system. All the measurements are 

carried out based on a Laptop PC (I5 CPU, 8G RAM) using matlab programming.  

7   Conclusion 

This paper proposes an effective deep detection framework named SMF-BDL. This model merges 

handcrafted method via a learning method to extract more superior features. The SMF structure is 

introduced, which can effectively deal with the recognition problems of input channels with different 

meanings and improve convergence speed. Due to the limited training samples, over-fitting is a major 

problem of a deep neural network. At the same time, the convergence stability of the network is also a 

challenge. Based on this SMF structure, we propose the boosting-like algorithm to prevent over-fitting 

and improve the system stability. It adjusts updating-rate according to the classification conditions of 

samples in the training process. At last, our method achieves superior performance on pedestrian 

detection and competitive results on action recognition. In the future, we plan to use MKL algorithm to 

optimize the weights attached to different views, which will definitely improve the system performance 

[35][36]. Furthermore, we will also apply the SMF-BDL for other recognition or detection tasks.  
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