583 research outputs found

    Fast and Accurate Neural Word Segmentation for Chinese

    Full text link
    Neural models with minimal feature engineering have achieved competitive performance against traditional methods for the task of Chinese word segmentation. However, both training and working procedures of the current neural models are computationally inefficient. This paper presents a greedy neural word segmenter with balanced word and character embedding inputs to alleviate the existing drawbacks. Our segmenter is truly end-to-end, capable of performing segmentation much faster and even more accurate than state-of-the-art neural models on Chinese benchmark datasets.Comment: To appear in ACL201

    LSTM-based Anomaly Detection for Non-linear Dynamical System

    Get PDF
    Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored in multi-step prediction, where samples in a wall shear stress dataset are collected by an adaptive sliding window. On the basis of the multi-step prediction result, a Local Average with Adaptive Parameters (LAAP) algorithm is proposed to extract local numerical features of the time sequence and estimate the upcoming anomaly. The experimental results show that our proposed multi-step prediction method can achieve a higher prediction accuracy than traditional method in wall shear stress dataset, and the LAAP algorithm performs better than the absolute value-based method in anomaly detection task.Comment: 8 pages, 6 figure

    Model migration neural network for predicting battery aging trajectories

    Get PDF
    Accurate prediction of batteries’ future degradation is a key solution to relief users’ anxiety on battery lifespan and electric vehicle’s driving range. Technical challenges arise from the highly nonlinear dynamics of battery aging. In this paper, a feed-forward migration neural network is proposed to predict the batteries’ aging trajectories. Specifically, a base model that describes the capacity decay over time is first established from the existed battery aging dataset. This base model is then transformed by an input-output slope-and-bias-correction (SBC) method structure to capture the degradation of target cell. To enhance the model’s nonlinear transfer capability, the SBC-model is further integrated into a four-layer neural network, and easily trained via the gradient correlation algorithm. The proposed migration neural network is experimentally verified with four different commercial batteries. The predicted RMSEs are all lower than 2.5% when using only the first 30% of aging trajectories for neural network training. In addition, illustrative results demonstrate that a small size feed-forward neural network (down to 1-5-5-1) is sufficient for battery aging trajectory prediction

    Using LUCAS survey and Recurrent Neural Networks to produce LCLU classification based on a Satellite Image time series of Sentinel-2

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceThe need of timely and accurate information for the territory has increased over the years, making Land Cover Land Use (LCLU) mapping one of the most common application of remote sensing. Recently, the advances in satellite technology and the open access policies for remote sensing data increased the interest in exploring satellite image time series. In addition, the attention of researchers has shifted from standard machine learning algorithms (e.g., Support Vector Machines and Random Forest) to Recurrent Neural Networks due to their ability of exploiting sequential information. However, acquiring reference data to train these algorithms is still a hurdle. This study aims to evaluate the capability of a Gated Recurrent Unit in performing pixel-level LCLU classification of a satellite image time series, using Sentinel-2 imagery and having the LUCAS survey as reference data. To assess the performance of our model we compared it to state-of-the-art classifiers (SVM and RF). Due to the unbalance nature of the LUCAS survey, we applied oversampling to this dataset to increase the performance of our models, testing three different oversampling techniques. The results attained showed that Recurrent Neural Networks did not outperform the other state-of-the-art algorithms, when trained with a limited number of sampling units, and that oversampling the LUCAS survey increased the performance of all the classifiers. Finally, we were able to demonstrate that it is possible to produce LCLU classification of satellite image time series using only open-source data by using Sentinel-2 imagery and the LUCAS survey as refence data

    Forecasting Amazon Rain-Forest Deforestation Using a Hybrid Machine Learning Model

    Full text link
    The present work aims to carry out an analysis of the Amazon rain-forest deforestation, which can be analyzed from actual data and predicted by means of artificial intelligence algorithms. A hybrid machine learning model was implemented, using a dataset consisting of 760 Brazilian Amazon municipalities, with static data, namely geographical, forest, and watershed, among others, together with a time series data of annual deforestation area for the last 20 years (1999–2019). The designed learning model combines dense neural networks for the static variables and a recurrent Long Short Term Memory neural network for the temporal data. Many iterations were performed on augmented data, testing different configurations of the regression model, for adjusting the model hyper-parameters, and generating a battery of tests to obtain the optimal model, achieving a R-squared score of 87.82%. The final regression model predicts the increase in annual deforestation area (square kilometers), for a decade, from 2020 to 2030, predicting that deforestation will reach 1 million square kilometers by 2030, accounting for around 15% compared with the present 1%, of the between 5.5 and 6.7 millions of square kilometers of the rain-forest. The obtained results will help to understand the impact of man’s footprint on the Amazon rain-forest.This research was funded by DGIV-UDLA grant number SIS.MGR.21.01 and by Spanish Ministry of Science grant number PID2020-114867RB-I00

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events
    • …
    corecore