9,180 research outputs found

    IT & C Projects Duration Assessment Based on Audit and Software Reengineering

    Get PDF
    This paper analyses the effect of applying the core elements of software engineering and reengineering, probabilistic simulations and system development auditing to software development projects. Our main focus is reducing software development project duration. Due to the fast changing economy, the need for efficiency and productivity is greater than ever. Optimal allocation of resources has proved to be the main element contributing to an increase in efficiency.Reengineering, audit, project duration assessment, Monte Carlo simulation

    Adaptive runtime techniques for power and resource management on multi-core systems

    Full text link
    Energy-related costs are among the major contributors to the total cost of ownership of data centers and high-performance computing (HPC) clusters. As a result, future data centers must be energy-efficient to meet the continuously increasing computational demand. Constraining the power consumption of the servers is a widely used approach for managing energy costs and complying with power delivery limitations. In tandem, virtualization has become a common practice, as virtualization reduces hardware and power requirements by enabling consolidation of multiple applications on to a smaller set of physical resources. However, administration and management of data center resources have become more complex due to the growing number of virtualized servers installed in data centers. Therefore, designing autonomous and adaptive energy efficiency approaches is crucial to achieve sustainable and cost-efficient operation in data centers. Many modern data centers running enterprise workloads successfully implement energy efficiency approaches today. However, the nature of multi-threaded applications, which are becoming more common in all computing domains, brings additional design and management challenges. Tackling these challenges requires a deeper understanding of the interactions between the applications and the underlying hardware nodes. Although cluster-level management techniques bring significant benefits, node-level techniques provide more visibility into application characteristics, which can then be used to further improve the overall energy efficiency of the data centers. This thesis proposes adaptive runtime power and resource management techniques on multi-core systems. It demonstrates that taking the multi-threaded workload characteristics into account during management significantly improves the energy efficiency of the server nodes, which are the basic building blocks of data centers. The key distinguishing features of this work are as follows: We implement the proposed runtime techniques on state-of-the-art commodity multi-core servers and show that their energy efficiency can be significantly improved by (1) taking multi-threaded application specific characteristics into account while making resource allocation decisions, (2) accurately tracking dynamically changing power constraints by using low-overhead application-aware runtime techniques, and (3) coordinating dynamic adaptive decisions at various layers of the computing stack, specifically at system and application levels. Our results show that efficient resource distribution under power constraints yields energy savings of up to 24% compared to existing approaches, along with the ability to meet power constraints 98% of the time for a diverse set of multi-threaded applications

    The economic impact of the Single Euro Payments Area

    Get PDF
    With the realisation of the Single Euro Payments Area (SEPA), there will be no difference in the euro area between national and cross-border retail payments. SEPA is aimed at fostering competition and innovation, and improving conditions for customers. This requires concerted efforts from various stakeholders, in particular the banking industry, to align national practices. The Eurosystem strongly supports the SEPA project. In its catalyst role, the European Central Bank (ECB) closely monitors and assesses the overall development of SEPA. Against this background, the ECB has carried out in cooperation with the banking industry a SEPA impact study with the aim of enriching its understanding of the potential economic consequences of SEPA. Based on the quantitative and qualitative expectations of major pan-European banks, the study finds that the overall financial impact for the banking industry varies according to different scenarios of the SEPA project. The coexistence of national and SEPA retail payment schemes is expected to lead to initial investments borne by the banks. In the longer term, banks expect to benefit from improved cost efficiency and economies of scale and scope. Furthermore, banks are expected to face downward pressure on their revenues as competition will increase across borders and as a result of new market entrants. The findings of the study confirm the view that a dual SEPA implementation phase should be as short as possible. In fact, a longer migration period would give rise to higher costs than a shorter period. It can furthermore be concluded that those institutions that embrace new technological developments, create new businesses and provide innovative services are likely to gain most from SEPA. JEL Classification: G21, L11, L22.SEPA, European integration, payment systems.

    Monitoring bank performance in the presence of risk

    Get PDF
    This paper proposes a managerial control tool that integrates risk in efficiency measures. Building on existing efficiency specifications, our proposal reflects the real banking technology and accurately models the relationship between desirable and undesirable outputs. Specifically, the undesirable output is defined as nonperforming loans to capture credit risk, and is linked only to the relevant dimension of the output set. We empirically illustrate how our efficiency measure functions for managerial control purposes. The application considers a unique dataset of Costa Rican banks during 1998–2012. Results’ implications are mostly discussed at bank-level, and their interpretations are enhanced by using accounting ratios. We also show the usefulness of our tool for corporate governance by examining performance changes around executive turnover. Our findings confirm that appointing CEOs from outside the bank is associated with significantly higher performance ex post executive turnover, thus suggesting the potential benefits of new organisational practices.Peer ReviewedPostprint (author’s final draft

    A Big Data Analyzer for Large Trace Logs

    Full text link
    Current generation of Internet-based services are typically hosted on large data centers that take the form of warehouse-size structures housing tens of thousands of servers. Continued availability of a modern data center is the result of a complex orchestration among many internal and external actors including computing hardware, multiple layers of intricate software, networking and storage devices, electrical power and cooling plants. During the course of their operation, many of these components produce large amounts of data in the form of event and error logs that are essential not only for identifying and resolving problems but also for improving data center efficiency and management. Most of these activities would benefit significantly from data analytics techniques to exploit hidden statistical patterns and correlations that may be present in the data. The sheer volume of data to be analyzed makes uncovering these correlations and patterns a challenging task. This paper presents BiDAl, a prototype Java tool for log-data analysis that incorporates several Big Data technologies in order to simplify the task of extracting information from data traces produced by large clusters and server farms. BiDAl provides the user with several analysis languages (SQL, R and Hadoop MapReduce) and storage backends (HDFS and SQLite) that can be freely mixed and matched so that a custom tool for a specific task can be easily constructed. BiDAl has a modular architecture so that it can be extended with other backends and analysis languages in the future. In this paper we present the design of BiDAl and describe our experience using it to analyze publicly-available traces from Google data clusters, with the goal of building a realistic model of a complex data center.Comment: 26 pages, 10 figure

    Workload Interleaving with Performance Guarantees in Data Centers

    Get PDF
    In the era of global, large scale data centers residing in clouds, many applications and users share the same pool of resources for the purposes of reducing energy and operating costs, and of improving availability and reliability. Along with the above benefits, resource sharing also introduces performance challenges: when multiple workloads access the same resources concurrently, contention may occur and introduce delays in the performance of individual workloads. Providing performance isolation to individual workloads needs effective management methodologies. The challenges of deriving effective management methodologies lie in finding accurate, robust, compact metrics and models to drive algorithms that can meet different performance objectives while achieving efficient utilization of resources. This dissertation proposes a set of methodologies aiming at solving the challenging performance isolation problem in workload interleaving in data centers, focusing on both storage components and computing components. at the storage node level, we focus on methodologies for better interleaving user traffic with background workloads, such as tasks for improving reliability, availability, and power savings. More specifically, a scheduling policy for background workload based on the statistical characteristics of the system busy periods and a methodology that quantitatively estimates the performance impact of power savings are developed. at the storage cluster level, we consider methodologies on how to efficiently conduct work consolidation and schedule asynchronous updates without violating user performance targets. More specifically, we develop a framework that can estimate beforehand the benefits and overheads of each option in order to automate the process of reaching intelligent consolidation decisions while achieving faster eventual consistency. at the computing node level, we focus on improving workload interleaving at off-the-shelf servers as they are the basic building blocks of large-scale data centers. We develop priority scheduling middleware that employs different policies to schedule background tasks based on the instantaneous resource requirements of the high priority applications running on the server node. Finally, at the computing cluster level, we investigate popular computing frameworks for large-scale data intensive distributed processing, such as MapReduce and its Hadoop implementation. We develop a new Hadoop scheduler called DyScale to exploit capabilities offered by heterogeneous cores in order to achieve a variety of performance objectives

    Energy Efficient Data-Intensive Computing With Mapreduce

    Get PDF
    Power and energy consumption are critical constraints in data center design and operation. In data centers, MapReduce data-intensive applications demand significant resources and energy. Recognizing the importance and urgency of optimizing energy usage of MapReduce applications, this work aims to provide instrumental tools to measure and evaluate MapReduce energy efficiency and techniques to conserve energy without impacting performance. Energy conservation for data-intensive computing requires enabling technology to provide detailed and systemic energy information and to identify in the underlying system hardware and software. To address this need, we present eTune, a fine-grained, scalable energy profiling framework for data-intensive computing on large-scale distributed systems. eTune leverages performance monitoring counters (PMCs) on modern computer components and statistically builds power-performance correlation models. Using learned models, eTune augments direct measurement with a software-based power estimator that runs on compute nodes and reports power at multiple levels including node, core, memory, and disks with high accuracy. Data-intensive computing differs from traditional high performance computing as most execution time is spent in moving data between storage devices, nodes, and components. Since data movements are potential performance and energy bottlenecks, we propose an analysis framework with methods and metrics for evaluating and characterizing costly built-in MapReduce data movements. The revealed data movement energy characteristics can be exploited in system design and resource allocation to improve data-intensive computing energy efficiency. Finally, we present an optimization technique that targets inefficient built-in MapReduce data movements to conserve energy without impacting performance. The optimization technique allocates the optimal number of compute nodes to applications and dynamically schedules processor frequency during its execution based on data movement characteristics. Experimental results show significant energy savings, though improvements depend on both workload characteristics and policies of resource and dynamic voltage and frequency scheduling. As data volume doubles every two years and more data centers are put into production, energy consumption is expected to grow further. We expect these studies provide direction and insight in building more energy efficient data-intensive systems and applications, and the tools and techniques are adopted by other researchers for their energy efficient studies

    Adaptive Performance and Power Management in Distributed Computing Systems

    Get PDF
    The complexity of distributed computing systems has raised two unprecedented challenges for system management. First, various customers need to be assured by meeting their required service-level agreements such as response time and throughput. Second, system power consumption must be controlled in order to avoid system failures caused by power capacity overload or system overheating due to increasingly high server density. However, most existing work, unfortunately, either relies on open-loop estimations based on off-line profiled system models, or evolves in a more ad hoc fashion, which requires exhaustive iterations of tuning and testing, or oversimplifies the problem by ignoring the coupling between different system characteristics (\ie, response time and throughput, power consumption of different servers). As a result, the majority of previous work lacks rigorous guarantees on the performance and power consumption for computing systems, and may result in degraded overall system performance. In this thesis, we extensively study adaptive performance/power management and power-efficient performance management for distributed computing systems such as information dissemination systems, power grid management systems, and data centers, by proposing Multiple-Input-Multiple-Output (MIMO) control and hierarchical designs based on feedback control theory. For adaptive performance management, we design an integrated solution that controls both the average response time and CPU utilization in information dissemination systems to achieve bounded response time for high-priority information and maximized system throughput in an example information dissemination system. In addition, we design a hierarchical control solution to guarantee the deadlines of real-time tasks in power grid computing by grouping them based on their characteristics, respectively. For adaptive power management, we design MIMO optimal control solutions for power control at the cluster and server level and a hierarchical solution for large-scale data centers. Our MIMO control design can capture the coupling among different system characteristics, while our hierarchical design can coordinate controllers at different levels. For power-efficient performance management, we discuss a two-layer coordinated management solution for virtualized data centers. Experimental results in both physical testbeds and simulations demonstrate that all the solutions outperform state-of-the-art management schemes by significantly improving overall system performance
    • 

    corecore