
Informatica Economică, vol. 13, no. 1/2009

117

IT & C Projects Duration Assessment Based on
Audit and Software Reengineering

Cosmin TOMOZEI, University of Bacău

Marius VETRICI, Cristian AMANCEI, Academy of Economic Studies Bucharest
cosmin.tomozei@ub.ro, mariusvetrici@softmentor.ro, cristian.amancei@ie.ase.ro

This paper analyses the effect of applying the core elements of software engineering and
reengineering, probabilistic simulations and system development auditing to software devel-
opment projects. Our main focus is reducing software development project duration. Due to
the fast changing economy, the need for efficiency and productivity is greater than ever. Op-
timal allocation of resources has proved to be the main element contributing to an increase in
efficiency.
JEL Classification: L86 Computer Software, O22 Project Analysis
Keywords: Reengineering, audit, project duration assessment, Monte Carlo simulation.

Introduction
The grand majority of software develop-

ment projects are known to be delayed and
over the budget. Most of them hit schedule
and budget overruns of 25% to 100% and
sometimes even more [1], [2], [3], [4].
The prerequisite for defining an accurate
project delivery date is a precise estimation
of the project duration. Existing models are
rather imprecise because the forecast value is
to a certain extent distant from the real one.
The large discrepancies between the esti-
mated duration and the actual schedule of an
ongoing project prematurely ended it in order
to prevent further damages and losses. The
[2] research reveals that only one project in
three is considered successful, whereas one
project in five is a total disaster. Taking this
into account, it is imperative to look for new
software project duration forecast models
that will be able to outspring results that are
more realistic.
The aim of this research is to bridge the gap
between the forecasted software project dura-
tion and the actual project duration. Hence
we go into great depth with analyzing the ex-
isting project duration assessment models
and for each one we stress on its advantages
and disadvantages. Then, we present soft-
ware reengineering as a means of delivering
timely, high performance software projects.
Samples of students’ projects are analyzed in
terms of size and duration. Last but not least,
the benefits of an independent auditor certifi-

cation regarding project quality are presented
in great detail.

2. The taxonomy of duration assessment
models
The range of duration assessment techniques
and methods significantly broadened its cov-
erage in the last years so that now we have
sophisticated mathematical and statistical
models and even expert system based estima-
tion models. Figure 1 depicts the classifica-
tion of existing models:
Expertise-based methods rely on the subjec-
tive judgment of a human expert or a group
of experts and are the most widely used me-
thods for project duration estimation [5]. Un-
like rigorous estimation methods, these me-
thods rely on the personal intuition and on
the experience gained by the human expert in
question [6]. For example, according to Del-
phi method, a panel of experts is required to
make an estimation regarding a project. After
the first step, the estimations are debated and
then the experts go to a second stage of esti-
mations.
After each estimation stage, some elements
and some details will be left out, while others
will be greatly emphasized. The process is
iteratively repeated until a common agreed
duration is reached [8].
Learning-oriented techniques try to identify a
similar software development project and in-
fer the duration out of the past experiences
and the differences between the old and the

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6673298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Informatica Economică, vol. 13, no. 1/2009

118

new project [9]. The advantage of this class
of techniques over the expertise-based ones
is that in this case estimations are grounded
on real life facts and on palpable examples
and not on the general experience of the ex-
perts. The disadvantage of these techniques is
the fact that it is not very obvious how the
two projects should be compared, what the
key variables that should be tracked are and
what the issues that should be left out are.
The identification of the key variables is a
tedious, time-consuming task because of the
very particular nature of software projects.

Fig. 1. The classification of duration assess-
ment methods and techniques for software

projects [7]

The algorithmic methods use iterative ap-
proaches based on mathematical formulae.

They take as input data the size of the soft-
ware project (counted in function points or
lines of source code) and parameters like
hardware and software development plat-
form, team experience, manager experience
and the employed development methodology.
Based on the input data the algorithm as-
sesses project duration together with an index
of the estimation accuracy. The algorithmic
methods are iteratively run several times in
order to refine the input parameters’ values
and to enhance the estimation accuracy. The
limitation of this class of methods comes out
when the algorithm is fed with uncalibrated
or not validated data. Most of the algorithmic
methods offer estimations for duration, for
effort and even for the total cost of the
projects. Among them are COCOMO and
COCOMO 2.0 [10], SLIM, Neural Networks,
Critical Path Method, Critical Chain Method,
PERT.
Mathematical-statistical models are particu-
larly useful when confronted with large sets
of historical data available for analysis. Such
models include the linear regression and the
multiple regression [11] advances a new me-
thod for project duration estimation that takes
into account the time consumed with inter
task communication.

Table 1. Duration assessment methods for software projects
Name Pros Cons
Expertise-based
methods

These are the most flexible methods that
can be easily adapted from project to
project in order to enhance the quality of
the estimations of the amount of time
needed.

Too subjective.
Depend on the experience of the ex-
perts in question.

Learning-oriented
techniques

Are based on real life examples that have
been previously executed.

The necessity to identify the key-
variables is a daunting, time-
consuming task because of the specif-
ic aspects of every project.

Algorithmic me-
thods

-Are able to refine their estimates on subse-
quent iterative algorithm execution.
-Can be easily adapted to the variations of
the input values.

The estimations can have a very low
quality when the input data has not
been properly validated and cali-
brated.

Mathematical-
statistical models

- Are easy to develop.
- Have a very good academic background.

Need a large set of historical data.

Hybrid methods Are the most efficient since they combine
key aspects from all other methods.

Are immature, undeveloped and lack
solid formalization.

Informatica Economică, vol. 13, no. 1/2009

119

Hybrid methods have been created in order to
overcome the increasing uncertainty and
complexity of software projects. This class of
methods combines algorithmic, statistical,
mathematical and expertise-based methods
into a single unitary method. An example of
such a method is the Metrix model [12]. This
is a stochastic model that addresses the
project duration uncertainty by running
Monte Carlo simulations over the activity
graph. The advantage of this approach is that
the model produces an interval for the possi-
ble project durations and a probability distri-
bution. Thus, one is able to know the possi-
ble project durations together with the proba-
bility that certain duration will materialize.
Table 1 generalizes existing duration estima-
tion methods for software projects together
with their pros and cons.
3. Software reengineering as a key
process in project deadline fitting
One of the most important components of the
large-scale application development appara-
tus is software reengineering. The duration of
project development, in this case is relatively
easily determined when the methodologies,
methods and techniques of reengineering are
applied by the development company.
Let’s take into consideration a modular ap-
plication in which every model has a certain
level of autonomy. This application will be
subjected to a formal analysis, consisting of
the amount of software metrics that will de-
scribe by means of indicators its behavior in
some problematic situations. Before going
into analysis, we will briefly depict the prob-
ability function we use. In [13] the probabili-
ty space is defined as the triplet  PF ,,
where  is a nonempty set meaning the
sample space, each element  of  is
called outcome and F is a set of subsets of
 called events. The characteristics of the
probability function P are described by the
following axioms [13]:

  )1(0 FAeveryforAP 

  













 n

i
i

i
i APAP

11

)2(

 )3(1P

Preliminary probabilistic calculations are
made in order to estimate how much time it
would take to the project elements to get
transformed, implemented and tested in order
to satisfy the new demands of the client.
Random probability vectors are to be used in
order to describe each component or module
of the project. If the project has n autonom-
ous components, the behavior of the project
may be formalized using a random probabili-
ty vector X of dimension n. The expectation
of a random variable is well known as the
following formalism [13]. The expectation
may be formally described by a sum or
integral.

)4(][)(][


  PdXXE

)5(}{][ 
i ii xXPXXE

The expectation regarding the moment of the
projects finalization as well as the expecta-
tion for the objectives to be accomplished
with minimum errors has to be related with
the expectance of every component of the
software entity. Tables of association are
used in order to provide a graphical view of
the correspondence between each functional
module and the expectation associated to it.
Software reengineering does minimize the
time for each module and maximizes the
probability of success. In this case, the fol-
lowing formulae present in an inequality the
optimizations of expectations for each entity.

)6(
1




n

i
itT

)7()(
1









 



n

i
itMinTMin

)8(*][
1









 



n

i
iii i tMinyPXXE

T represents the total amount of time needed
to complete the entire software application,
and appears like a sum of the amounts of
time needed for each functional module. If
the applications source code is developed in

Informatica Economică, vol. 13, no. 1/2009

120

an object oriented programming language, a
module is being associated with a class.
Every class has also components whose ne-
cessary amount of time may be measured. If
the management decides to increase the level
of precision of (8), it is very simple, just by
considering other indices, such as j.

)9(







  i

i
ii i xtDevy

The development function Dev [15] is the
function that brings together as arguments
the functional modules and the chronological
allocation corresponding to them. The out-
puts are the results consisting of the soft-
ware’s functionality. Software reengineering
maximizes the probability of time reduction
between the decision of realization and the

moment of delivery. As a result, the devel-
opment cycle becomes shorter and better.
Life cycle management implies that both
software maintenance policies and security
policies deal with probabilistic estimations
and simulations, such as Monte Carlo Simu-
lation.
Correlation and covariance provide a clear
image about the relation and determination
between entities. In [13] the correlation be-
tween entities X and Y,],[YXE and the co-
variance],[YXCov , where X and Y are ran-
dom variables are:

)10(][][],[YEXEYXE 

)11(])][(])[[(],[YEYExEXEYXCov 

The process of programming must be eco-
nomically efficient. Decreasing of costs is al-
so important, as a key factor in efficiency
calculations. Expectation of costs is also cal-
culated as a mean, like in a random process
case. In modular applications, expectation of
the total cost is a sum of expectations for
every particular module. The total cost func-
tion appears like a function depending on the
prices or costs of every component of the
vector of modules.
Let’s consider the cost function as

xVywCT x *min),( which may also be de-

scribed as 



n

i
niin ywwxwywwCT

1
11);..(),...(

where iw represents the amount of financial

resources spent for the unit i, y the level of
output and represents the level of the demand
for the unit i. The target cost appears in this
case as a level of expectation. As a conse-
quence,])[],...,[(][1 nwEwEWE  and

)];,...,([1 ywwCTE n =

)];[],...,[(1 ywEwECT n =




n

i
nii ywEwExwE

1
1)];[]..[(][because the ex-

pectation of a sum of non negative variables
is the sum of expectations.

As a conclusion we can state that software
reengineering process results in a reduction
of the time needed to deliver a project. The
cost function, which is optimized by minimi-
zation naturally, and the fixing of deadlines
are key components in increasing efficiency.

4. IT&C project sample analysis
We will put together the following analysis
on samples of projects in order to offer a reli-
able image of how the time resources alloca-
tion is optimized, concerning the duration of
the development. The above formulae are be-
ing implemented and experimental results are
determined.
In Table 2 the specifications and metrics for
35 small software projects are described. The
projects were developed by the students from
the Computer Science and Accounting De-
partments at Bacau State University. Projects
have been developed by teams ranging in
size from 1 to three members. The teams had
to measure the time spent for project devel-
opment, the lines of code written and the
number of methods used. The projects have
been evaluated by two teachers, each one of
them giving a mark, the final mark appearing
as an average of the former marks. As a pre-
liminary conclusion, we state that the best

Informatica Economică, vol. 13, no. 1/2009

121

projects have been very well structured, each
method having between 20 and 30 lines of
source code. The average of durations for
the best projects is 59 hours of working and
standard deviation of 38.09 hours. For the
same projects, the number of executable lines
of source code is 918, with a standard devia-
tion of 637 lines.
We found out there is a correlation coeffi-
cient of 0.79 between the number of methods
and the number of code lines, which indi-
cates that the increasing number of lines is
also increasing the number of methods,
which is obvious if the projects are well
structured (see figure 2). These estimations

allow us to build precise demands for stu-
dents or development teams in companies
and forecast the obtained results. For exam-
ple, for a small project of 59 hours of code
elaboration, without considering the part of
user interface or web design, but with testing
and debugging included, the number of code
lines is around 1000. This number of source
code lines can increase or decrease, depend-
ing on the experience of the developer and
the complexity of the demand. For programs
that require advanced graphics, such as gam-
ing and animation the duration increases sig-
nificantly in comparison with other types of
projects.

Table 2. Students Projects Sample. Description and Evaluation
Nr. Spec Nr.

pers.
Title Nr. me-

thods
Nr.

lines
Duration

(h)
Methods
per hour

Lines per
hour

Lines per
method

Grade

1 Acc 2 Pers. Loan 10 1400 15 0.67 93.34 140 9
2 Inf 1 Reception note 17 128 20 0.85 6.4 7.53 6
3 Inf 1 Black Jack 63 1397 15 4.2 93.14 22.18 10
4 Inf 2 Painter 50 1000 75 0.67 13.34 20 10
5 Inf 1 Shooter 13 150 15 0.87 10 11.54 8
6 Inf 1 Tic-Tac- Toe 24 500 50 0.48 10 20.84 5
7 Acc 3 Minesweeper 7 225 15 0.47 15 32.15 8
8 Inf 1 Undetermined 14 330 150 0.1 2.2 23.58 7
9 Acc 2 Statistical functions 22 233 50 0.44 4.66 10.6 7

10 Acc 2 Auto test 275 2930 50 5.5 58.6 10.66 9
11 Acc 2 Accept or not 54 1170 42 1.29 27.86 21.67 7
12 Acc 1 Depreciation 25 296 75 0.34 3.95 11.84 9
13 Acc 1 Depreciation 45 726 96 0.47 7.57 16.14 9
14 Acc 1 Population 11 133 35 0.32 3.8 12.1 7.5
15 Acc 2 Payment 15 250 40 0.38 6.25 16.67 8.5
16 Acc 2 Orders 10 100 10 1 10 10 8
17 Acc 1 Test Choice 4 132 48 0.09 2.75 33 5
18 Acc 2 Annuities 43 300 40 1.08 7.5 6.98 8
19 Acc 1 Delivery 3 65 5 0.6 13 21.67 7
20 Acc 2 Payment 13 110 20 0.65 5.5 8.47 7
21 Acc 1 Sudoku 5 70 7 0.72 10 14 5
22 Acc 1 Mp3 Player 52 475 120 0.44 3.96 9.14 10
23 Acc 2 Play memory 3 150 30 0.1 5 50 5
24 Acc 1 Exchange 2 29 4 0.5 7.25 14.5 5
25 Acc 2 Payment 7 200 24 0.3 8.34 28.58 6
26 Acc 2 Payment 10 176 20 0.5 8.8 17.6 5
27 Acc 2 Ball Game 9 160 9 1 17.78 17.78 5
28 Acc 2 Annuities 5 103 30 0.17 3.44 20.6 6
29 Acc 2 Test Person 5 81 30 0.17 2.7 16.2 8
30 Acc 1 Leasing 140 3 8 17.5 0.38 0.03 10
31 Acc 1 Depreciation 30 900 15 2 60 30 10
32 Acc 2 Consolidation 100 2000 70 1.43 28.58 20 10
33 Acc 2 Zodiac 7 800 30 0.24 26.67 114.29 8
34 Acc 2 Galloway 35 400 75 0.47 5.34 11.43 8
35 Acc 2 Encyclopedia 15 200 72 0.21 2.78 13.34 7.5

Informatica Economică, vol. 13, no. 1/2009

122

Table 2 presents the experimental data and
results from the student’s projects evaluation.
On every step of the development, they have
been guided to make their work reliable. We
have considered as being ready for delivery
the projects which accomplished at least 90%
of the initial objectives.
During the development process, new re-
quirements have been added so the projects
suffered major transformations. Reengineer-
ing proved to be a way of increasing the effi-
ciency and we have noticed significant de-
creasing of the development time. For exam-
ple, the 30th project, a program that used to

compute the coefficient of allowance for de-
preciation have been easily transformed into
bills payable book for the leasing, with a very
small effort. By reusing the existing amount
of methods, which were generally and relia-
ble implemented.
Optimization of time spending proves to be a
key factor in efficient allocations of re-
sources and reengineering contributes to it.
Figure 2 illustrates the correlation between
the number of source code lines and the
number of methods after removing outlier
values.

Fig. 2. Correlation between the number of lines and the number of methods

5. Time resource allocation optimization
The fast changing economic environment,
competition and the dynamics of globaliza-
tion are the main challengers for software
development project efficiency. Fast chang-
ing economic environments and the preserva-
tion of resources (e.g. time, energy, and
money) strengthen the idea of optimal alloca-
tion in every economic activity in order to be
efficient.
In software industry, due to the competitive
environment and to the need of companies to
“strive forward to survive” [14], it is compul-
sory to reduce the development time. Reduc-
tion of development time means that the
same objectives, which had been previously
achieved by applying the steps of the devel-
opment cycle in a specific time, have to be
applied with some modifications in a shorter
period. Software reengineering and especial-
ly semantic reengineering [15] are to become
key factors in reusing the existing amount of
software modules and functionalities to

achieve the new goals, just by making up-
dates and modifications.
In [16] it is stated that one way of growing
efficiency in software development is by re-
ducing complexity and product size, by get-
ting a higher level of abstraction and by us-
ing visual modeling notations for reducing
the human generated source material. We be-
lieve that to be just a partial approach, human
factor being the most important constituent
of software companies.
For each step of the development cycle an
explicit amount of time is dedicated. Firstly,
the management of the project talks to the
beneficiary in order to get a clear image
about the expectation that the costumer has
for the ordered software.
Customers have only abstract ideas about
what they want, but not exactly about what
the software must do. After several discus-
sions and explanations, the software devel-
oper will have a clear idea about the re-
quirements of the customer and the customer

Informatica Economică, vol. 13, no. 1/2009

123

gets informed about the complexity and dif-
ficulty of his demands.
Incorrect requirements will cause unwanted
modifications and consequently delays. The
time for the planning and requirements iden-
tification has to be sufficient, because misun-
derstandings and left behinds may induce se-
vere problems in the following steps.

Each of the following steps of software engi-
neering will have in correspondence an
amount of time in the development process.
The main idea is to assign appropriate length
of time, and not to waste it, because if the
time resources are not efficiently allotted, the
project will be delayed and consequently will
be more expensive.

Fig. 3. Management of user accounts

Using UML diagrams for capturing the de-
sign of the software system, including the ar-
chitecture, will save time and money. In the
next stage, decisions have to be taken, re-
garding the number of the workforce in-
volved in the project, the tasks each member
of the team has, and to the decision to reuse
existing components or to start all from the
very beginning. By using preexistent mid-
dleware and automatically generated compo-
nents, the project will have chance to be fi-
nished before the deadline. It is important to
have both static and dynamic view of the
software system, as well as the outputs, the
final results. Class diagrams, sequence dia-
grams and use – case views consent the cap-
turing of the existing software system design.
Reengineering becomes easier to implement
new functionalities and achieve new objec-
tives of quantitative or qualitative manner.

Figure 3 is a sequence diagram of the admin-
istration module in a web application which
manages the categories of users in the aca-
demic area.

6. System Development Auditing
Auditors are responsible for providing an in-
dependent, objective appraisal activity for the
purpose of advising and assisting the man-
agement, staff and board of directors in the
achievement of the organization’s goals and
objectives [17].
Auditor involvement in computer system de-
velopment projects primarily focuses on pro-
viding independent assessments on whether
appropriate controls incorporated in the sys-
tems and suitable project controls are em-
ployed. During the work the auditor, would:
 provide advice and assistance to project
teams in the management of various risks and

user account : admin employee student

login(user,passwordd)
Validate

return(ok)

create list employees()

return(ok)

for each employee in employees_list(id_employee_...

return(detali_employeel)

update_detail_employee ()

return(ok)

create_list_of_students()

return(list_of_students)

for each student detail_student (student_id)

return(detali_student)

update_studenti()

return (update_ok)

Informatica Economică, vol. 13, no. 1/2009

124

controls in the systems;
 provide timely recommendations for any
identified control weaknesses;
 provide suggestions on possible operational
improvements based on observations, pre-
vious audit work, contacts with other audit
professionals.
For system development reviews the auditor
performs the following [18]:
 make an understanding of how the project
will be managed and the system and business
processes. Auditor review of procedures will
also be discussed / confirmed with the project
team;
 review the assessment of risk and the ade-
quacy of controls to mitigate significant
risks;
 review the deliverables at major stages in
the project’s life cycle to help evaluate risks
and controls;
 perform certain tests at the appropriate
stages in the systems development activities
to ensure that controls are in place that miti-
gate significant risks in a cost-effective man-
ner;
 provide advice and recommendations to the
project team to help them meet project and
organizational objectives.
Throughout all stages of the project, the audi-
tor will review the evolving project plans and
perform general assessment of project con-
trols.
Information System auditors typically ex-
ecute three types of reviews of the systems
development process: a pre-implementation
review, a parallel review and a post imple-
mentation review. During a pre-
implementation review, the information sys-
tem auditor investigates the proposed metho-
dology and considers its applicability and the
potential risks associated with the systems
development project. In a parallel review, the
information systems auditor reviews the per-
tinent stages of the methodology as they pro-
ceed and, subsequently, calls attention to
possible risks and provides suitable risk miti-
gation approaches.
Finally, during a post implementation review,
the information system auditor reviews the
relevant stages of the methodology after the

systems development project has been com-
pleted.
Regardless of the organization size and the
services it provides, internal auditors should
look for the symptoms that show systemic
problems with the IT department project
management approach. Usually, the presence
of some or all the symptoms below can sig-
nal that something is wrong [19]:
 business users are unhappy with the quality
and timeliness of the IT project's delivery;
 the IT department blames users for not stat-
ing their requirements and expectations clear-
ly;
 the organization experiences frequent time
and cost overruns on critical projects;
 questions related to project criticality elicit
different responses from the IT department
and senior managers;
 specific business opportunities are lost be-
cause IT systems or applications are not able
to meet their goals;
 there is a low level of awareness and slow
adoption of IT best practices.
At a minimum, key areas to be reviewed for
any IT project include: user requirements,
prioritization and scheduling, planning, re-
source management, training, monitoring and
tracking, risk management, quality control
checks, and delivery.
From the auditing point of view the follow-
ing should be implemented by the organiza-
tion:
 globally accepted best practices are used by
the organization to manage IT projects effec-
tively;
 complete segregated accesses on live, de-
velopment and test environments are
enabled;
 the visibility of the documentation for re-
lease into live is enabled;
 user acceptance testing is performed by us-
ing real test case scenarios and dummy data;
 change management software implemented
in order to keep track of the developers activ-
ities;
 central repository for change requests with
functions of workflow authorizations built in
it.
If a software application has been subjected

Informatica Economică, vol. 13, no. 1/2009

125

to audit, a certain level of quality have al-
ready been certified. Reengineering will pre-
serve the certified level of quality for the
procedures, methods or functions imple-
mented before and will also improve the ap-
plication capabilities.
Auditing proved to be an important and prob-
lem solving approach from the project man-
agement perspective. Verifying and certify-
ing the proportion in which software applica-
tions achieve their goals, the correspondence
between the objectives and the results, as
well as the significance of errors addresses
the project management activity. Considering
that, we may conclude that for developing
high quality IT projects in a reasonable time,
it is necessary to bring into play software
reengineering and audit.

7. Conclusions
Concerning systematic approaches to soft-
ware project duration assessment, the hybrid
models and particularly the Metrix model’s
main advantage is that it produces a probabil-
ity distribution of the software project dura-
tion and not single point estimation.
Software reengineering proves to be as well
an important element for achieving a high
level of efficiency and consequently, the time
between the decision of doing a project and
the moment of finalization is significantly
shortened. For each step of the software en-
gineering process, the amount of resources is
optimally distributed in order for the project
to be finished in time.
The entire project should benefit from the
certification offered by an independent audi-
tor, concerning the identified risks and the
procedures which have to be implemented in
order to mitigate the risks and fulfill the ini-
tial objectives.
We found out there is a correlation coeffi-
cient of 0.79 between the number of methods
and the number of code lines for the project
sample under analysis, which indicates that
the increase in the number of lines results in
an increase in the number of methods.

References
[1] A. W. Chow, B. D. Goodman, J. W.

Rooney and C. D. Wyble, Engaging a
corporate community to manage technol-
ogy and embrace innovation, IBM Sys-
tems Journal, vol. 46, no. 4, 2007, pp.
639-650.

[2] ***, The Chaos Report of IT Project
Failure, Standish Group, 2006

[3] ***, ERP Software Implementation Suc-
cess Rates, Robbins-Gioia 2001

[4] S. McConnell, Rapid Development, Mi-
crosoft Press, Washington, 1996

[5] M. Jørgensen, A review of studies on ex-
pert estimation of software development
effort, The Journal of Systems and Soft-
ware, vol. 70, no. 1-2, February 2004, pp.
37-60.

[6] J., Callahan and B. Moretton Reducing
software product development time, In-
ternational Journal of Project Manage-
ment vol. 19, no. 1, January 2001, pp. 1-
36.

[7] V. Temnenco, Software Estimation, En-
terprise-Wide, IBM The Rational Edge,
vol. June 2007.

[8] C. Wiegers, Stop Promising Miracles,
Software Development Magazine, Febru-
ary 2000, http://www.ddj.com/architect/
184414570.

[9] C. Sungbin, An exploratory project expert
system for eliciting correlation coefficient
and sequential updating of duration esti-
mation, Expert Systems with Applica-
tions, vol. 30, no. 4, May 2006, pp. 553-
560.

[10] B. W. Boehm et al., Software Cost Esti-
mation with COCOMO II, Prentice Hall,
2000.

[11] J. Uma Maheswar and K. Varghese,
Project Scheduling using Dependency
Structure Matrix, International Journal of
Project Management, vol. 23, no. 3, April
2005, pp. 1042 – 1046.

[12] M. Vetrici, I. Cristian, Knowledge Based
Project Duration Estimation for
Workflow Based Document Management
Software Projects, Proceeding of Know-
ledge Management Conference, Buchar-
est 2008.

[13] B. Hajek, An Exploration of Random
Processes for Engineers, IFP Group at

Informatica Economică, vol. 13, no. 1/2009

126

University of Illinois at Urbana-
Champaign 2008, pp. 1- 303.

[14] B. Johansson, J. Johnsson and Jon Ba-
giu, Modular Assessment Systems Simu-
lation, International Precision Assembly
Seminar, Chalmers Publication Library,
2004, pp. 215 – 222, http:// publica-
tions.lib.chalmers.se/cpl/record/index.xsq
l?pubid=7873

[15] C. Tomozei, Hypertext Entities Semantic
Web-Oriented Reengineering, Journal of
Applied Quantitative Methods, vol. III,
no. 1, 2008, pp. 9- 19, www.jaqm.ro.

[16] W. Royce, Improving Software Devel-
opment Economics, The Rational Edge,
Rational Software 2001, Part I, pp. 1-7,
http://www.ibm.com/developerworks
/rational/library/content/RationalEdge/arc

hives/apr01.html.
[17] T. Surcel and C. Amancei, The IT Audit

– A Major Requirement for the Quality
Management and Success in the Euro-
pean Business Context, The International
Scientific Conference, Oradea 2008.

[18] Singleton, Tommie, Systems Develop-
ment Life Cycle and IT Audits, Informa-
tion Systems Control Journal, vol. 3,
2004, pp. 24 – 26

[19] J. Laurent and P. Leeson, Auditing
CMMI Maturity and Sarbanes-Oxley
Compliance, Information \Systems Con-
trol Journal, vol. 3, 2007, http:
//www.isaca.org/AMTemplate.cfm?Secti
on=20075&Template=/ContentManagem
ent/ContentDisplay.cfm&ContentID=425
30

Cosmin TOMOZEI is assistant lecturer at Mathematics and Computer
Science Department from Faculty of Sciences of the University of Bacau. He
is a PhD candidate from October 2007 at Economic Informatics Department
from University of Economics, Bucharest. He holds a Master in Science - Da-
tabases- Business Support from University of Economics, Bucharest. He
graduated in Economic Informatics at Faculty of Economic Cybernetics, Sta-
tistics and Informatics in 2006. His main research areas are: object oriented

programming, functional programming in Lisp and F#, software reengineering and distributed
applications development.

Marius VETRICI is an independent researcher in the field of software
project management. He is a PhD candidate since October 2007 at Economic
Informatics Department from Bucharest Academy of Economic Studies. Mr.
Vetrici holds an MSc degree in Project Management from Bucharest Acade-
my of Economic Studies and a BSc degree in Economic Informatics from the
Cybernetics, Statistics and Economic Informatics from the same university.
His main research areas are: software project management and document
management.

Cristian AMANCEI is assistant lecturer at Academy of Economics Studies
Bucharest, Faculty of Economic Cybernetics, Statistics and Informatics. He is
a PhD candidate from October 2007 at Economic Informatics Department from
Academy of Economic Studies. He holds a Master in Science – Computerized
Project Management from Academy of Economic Studies, Bucharest. He is
Certified Information Systems Auditor (CISA). He graduated in Economic In-
formatics at Faculty of Economic Cybernetics, Statistics and Informatics in

2006. His main research areas are: information system audit, data structures, metrics in infor-
mation systems and object oriented programming.

