6 research outputs found

    On-line planning and scheduling: an application to controlling modular printers

    Get PDF
    We present a case study of artificial intelligence techniques applied to the control of production printing equipment. Like many other real-world applications, this complex domain requires high-speed autonomous decision-making and robust continual operation. To our knowledge, this work represents the first successful industrial application of embedded domain-independent temporal planning. Our system handles execution failures and multi-objective preferences. At its heart is an on-line algorithm that combines techniques from state-space planning and partial-order scheduling. We suggest that this general architecture may prove useful in other applications as more intelligent systems operate in continual, on-line settings. Our system has been used to drive several commercial prototypes and has enabled a new product architecture for our industrial partner. When compared with state-of-the-art off-line planners, our system is hundreds of times faster and often finds better plans. Our experience demonstrates that domain-independent AI planning based on heuristic search can flexibly handle time, resources, replanning, and multiple objectives in a high-speed practical application without requiring hand-coded control knowledge

    Inference and Learning with Planning Models

    Full text link
    [ES] Inferencia y aprendizaje son los actos de razonar sobre evidencia recogida con el fin de alcanzar conclusiones lógicas sobre el proceso que la originó. En el contexto de un modelo de espacio de estados, inferencia y aprendizaje se refieren normalmente a explicar el comportamiento pasado de un agente, predecir sus acciones futuras, o identificar su modelo. En esta tesis, presentamos un marco para inferencia y aprendizaje en el modelo de espacio de estados subyacente al modelo de planificación clásica, y formulamos una paleta de problemas de inferencia y aprendizaje bajo este paraguas unificador. También desarrollamos métodos efectivos basados en planificación que nos permiten resolver estos problemas utilizando algoritmos de planificación genéricos del estado del arte. Mostraremos que un gran número de problemas de inferencia y aprendizaje claves que han sido tratados como desconectados se pueden formular de forma cohesiva y resolver siguiendo procedimientos homogéneos usando nuestro marco. Además, nuestro trabajo abre las puertas a nuevas aplicaciones para tecnología de planificación ya que resalta las características que hacen que el modelo de espacio de estados de planificación clásica sea diferente a los demás modelos.[CA] Inferència i aprenentatge són els actes de raonar sobre evidència arreplegada a fi d'aconseguir conclusions lògiques sobre el procés que la va originar. En el context d'un model d'espai d'estats, inferència i aprenentatge es referixen normalment a explicar el comportament passat d'un agent, predir les seues accions futures, o identificar el seu model. En esta tesi, presentem un marc per a inferència i aprenentatge en el model d'espai d'estats subjacent al model de planificació clàssica, i formulem una paleta de problemes d'inferència i aprenentatge davall este paraigua unificador. També desenrotllem mètodes efectius basats en planificació que ens permeten resoldre estos problemes utilitzant algoritmes de planificació genèrics de l'estat de l'art. Mostrarem que un gran nombre de problemes d'inferència i aprenentatge claus que han sigut tractats com desconnectats es poden formular de forma cohesiva i resoldre seguint procediments homogenis usant el nostre marc. A més, el nostre treball obri les portes a noves aplicacions per a tecnologia de planificació ja que ressalta les característiques que fan que el model d'espai d'estats de planificació clàssica siga diferent dels altres models.[EN] Inference and learning are the acts of reasoning about some collected evidence in order to reach a logical conclusion regarding the process that originated it. In the context of a state-space model, inference and learning are usually concerned with explaining an agent's past behaviour, predicting its future actions or identifying its model. In this thesis, we present a framework for inference and learning in the state-space model underlying the classical planning model, and formulate a palette of inference and learning problems under this unifying umbrella. We also develop effective planning-based approaches to solve these problems using off-the-shelf, state-of-the-art planning algorithms. We will show that several core inference and learning problems that previous research has treated as disconnected can be formulated in a cohesive way and solved following homogeneous procedures using the proposed framework. Further, our work opens the way for new applications of planning technology as it highlights the features that make the state-space model of classical planning different from other models.The work developed in this doctoral thesis has been possible thanks to the FPU16/03184 fellowship that I have enjoyed for the duration of my PhD studies. I have also been supported by my advisors’ grants TIN2017-88476-C2-1-R, TIN2014-55637-C2-2-R-AR, and RYC-2015-18009.Aineto García, D. (2022). Inference and Learning with Planning Models [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18535

    Learning non-monotonic Logic Programs to Reason about Actions and Change

    Get PDF
    [Resumen] El objetivo de esta tesis es el diseño de métodos de aprendizaje automático capaces de encontrar un modelo de un sistema dinámico que determina cómo las propiedades del sistema con afectadas por la ejecución de acciones, Esto permite obtener de manera automática el conocimiento específico del dominio necesario para las tareas de planficación o diagnóstico así como predecir el comportamiento futuro del sistema. La aproximación seguida difiere de las aproximaciones previas en dos aspectos. Primero, el uso de formalismos no monótonos para el razonamiento sobre acciones y el cambio con respecto a los clásicos operadores tipo STRIPS o aquellos basados en formalismos especializados en tareas muy concretas, y por otro lado el uso de métodos de aprendizaje de programas lógicos (Inductive Logic Programming). La combinación de estos dos campos permite obtener un marco declarativo para el aprendizaje, donde la especificación de las acciones y sus efectos es muy intuitiva y natural y que permite aprender teorías más expresivas que en anteriores aproximaciones
    corecore