51 research outputs found

    Nonmonotone hybrid tabu search for Inequalities and equalities: an experimental study

    Get PDF
    The main goal of this paper is to analyze the behavior of nonmonotone hybrid tabu search approaches when solving systems of nonlinear inequalities and equalities through the global optimization of an appropriate merit function. The algorithm combines global and local searches and uses a nonmonotone reduction of the merit function to choose the local search. Relaxing the condition aims to call the local search more often and reduces the overall computational effort. Two variants of a perturbed pattern search method are implemented as local search. An experimental study involving a variety of problems available in the literature is presented.Fundação para a Ciência e a Tecnologia (FCT

    The recent development of non-monotone trust region methods

    Get PDF
    Abstract: Trust region methods are a class of numerical methods for optimization. They compute a trial step by solving a trust region sub-problem where a model function is minimized within a trust region. In this paper, we review recent results on non-monotone trust region methods for unconstrained optimization problems. Generally, non-monotone trust region algorithms with non-monotone technique are more effective than the traditional ones, especially when coping with some extreme nonlinear optimization problems. Results on trust region sub-problems and regularization methods are also discussed

    Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization

    Get PDF
    This paper presents a class of nonmonotone Direct Search Methods that converge to stationary points of unconstrained and boxed constrained mixed-integer optimization problems. A new concept is introduced: the quasi-descent direction. A point x is stationary on a set of search directions if there exists no feasible qdd on that set. The method does not require the computation of derivatives nor the explicit manipulation of asymptotically dense matrices. Preliminary numerical experiments carried out on small to medium problems are encouraging.Universidade de Vigo/CISU

    Nonmonotone Barzilai-Borwein Gradient Algorithm for 1\ell_1-Regularized Nonsmooth Minimization in Compressive Sensing

    Full text link
    This paper is devoted to minimizing the sum of a smooth function and a nonsmooth 1\ell_1-regularized term. This problem as a special cases includes the 1\ell_1-regularized convex minimization problem in signal processing, compressive sensing, machine learning, data mining, etc. However, the non-differentiability of the 1\ell_1-norm causes more challenging especially in large problems encountered in many practical applications. This paper proposes, analyzes, and tests a Barzilai-Borwein gradient algorithm. At each iteration, the generated search direction enjoys descent property and can be easily derived by minimizing a local approximal quadratic model and simultaneously taking the favorable structure of the 1\ell_1-norm. Moreover, a nonmonotone line search technique is incorporated to find a suitable stepsize along this direction. The algorithm is easily performed, where the values of the objective function and the gradient of the smooth term are required at per-iteration. Under some conditions, the proposed algorithm is shown to be globally convergent. The limited experiments by using some nonconvex unconstrained problems from CUTEr library with additive 1\ell_1-regularization illustrate that the proposed algorithm performs quite well. Extensive experiments for 1\ell_1-regularized least squares problems in compressive sensing verify that our algorithm compares favorably with several state-of-the-art algorithms which are specifically designed in recent years.Comment: 20 page

    Limited Memory Steepest Descent Methods for Nonlinear Optimization

    Get PDF
    This dissertation concerns the development of limited memory steepest descent (LMSD) methods for solving unconstrained nonlinear optimization problems. In particular, we focus on the class of LMSD methods recently proposed by Fletcher, which he has shown to be competitive with well-known quasi-Newton methods such as L-BFGS. However, in the design of such methods, much work remains to be done. First of all, Fletcher only showed a convergence result for LMSD methods when minimizing strongly convex quadratics, but no convergence rate result. In addition, his method mainly focused on minimizing strongly convex quadratics and general convex objectives, while when it comes to nonconvex objectives, open questions remain about how to effectively deal with nonpositive curvature. Furthermore, Fletcher\u27s method relies on having access to exact gradients, which can be a limitation when computing exact gradients is too expensive. The focus of this dissertation is the design and analysis of algorithms intended to solve these issues.In the first part of the new results in this dissertation, a convergence rate result for an LMSD method is proved. For context, we note that a basic LMSD method is an extension of the Barzilai-Borwein ``two-point stepsize\u27\u27 strategy for steepest descent methods for solving unconstrained optimization problems. It is known that the Barzilai-Borwein strategy yields a method with an R-linear rate of convergence when it is employed to minimize a strongly convex quadratic. Our contribution is to extend this analysis for LMSD, also for strongly convex quadratics. In particular, it is shown that, under reasonable assumptions, the method is R-linearly convergent for any choice of the history length parameter. The results of numerical experiments are also provided to illustrate behaviors of the method that are revealed through the theoretical analysis.The second part proposes an LMSD method for solving unconstrained nonconvex optimization problems. As a steepest descent method, the step computation in each iteration only requires the evaluation of a gradient of the objective function and the calculation of a scalar stepsize. When employed to solve certain convex problems, our method reduces to a variant of LMSD method proposed by Fletcher, which means that, when the history length parameter is set to one, it reduces to a steepest descent method inspired by that proposed by Barzilai and Borwein. However, our method is novel in that we propose new algorithmic features for cases when nonpositive curvature is encountered. That is, our method is particularly suited for solving nonconvex problems. With a nonmonotone line search, we ensure global convergence for a variant of our method. We also illustrate with numerical experiments that our approach often yields superior performance when employed to solve nonconvex problems.In the third part, we propose a limited memory stochastic gradient (LMSG) method for solving optimization problems arising in machine learning. As a start, we focus on problems that are strongly convex. When the dataset is too large such that the computation of full gradients is too expensive, our method computes stepsizes and iterates based on (mini-batch) stochastic gradients. Although in stochastic gradient (SG) methods, a best-tuned fixed stepsize or diminishing stepsize is most widely used, it can be inefficient in practice. Our method adopts a cubic model and always guarantees a positive meaningful stepsize, even when nonpositive curvature is encountered (which can happen when using stochastic gradients, even when the problem is convex). Our approach is based on the LMSD method with cubic regularization proposed in the second part of this dissertation. With a projection of stepsizes, we ensure convergence to a neighborhood of the optimal solution when the interval is fixed and convergence to the optimal solution when the interval is diminishing. We also illustrate with numerical experiments that our approach can outperform an SG method with a fixed stepsize

    Modifikacije metoda NJutnovog tipa za rešavanje semi-glatkih problema stohastičke optimizacije

    Get PDF
     In numerous optimization problems originating from real-world and scientific applications, we often face nonsmoothness. A large number of problems belong to this class, from models of natural phenomena that exhibit sudden changes, shape optimization, to hinge loss functions in machine learning and deep neural networks. In practice, solving a on smooth convex problem tends to be more challenging, usually more difficult and costly than a smooth one. The aim of this thesis is the formulation and theoretical analysis of Newton-type algorithms for solving nonsmooth convex stochastic optimization problems. The optimization problems with the objective function given in the form of a mathematical expectation without differentiability assumption of the function are considered. The Sample Average Approximation (SAA) is used to estimate the objective function. As the accuracy of the SAA objective functions and its derivatives is naturally proportional to the computational costs – higher precision implies larger costs in general, it is important to design an efficient balance between accuracy and costs. Therefore, the main focus of this thesis is the development of adaptive sample size control algorithms in a nonsmooth environment, with particular attention given to the control of the accuracy and selection of search directions. Several options are investigated for the search direction, while the accuracy control involves cheaper objective function approximations (with looser accuracy) during the initial stages of the process to save computational effort. This approach aims to conserve computational resources, reserving the deployment of high-accuracy objective function approximations for the final stages of the optimization process. A detailed description of the proposed methods is presented in Chapter 5 and 6. Also, the theoretical properties of the numerical procedures are analyzed, i.e., their convergence is proved, and the complexity of the developed methods is studied. In addition to the theoretical framework, the successful practical implementation of the given algorithms is presented. It is shown that the proposed methods are more efficient in practical application compared to the existing methods from the literature. Chapter 1 of this thesis serves as a foundation for the subsequent chapters by providing the necessary background information. Chapter 2 covers the fundamentals of nonlinear optimization, with a particular emphasis on line search techniques. In Chapter 3, the focus shifts to the nonsmooth framework. This chapter serves the purpose of reviewing the existing knowledge and established results in the field. The remaining sections of the thesis, starting from Chapter 4, where the framework for the subject of this thesis (the minimization of the expected value function) is introduced, onwards, represent the original contribution made by the author.У бројним проблемима оптимизације који потичу из стварних и научних примена, често се суочавамо са недиференцијабилношћу. У ову класу спада велики број проблема, од модела природних феномена који показују нагле промене, оптимизације облика, до функције циља у машинском учењу и дубоким неуронским мрежама. У пракси, решавање семи-глатких конвексних проблема обично је изазовније и захтева веће рачунске трошкове у односу на глатке проблеме. Циљ ове тезе је формулација и теоријска анализа метода Њутновог типа за решавање семи-глатких конвексних стохастичких проблема оптимизације. Разматрани су проблеми оптимизације са функцијом циља датом у облику математичког очекивања без претпоставке о диференцијабилности функције. Како је врло тешко, па некад чак и немогуће одредити аналитички облик математичког очекивања, функција циља се апроксимира узорачким очекивањем. Имајући у виду да је тачност апроксимације функције циља и њених извода пропорционална рачунским трошковима – већа прецизност подразумева веће трошкове у општем случају, важно је дизајнирати ефикасан баланс између тачности и трошкова. Стога, главни фокус ове тезе је развојалгоритама базираних на одређивању оптималне динамике увећања узорка у семи-глатком окружењу, са посебном пажњом на контроли тачности и одабиру праваца претраге. По питању одабира правца, размотрено је неколико опција, док контрола тачности укључује јефтиније апроксимације функције циља (са мањом прецизношћу) током почетних фаза процеса да би се уштедели рачунски напори. Овај приступ има за циљ очување рачунских ресурса, резервишући примену апроксимација функције циља високе тачности за завршне фазе процеса оптимизације. Детаљан опис предложених метода представљен је у поглављима 5 и 6, где су анализиране и теоријске особине нумеричких поступака, тј. доказана је њихова конвергенција и приказана сложеност развијених метода. Поред теоријског оквира, потврђена је успешна практична имплементација датих алгоритама. Показано је да су предложене методе ефикасније у практичној примени у односу на постојеће методе из литературе. Поглавље 1 ове тезе служи као основа за праћење наредних поглавља пружајући преглед основних појмова. Поглавље 2 се односи на нелинеарну оптимизацију, при чему је посебан акценат стављен на технике линијског претраживања. У поглављу 3 фокус се помера на семи-глатке проблеме оптимизације и методе за њихово решавање и служи као преглед постојећих резултата из ове области. Преостали делови тезе, почевши од поглавља 4, где се уводи проблем изучавања ове тезе (минимизација функције дате у облику очекиване вредности), па надаље, представљају оригинални допринос аутора.U brojnim problemima optimizacije koji potiču iz stvarnih i naučnih primena, često se suočavamo sa nediferencijabilnošću. U ovu klasu spada veliki broj problema, od modela prirodnih fenomena koji pokazuju nagle promene, optimizacije oblika, do funkcije cilja u mašinskom učenju i dubokim neuronskim mrežama. U praksi, rešavanje semi-glatkih konveksnih problema obično je izazovnije i zahteva veće računske troškove u odnosu na glatke probleme. Cilj ove teze je formulacija i teorijska analiza metoda NJutnovog tipa za rešavanje semi-glatkih konveksnih stohastičkih problema optimizacije. Razmatrani su problemi optimizacije sa funkcijom cilja datom u obliku matematičkog očekivanja bez pretpostavke o diferencijabilnosti funkcije. Kako je vrlo teško, pa nekad čak i nemoguće odrediti analitički oblik matematičkog očekivanja, funkcija cilja se aproksimira uzoračkim očekivanjem. Imajući u vidu da je tačnost aproksimacije funkcije cilja i njenih izvoda proporcionalna računskim troškovima – veća preciznost podrazumeva veće troškove u opštem slučaju, važno je dizajnirati efikasan balans između tačnosti i troškova. Stoga, glavni fokus ove teze je razvojalgoritama baziranih na određivanju optimalne dinamike uvećanja uzorka u semi-glatkom okruženju, sa posebnom pažnjom na kontroli tačnosti i odabiru pravaca pretrage. Po pitanju odabira pravca, razmotreno je nekoliko opcija, dok kontrola tačnosti uključuje jeftinije aproksimacije funkcije cilja (sa manjom preciznošću) tokom početnih faza procesa da bi se uštedeli računski napori. Ovaj pristup ima za cilj očuvanje računskih resursa, rezervišući primenu aproksimacija funkcije cilja visoke tačnosti za završne faze procesa optimizacije. Detaljan opis predloženih metoda predstavljen je u poglavljima 5 i 6, gde su analizirane i teorijske osobine numeričkih postupaka, tj. dokazana je njihova konvergencija i prikazana složenost razvijenih metoda. Pored teorijskog okvira, potvrđena je uspešna praktična implementacija datih algoritama. Pokazano je da su predložene metode efikasnije u praktičnoj primeni u odnosu na postojeće metode iz literature. Poglavlje 1 ove teze služi kao osnova za praćenje narednih poglavlja pružajući pregled osnovnih pojmova. Poglavlje 2 se odnosi na nelinearnu optimizaciju, pri čemu je poseban akcenat stavljen na tehnike linijskog pretraživanja. U poglavlju 3 fokus se pomera na semi-glatke probleme optimizacije i metode za njihovo rešavanje i služi kao pregled postojećih rezultata iz ove oblasti. Preostali delovi teze, počevši od poglavlja 4, gde se uvodi problem izučavanja ove teze (minimizacija funkcije date u obliku očekivane vrednosti), pa nadalje, predstavljaju originalni doprinos autora
    corecore