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Abstract

This dissertation concerns the development of limited memory steepest descent (LMSD)

methods for solving unconstrained nonlinear optimization problems. In particular, we fo-

cus on the class of LMSD methods recently proposed by Fletcher, which he has shown to

be competitive with well-known quasi-Newton methods such as L-BFGS. However, in the

design of such methods, much work remains to be done. First of all, Fletcher only showed

a convergence result for LMSD methods when minimizing strongly convex quadratics, but

no convergence rate result. In addition, his method mainly focused on minimizing strongly

convex quadratics and general convex objectives, while when it comes to nonconvex ob-

jectives, open questions remain about how to effectively deal with nonpositive curvature.

Furthermore, Fletcher’s method relies on having access to exact gradients, which can be a

limitation when computing exact gradients is too expensive. The focus of this dissertation

is the design and analysis of algorithms intended to solve these issues.

In the first part of the new results in this dissertation, a convergence rate result for an

LMSD method is proved. For context, we note that a basic LMSD method is an extension

of the Barzilai-Borwein “two-point stepsize” strategy for steepest descent methods for solv-

ing unconstrained optimization problems. It is known that the Barzilai-Borwein strategy

yields a method with an R-linear rate of convergence when it is employed to minimize a

strongly convex quadratic. Our contribution is to extend this analysis for LMSD, also for

strongly convex quadratics. In particular, it is shown that, under reasonable assumptions,

the method is R-linearly convergent for any choice of the history length parameter. The

results of numerical experiments are also provided to illustrate behaviors of the method

that are revealed through the theoretical analysis.
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The second part proposes an LMSD method for solving unconstrained nonconvex opti-

mization problems. As a steepest descent method, the step computation in each iteration

only requires the evaluation of a gradient of the objective function and the calculation of

a scalar stepsize. When employed to solve certain convex problems, our method reduces

to a variant of LMSD method proposed by Fletcher, which means that, when the history

length parameter is set to one, it reduces to a steepest descent method inspired by that

proposed by Barzilai and Borwein. However, our method is novel in that we propose

new algorithmic features for cases when nonpositive curvature is encountered. That is,

our method is particularly suited for solving nonconvex problems. With a nonmonotone

line search, we ensure global convergence for a variant of our method. We also illustrate

with numerical experiments that our approach often yields superior performance when

employed to solve nonconvex problems.

In the third part, we propose a limited memory stochastic gradient (LMSG) method for

solving optimization problems arising in machine learning. As a start, we focus on prob-

lems that are strongly convex. When the dataset is too large such that the computation

of full gradients is too expensive, our method computes stepsizes and iterates based on

(mini-batch) stochastic gradients. Although in stochastic gradient (SG) methods, a best-

tuned fixed stepsize or diminishing stepsize is most widely used, it can be inefficient in

practice. Our method adopts a cubic model and always guarantees a positive meaningful

stepsize, even when nonpositive curvature is encountered (which can happen when using

stochastic gradients, even when the problem is convex). Our approach is based on the

LMSD method with cubic regularization proposed in the second part of this dissertation.

With a projection of stepsizes, we ensure convergence to a neighborhood of the optimal

solution when the interval is fixed and convergence to the optimal solution when the in-

terval is diminishing. We also illustrate with numerical experiments that our approach

can outperform an SG method with a fixed stepsize.

2



Chapter 1

Introduction

Mathematical optimization, where one models a real-world problem to minimize an ob-

jective function over a set of variables that might need to satisfy certain constraints, has

been a formal subject of research for decades and plays a significant role in many areas of

engineering and applied mathematics. It arises in an abundant number of applications in

multiple areas, including machine learning [7, 48], control [32, 30, 51], compressed sensing

[20, 9, 19], image processing [31, 36], robust optimization [4], finance [25, 37], optics [6],

distance geometry [23], and many others. There are a variety of well-developed algorithm

classes for solving optimization problems built, e.g., on steepest descent or (quasi-)Newton

methodologies.

Optimization problems can be very large in size. In particular, one manner in which

an optimization problem can be large is if it involves a large number of variables, say in

the millions or more. For problems of such sizes, popular algorithms such as Newton’s

method—a second-order method—might not be efficient for the following reasons.

• Second order derivatives (i.e., Hessian matrices) are expensive to compute.

• There may not be large enough space to store the Hessian matrices, even if they can

be computed.

• They involve solving linear systems of equations, which can have high cost.

By contrast, steepest descent methods—which are first-order methods—are popular

3



when solving large-scale optimization problems. Steepest descent methods have multiple

advantages.

• Function and gradient evaluations are relatively cheap.

• It is beneficial to “move quickly” compared with Newton’s methods.

• Steepest descent methods are easily generalized for solving constrained problems (in

that they are not complicated, e.g., by indefinite Hessian matrices).

Besides the advantages mentioned above, we can also combine (limited memory) quasi-

Newton ideas with steepest descent methods to arrive at effective methods such as L-BFGS

[40]. By applying these strategies, we do not only make computation during each iteration

cheap but also save a lot of storage cost.

There are also other ways that an optimization problem can be large. For example, in

machine learning, optimization problems arise when one wants to minimize an objective

defined by a given dataset. There is the number of “samples” composing the dataset,

and there is the number of optimization variables, which is often equal to the number of

“features” contained in each sample. A challenge in “big data” problems is that either or

both of the following can be true:

• The number of features can be very large.

• The number of samples can be very large.

In some situations, when not only the number of features, but also the number of

samples is very large, the design of optimization method is complicated by the fact that the

computation of a “full” gradient can be very expensive. When this is the case, stochastic

gradient (SG) and its variants have been the main approaches for solving such problems.

For example, stochastic gradient methods are actively used in machine learning, including

support vector machine [52], linear and logistic regression [50], deep neural networks [1]—

well known supervised learning models [39] for prediction and classfication.

The goal in this dissertation is to conduct research on limited memory steepest descent

(LMSD) methods for solving nonlinear optimization problems. In particular, the class of

4



algorithms we explore is based on the work of Fletcher in [22], which in turn can be

seen as an extension of the Barzilai-Borwein “two-point stepsize” strategy for steepest

descent methods for solving unconstrained optimization problems [2].The extension can

be quantified using a so-called history length parameter, for which we use the letter m. A

BB method corresponds to m = 1, whereas LMSD involves any integer m ∈ [1, n].

For BB methods, there are now well-known properties when it is employed to minimize

an n-dimensional strongly convex quadratic objective function. Such objective functions

are interesting in their own right, but one can argue that such analyses also characterize

the behavior of the method in the neighborhood of a strong local minimizer of any smooth

objective function. In the original work (i.e., [2]), it is shown that the method converges

R-superlinearly when n = 2. In [44], it is shown that the method converges from any

starting point for any natural number n, and in [15] it is shown that the method converges

R-linearly for any such n. In [22], it is shown that the proposed LMSD method converges

from any starting point when it is employed to minimize a strongly convex quadratic.

However, to the best of our knowledge, the convergence rate of the method for m > 1

has not yet been analyzed. Our first contribution is to show that Fletcher’s LMSD method

converges R-linearly when employed to minimize such a function. Our analysis builds

upon the analyses in [22] and [15]. We also present the results of numerical experiments

that illustrate our convergence theory and demonstrate that the practical performance of

LMSD can be even better than the theory suggests.

Once the rate of convergence properties of LMSD method for strongly convex quadrat-

ics are analyzed, in the second part, we focus on designing efficient algorithms within a

steepest descent framework for solving general unconstrained optimization problems whose

objective functions are continuously differentiable. The motivation of the work in this part

is that, when it comes to solving nonconvex problems—which are not rare in practice—

many methods falter and do not exhibit the same level of performance as when convex

problems are considered. This also happens to the original BB method and LMSD method,

which drives us to explore some alternative approaches for handling nonconvex problems.

The main contribution of the new methodology we devise is that it provides a novel

5



strategy for computing stepsizes when solving nonconvex optimization problems. In par-

ticular, when nonpositive curvature (as defined later) is encountered, our method adopts

a local cubic model of the objective function in order to determine a stepsize (for m = 1)

or sequence of stepsizes (for m ≥ 1). As in the case of the original BB methods and the

LMSD method of Fletcher, our basic algorithm does not enforce sufficient decrease in the

objective in every iteration. However, as is commonly done for variants of BB methods,

we remark that, with a nonmonotone line search, a variant of our algorithm attains global

convergence guarantees under weak assumptions. Our method also readily adopts the con-

vergence rates attainable by a BB or LMSD method if/when it reaches a neighborhood of

the solution in which the objective is strictly convex.

The motivation of the work in the third part is to solve the type of problems with not

only a very large number of features but also a very large number of samples such that the

computation of full gradients is very expensive. We focus on designing algorithms of the

stochastic gradient (SG) variety. However, one of the major challenges in stochastic gra-

dient (SG) methods is how to choose an appropriate stepsize while running the algorithm.

Since traditional line search techniques are not readily applied in stochastic optimization

methods, the common practice in SG is either to tune a stepsize by hand, or to tune a

diminishing stepsize sequence, which can be time consuming and inefficient in practice.

Our contribution in this part is that we extend the BB (m = 1) and LMSD methods

(m ≥ 1) adopting cubic models using full gradient proposed in the second part to Barzilai-

Borwein stochastic gradient method with cubic regularization (BBSG) and limited memory

stochastic gradient method with cubic regularization (LMSG). We compute meaningful

positive stepsizes from BBSG when m = 1 or LMSG when m ≥ 1 instead of using fixed

or diminishing stepsizes. We also prove convergence (rate) properties for LMSG with

fixed interval projection and diminishing interval projection for strongly convex objectives

under mild assumptions, respectively. Furthermore, we conduct numerical experiments

for LMSG on solving logistic regression problems. The numerical results show that LMSG

can outperform SG with a fixed stepsize.

This dissertation is organized in the following manner. We first review, in Chapter 2,
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some mathematical bakground, including convex analysis, (numerical) linear algebra and

basic optimization theory. We follow this by introducing literature on gradient-based

methods (full gradient) for optimization, including steepest descent (SD) methods, BB

methods and LMSD methods, their variants for computing stepsizes together with their

theoretical properties. Next, we discuss stochastic gradient (SG) methods. Chapter 3

illustrates the R-linear convergence rate of LMSD for strongly convex quadratics, which

extends the convergence rate analysis of BB methods. In Chapter 4, we propose an

LMSD method for solving unconstrained optimization problems, especially when nonpos-

itive curvature is encountered. In Chapter 5, we design BBSG and LMSG methods within

a stochastic gradient (SG) framework to solve “big data” problems. Final remarks and

comments on all of the methods in this dissertation are presented in Chapter 6.
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Chapter 2

Background and Literature

Review

In this chapter, we first cover background on convex analysis, some fundamental (nu-

merical) linear algebra and basic optimization theory. With this understanding of math-

ematical background, we will introduce our first method, steepest descent (SD), which

belongs to the class of gradient-based methods. This is followed by a literature review

on Barzilai-Borwein (BB) methods, including algorithm descriptions and theoretical con-

vergence results. Next, we will show how to incorporate line search techniques to BB

methods as well as some BB methods variants. Followed by BB methods, we discuss lim-

ited memory steepest descent (LMSD) methods, a generalization of BB methods. Finally,

unlike all the methods mentioned above which apply full gradient during each iteration,

we will explain in detail the methods that use a porportion of the full gradient, namely

stochastic gradient (SG) methods.

We always assume matrix A (used in this chapter) is symmetric and thus all its eigen-

values, λ1 ≤ λ2 ≤ · · · ≤ λn, are real.
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2.1 Convex Analysis

In this Chapter, we provide some basic definitions and properties related to (strong)

convexity and Lipschitz continuity.

2.1.1 Convexity

A real-valued function f : Rn → R is convex if we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) for all (x, y) ∈ Rn × Rn and α ∈ [0, 1]. (2.1)

A function f is strictly convex if for x 6= y inequality (2.1) holds strictly. A convex function

has the following properties.

• (Continuity) If f is convex, then it is continuous.

• (First order condition) If f is continuously differentiable, then we have

f(y) ≥ f(x) +∇f(x)T (y − x) for all (x, y) ∈ Rn × Rn.

• (Monotone mapping) f is differentiable and convex if and only if

(∇f(x)−∇f(y))T (x− y) ≥ 0 for all (x, y) ∈ Rn × Rn.

2.1.2 Lipschitz Continuity

A function f : Rn → R is Lipschitz continuous if there exists a scalar L > 0 such that

||f(x)− f(y)||2 ≤ L||x− y||2 for all (x, y) ∈ Rn × Rn. (2.2)

Here are some properties related to Lipschitz continuity.

• f is convex if and only if L
2 x

Tx− f(x) is convex.

• Suppose ∇f is Lipschitz continuous with parameter L, then L
2 x

Tx− f(x) is convex.
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• (Quadratic upper bound) Suppose ∇f is Lipschitz continuous with parameter L,

then convexity of g means that we can derive this upper bound for f :

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
||y − x||22 for all (x, y) ∈ Rn × Rn. (2.3)

2.1.3 Strong Convexity

A function f : Rn → R is strongly convex with parameter σ > 0 if f(x)− σ
2x

Tx is convex.

A strongly convex function has the following properties.

• (First order condition)

f(y) ≥ f(x) +∇f(x)T (y − x) +
σ

2
||y − x||22 for all (x, y) ∈ Rn × Rn. (2.4)

• If f is strongly convex and x∗ is the unique minimizer, then

σ

2
||x− x∗||22 ≤ f(x)− f(x∗) ≤

1

2σ
||∇f(x)||22 for all x ∈ Rn. (2.5)

2.2 (Numerical) Linear Algebra

2.2.1 Symmetric Positive Definite (SPD) Matrix

A symmetric matrix A ∈ Rn×n is positive definite (A � 0) if and only if for all x ∈ Rn

and x 6= 0, we have

xTAx > 0.

Here are some basic properties of symmetric positive definite matrices.

• All A’s eigenvalues are real and positive.

0 < λ1 ≤ λ2 ≤ · · · ≤ λn.

• Principle submatrices of A are also positive definite.
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• A−1 exists and is also symmetric positive definite (A−1 � 0).

• The diagonal elements of matrix A are positive, aii > 0.

• Eigenvalue decomposition.

There exists n × n orthogonal matrix U ∈ Rn×n, where UTU = UUT = I and

diagonal matrix Λ, such that

UTAU = Λ.

where Λ contains all eigenvalues of A.

• (Quadratic forms) A strongly convex quadratic function f : Rn → R can be formu-

lated as xTAx where x is the column vector and A is symmetric positive definite.

2.2.2 Krylov Subspace and Krylov Sequence

In linear algebra, the order m (m ≤ n) Krylov subspace generated by A ∈ Rn×n and a

vector g ∈ Rn is the linear subspace spanned by the images of g under the first m powers

of A (starting from A0 = I), that is,

Km(A, g) = span {g,Ag,A2g, · · · , Am−1g}.

And Aig, i = 0, 1, · · · , m− 1, the basis of Krylov subspace, are called Krylov sequence

initiated from g. More properties related to Krylov sequence will be discussed in steepest

descent methods, i.e., Chapter 2.4.2 below.

2.2.3 Rayleigh Quotient and (Harmonic) Ritz Value

For the m-dimensional Krylov subspace

Km(A, g) = span {g,Ag,A2g, · · · , Am−1g},
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starting from

q1 =
g

||g||
,

we can generate orthonormal basis Q = {q1, q2, · · · , qm} for Krylov subspace Km(A, g),

where Q ∈ Rn×m is orthogonal matrix and QTQ = I.

Sometimes the eigenvalues of matrix A ∈ Rn×n can be expensive to compute especially

when n is very large, one basic idea is to formulate a smaller dimensional matrix T ∈ Rm×m

and compute its m eigenvalues as approximations of the original n eigenvalues. A typical

way is to project matrix A to the m dimensional subspace Km(A, g), i.e.

T = QTAQ,

and compute the m eigenvalues of matrix T .

When m = 1, Q = q1 ∈ Rn×1 with ||q1||22 = 1, the matrix T becomes a number, we

define this number as Rayleigh quotient R(A, q1), where

R(A, q1) = qT1 Aq1.

The more general definition of Rayleigh quotient is

R(A, q1) =
qT1 Aq1

qT1 q1
.

with arbitrary q1 ∈ Rn×1. In addition, the range of R(A, q1) is

λ1 ≤ R(A, q1) ≤ λn.

When we have general m ≥ 1 and obtain matrix T ∈ Rm×m, we define m eigenvalues of

matrix T , i.e.

θm ≤ θm−1 ≤ · · · ≤ θ1,

as Ritz values of matrix A, where

T = QTAQ.
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We also define m eigenvalues of matrix (P−1T )−1, i.e.,

µm ≤ µm−1 ≤ · · · ≤ µ1,

as harmonic Ritz values of matrix A, where

P = QTA2Q.

We have T as a tridiagonal matrix and P as a pentadiagonal matrix when A is sym-

metric. Here is the contrast of the computation of Ritz values and harmonic Ritz values.

We write Θ = diag(θi), Ξ = diag(µi) and have the following eigensystems

(QTAQ)X = (QTQ)XΘ.

If we were to include an extra A in the innerproducts of QTQ and QTAQ, we would obtain

a generalized eigensystem

(QTA2Q)X = (QTAQ)XΞ.

There are also alternative ways of computing matrices both T and P when A is unavailable,

which will be explained in detail in Chapter 4.2.2.

Here is also a well known theorem revealing important interlacing relations between

the eigenvalues of T , i.e. Ritz values and the eigenvalues of A. The theorem is known as

the Cauchy Interlacing Theorem.

Theorem 2.2.1. The eigenvalues of T (= QTAQ where QTQ = I) satisfy

θj ∈ [λm+1−j , λn+1−j ] for all j ∈ [m].

2.2.4 Lanczos Method

A well known method of computing matrix T from matrix A is the Lanczos method. Here

is the algorithm framework.
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Algorithm 1 Lanczos Method

1: input q1 ← g
||g|| , q0 ← 0, β1 ← 0

2: for j = 1, 2 · · · ,m− 1 do

3: w′j ← Aqj

4: αj ← w′jqj

5: wj ← w′j − αjqj − βjqj−1

6: βj+1 ← ||wj ||

7: qj+1 ← wj
βj+1

8: end for

9: wm ← Aqm

10: αm ← w′mqm

From Lanczos method, we can get T ∈ Rm×m, where

T =



α1 β2 0

β2 α2 β3

β3 α3
. . .

. . .
. . . βm−1

βm−1 αm−1 βm

0 βm αm


.

2.2.5 QR Factorization

Any real square matrix A ∈ Rn×n (not necessarily symmetric) may be decomposed as

A = QR,

where Q is an orthogonal matrix (QTQ = I) and R is an upper triangular matrix. If A is

invertible, then the factorization is unique if we require that the diagonal elements of R

be positive.

More generally, we can factor an A ∈ Rn×m, with n ≥ m, as the product of an

orthogonal matrix Q ∈ Rn×n and an upper triangular matrix R ∈ Rn×m. As the bottom
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(n − m) rows of an n × m upper triangular matrix consist entirely of zeros, it is often

useful to partition R, or both R and Q:

A = QR = Q

R1

0

 = [Q1, Q2]

R1

0

 = Q1R1,

where R1 ∈ Rm×m is an upper triangular matrix, 0 ∈ R(n−m)×m is a zero matrix, Q1 ∈

Rn×m, Q2 ∈ Rn×(n−m), and Q1 and Q2 both have orthogonal columns.

2.2.6 Cholesky Factorization

When A ∈ Rn×n is symmetric positive definite, we have

A = LLT ,

where L ∈ Rn×n is a lower triangular matrix.

A closely related variant of the classical Cholesky decomposition is the LDL decom-

position,

A = LDLT ,

where L ∈ Rn×n is a lower triangular matrix and D ∈ Rn×n is a diagonal matrix. This

decomposition is related to the classical Cholesky decomposition, of the form LLT

A = LDLT = LD
1
2D

1
2
TLT = (LD

1
2 )(LD

1
2 )T .

2.3 Basic Optimization Theory

Now that we have reviewed some knowledge of (numerical) linear algebra, we introduce

some basic optimization theory focusing on unconstrained optimization. Consider the

unconstrained optimization problem

min
x∈Rn

f(x). (2.6)
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In this chapter, we discuss situations when f : Rn → R is continuously differentiable (i.e.,

f ∈ C), or convex (with, perhaps, f /∈ C) and f is bounded below.

2.3.1 Global and Local Minima

Ideal minima are those that minimize a function globally over its domain.

Definition 2.3.1 (Global minimum). A vector x∗ is a global minimum of f if

f(x∗) ≤ f(x) for all x ∈ Rn.

Commonly, however, we are satisfied with a weaker form of minimum.

Definition 2.3.2 (Local minimum). A vector x∗ is a local minimum of f if there exists

ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ B(x∗, ε) := {x ∈ Rn : ‖x− x∗‖2 ≤ ε}.

We also characterize certain types of global and/or local minima:

• x∗ is a strict global/local minimizer if the inequality holds strictly for x 6= x∗.

• x∗ is an isolated global/local minimizer if, for some ε′ > 0, it is the only local

minimizer in the neighborhood B(x∗, ε
′).

An isolated minimum is a strict minimum, but (typically only for some pathological ex-

amples) the reverse is not always true.
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Figure 2.1: Global and local minima

A special fact in convex optimization is that all local minima are global minima.

Theorem 2.3.3. If f : Rn → R is convex, then a local minimum of f is a global minimum

of f . If f is strictly convex, then there exists at most one global minimum of f .

Unfortunately, for nonconvex optimization, the conditions in the definitions of global

and local minima are not entirely useful, we rarely have global information about f , and

so have no way to verify if a point is a global minimizer. Thus, in nonconvex optimization,

we often focus on finding a local minimizer. Using calculus, we can derive local optimality

conditions that aid in determining if a point is a local minimizer.

2.3.2 Optimality Condition

Theorem 2.3.4 (First-order necessary condition). If f ∈ C and x∗ is a local minimizer

of f , then ∇f(x∗) = 0.

We can limit our search to points where ∇f(x∗) = 0. However, ∇f(x∗) = 0 does not

imply that we have a local minimizer.
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Figure 2.2: Stationary Point

Definition 2.3.5 (Stationary point). A point x ∈ Rn is a stationary point for f ∈ C if

∇f(x) = 0.

2.3.3 Rates of Convergence

There are two types of rates of convergence of sequences, one prefixed by Q (for “quotient”)

and the other prefixed by R (for “root”). Let {xk} ⊆ Rn be a sequence that converges to

{x∗} ⊆ Rn and let || · || be a vector norm on Rn. There are different rates of convergence.

• The convergence of {xk} to x∗ is Q-sublinear if

lim
k→∞

=
||xk+1 − x∗||
||xk − x∗||

= 1.

• The convergence of {xk} to x∗ is Q-linear if there exists c ∈ (0, 1) such that

||xk+1 − x∗||
||xk − x∗||

≤ c,

for all sufficiently large k. The constant c indicates the rate of linear convergence.

• The convergence of {xk} to x∗ is Q-superlinear if

lim
k→∞

=
||xk+1 − x∗||
||xk − x∗||

= 0.

It is easily seen that any sequence that converges Q-superlinearly also converges

Q-linearly.
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We now distinguish between various types of Q-superlinear convergence.

• The convergence of {xk} to x∗ is Q-quadratic if there exists c > 0 such that

||xk+1 − x∗||
||xk − x∗||2

≤ c,

for all sufficiently large k.

• The Q-order of convergence of {xk} to x∗ is p > 1 if there exists c > 0 such that

||xk+1 − x∗||
||xk − x∗||p

≤ c,

for all sufficiently large k. This leads to the definitions of Q-cubic (p = 3) and

Q-quartic (p = 4) convergence.

The above definitions only focus on the sequences decreasing monotonically, however,

they do not cover the situation when certain sequences converge reasonably quickly but

approach the limit point nonmonotonically. For such cases, we define a slightly weaker

form of convergence known as R-order convergence. If {εk} converges to 0 and

||xk − x∗|| ≤ εk for all k, (2.7)

then the R-order of convergence of {xk} to x∗ is said to be that of the Q-order of con-

vergence of {εk} to 0. If {εk} converges Q-sublinearly to 0 and (2.7) holds, then {xk}

converges R-sublinearly to x∗; if {εk} converges Q-linearly to 0 and (2.7) holds, {xk}

converges R-linearly to x∗; and so on.

2.3.4 Basic Iterations

Typically, we apply iterative methods for solving optimization problems, where the basic

iterations have the form

xk+1 = xk + αkdk. (2.8)
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In (2.8), xk is the current iteration point (at kth iteration), in order to reach the next

iteration point xk+1 (at (k + 1)th iteration), we need two quantities:

• Search direction dk, which direction to go.

• Stepsize αk, how far to go.

There are various ways of selecting each search direction and stepsize. For the choice of

search direction, we mainly focus on negative gradient direction, where

dk = −gk. (2.9)

More will be discussed in Chapter 2.4. And for the computation of stepsize, we will

introduce two well-known methods in Chapter 2.5 and 2.9. For the purpose of guaranteeing

algorithm convergence, sometimes a line search is also carried out to modify the original

stepsize at each iteration, which will be explained in detail in Chapter 2.7.

We can also define sk+1 := αkdk as the step and thus

xk+1 = xk + sk+1, (2.10)

this notation is frequently used in Chapter 2.5.

2.4 Steepest Descent Methods

Following the discussion of some basic optimization theory, we will introduce one of the

simplest and most widely used techniques for solving unconstrained nonlinear optimization

problems, which is steepest descent (SD).

2.4.1 Introduction

First, let us consider unconstrained optimization problem 2.6. The simplest gradient-

based method for solving this problem is a steepest descent method, which is the term we
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use to describe any iterative method of the form

xk+1 ← xk − αkgk for all k ∈ N. (2.11)

Here, x0 ∈ Rn is a given initial point and, for all k ∈ N, the scalar αk > 0 is the kth

stepsize. In the classical steepest descent method of Cauchy, each stepsize is obtained by

an exact line search (see [10]), i.e., assuming f is bounded below along the ray from xk

along −gk, one sets

αk ∈ arg min
α≥0

f(xk − αgk).

However, in modern variants of steepest descent, alternative stepsizes that are cheaper to

compute are employed to reduce per-iteration (and typically overall) computational costs.

Algorithm 2 Steepest Descent Framework

1: input x0 ∈ Rn

2: for k = 0, 1, 2 · · · do

3: compute gk ← ∇f(xk)

4: choose αk ∈ (0,∞)

5: set xk+1 ← xk − αkgk

6: end for

2.4.2 Krylov Sequence Generated from Steepest Descent Methods

Here is a property related to Krylov sequences. Given a strongly convex quadratic

function with SPD matrix A, suppose we generate the consecutive iteration sequence

{xk−m, xk−m+1, · · · , xk−1} by steepest descent methods and store the corresponding gra-

dients in a matrix G, where

G = [gk−m, gk−m+1, · · · , gk−1].
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At xk, the displacement of the current iterate xk from any back value xk−m lies in the

span of the Krylov sequence initiated from gk−m, where

xk − xk−m = span {gk−m, Agk−m, A2gk−m, · · · , Am−1gk−m}.

Followed by this, multiplying by A and noting that gk = Axk − b, we also have

gk − gk−m = span {Agk−m, A2gk−m, A
3gk−m, · · · , Amgk−m}.

2.5 Barzilai-Borwein Methods

The “two-point stepsize” method proposed by Barzilai and Borwein has two variants,

which differ only in the formulas used to compute the stepsizes. We derive these formulas

simultaneously now for reference. During iteration k ∈ N+ := {1, 2, . . . }, defining the

displacement vectors

sk := xk − xk−1 and yk := gk − gk−1, (2.12)

the classical secant equation is given by Hksk = yk where Hk represents an approximation

of the Hessian of f at xk. In quasi-Newton methods of the Broyden class (such as the

BFGS method (see [8, 21, 24, 47])), a Hessian approximation Hk � 0 is chosen such that

the secant equation is satisfied and the kth search direction is set as −H−1k gk (see [41]).

However, the key idea in BB methods is to maintain a steepest descent framework by

approximating the Hessian by a scalar multiple of the identity matrix in such a way that

the secant equation is only satisfied in a least-squares sense. In particular, consider

min
q∈R

1
2‖(qI)sk − yk‖22 and min

q̂∈R
1
2‖sk − (q̂−1I)yk‖22.

Assuming that sTk yk > 0 (which is guaranteed, e.g., when sk 6= 0 and f is strictly convex),

the solutions of these one-dimensional problems are, respectively,

qk :=
sTk yk

sTk sk
and q̂k :=

yTk yk

sTk yk
. (2.13)
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That is, qkI and q̂kI represent simple approximations of the Hessian of f along the line

segment [xk−1, xk], meaning that if one minimizes the quadratic model of f at xk along

−gk given by

f(xk − αgk) ≈ fk − α‖gk‖22 + 1
2α

2qk‖gk‖22,

respectively for qk = qk and qk = q̂k, then one obtains two potential values for the stepsize

αk, namely

ᾱk :=
sTk sk

sTk yk
and α̂k :=

sTk yk

yTk yk
. (2.14)

(Further discussion on the difference between these stepsizes and their corresponding Hes-

sian approximations is given in Chapter 4.3.1.) Overall, the main idea in such an approach

is to employ a two-point approximation to the secant equation in order to construct a sim-

ple approximation of the Hessian of f at xk, which in turn leads to a quadratic model of

f at xk that can be minimized to determine the stepsize αk.

2.6 Convergence Results

BB methods and enhancements to them have been a subject of research for over two

decades. In their original work (see [2]), Barzilai and Borwein proved that either of their

two stepsize choices leads to global convergence and an R-superlinear local convergence

rate when (2.11) is applied to minimize a two-dimensional strictly convex quadratic. Ray-

dan (see [44]) extended these results to prove that such methods are globally convergent

when applied to minimize any finite-dimensional strictly convex quadratic. Dai and Liao

(see [15]) also extended these results to show that, on such problems, BB methods attain

an R-linear rate of convergence. In general, however, in order to have a globally conver-

gent algorithm for solving general nonlinear objective functions, one typically employs a

line search approach. We consider such methods in Chapter 2.7.
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2.7 Line Search Techniques

An interesting feature of BB methods, even when applied to minimize strictly convex

quadratics, is that they are not guaranteed to yield monotonic decreases in the objective

function or a stationarity measure for problem (2.6). That is, when they converge to a

minimizer of f , neither the sequence of function values {fk} nor the sequence of gradient

norms {‖gk‖} is guaranteed to decrease monotonically. Hence, a variety of extensions of

the original BB methods have been designed that ensure convergence when minimizing

general continuously differentiable objective functions by incorporating well-established

line search techniques.

2.7.1 Monotone Line Search

A line search is a common strategy for ensuring global convergence for an optimization

algorithm. For example, in our context of solving problem (2.6), a well-known line search

strategy is to compute αk satisfying the following pair of so-called Wolfe conditions; here,

g : Rn → Rn is the gradient function of f , dk represents the search direction in each

iteration, and γ and ξ are user-specified parameters:

f(xk + αkdk) ≤ fk + γαkg
T
k dk, γ ∈ (0, 1),

g(xk + αkdk)
Tdk ≥ ξgTk dk, ξ ∈ (γ, 1).

Another common approach is to use the first of these two conditions, known as the suffi-

cient decrease or Armijo condition, in the context of a backtracking line search.

2.7.2 Nonmonotone Line Search

In the context of BB methods, one typically tries to avoid having to modify the BB

stepsizes by employing a nonmonotone line search such as the one proposed by Grippo,

Lampariello, and Lucidi (see [29]). The condition used in this strategy has the form

f(xk + αkdk) ≤ max
0≤j≤m

f(xk−j) + γαkg
T
k dk, γ ∈ (0, 1),
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where m is a nonnegative integer. Clearly, this condition has a similar form as the Armijo

condition, except that the function value at the current iterate is replaced by the largest

function value at the most recent m iterates. By employing such a condition, the ob-

jective function values are not forced to decrease monotonically, though it can be shown

that the sequence of function values defined by the most recent m values does decrease

monotonically, which can be used to ensure global convergence.

Raydan (see [45]) proposed a globally convergent BB method (GBB) using this non-

monotone line search for general nonlinear objecive function and showed some significant

reduction in the number of line searches and also in the number of gradient evaluations.

More recently, another nonmonotone line search was proposed by Zhang and Hager

(see [56]), which requires decreases in a moving average of successive function values. In

this approach, the stepsize αk is chosen to satisfy the condition

f(xk + αkdk) ≤ Ck + γαkg
T
k dk, γ ∈ (0, 1),

where Ck is defined by the recursions

Qk+1 = ηkQk + 1, with Q0 = 1,

Ck+1 =
ηkQkCk + f(xk+1)

Qk+1
, with C0 = f(x0),

where ηk ∈ [ηmin, ηmax] ⊂ [0,∞) is a parameter that controls the degree of nonmonotonic-

ity. If ηk = 0 for each k, then the line search is the usual monotone Armijo line search. If

ηk = 1 for each k, then Ck = Ak, where Ak = 1
k+1

∑k
i=0 f(xi).

With this nonmonotone line search and some suitable assumptions, we can have global

convergence results as described in Theorem 2.2 of [56].

Theorem 2.7.1. Suppose f(x) is bounded from below and the searching direction dk at

kth iteration satisfies

gTk dk ≤ −c1||gk||2,

||dk|| ≤ c2||gk||,

where c1 and c2 are positive constants. Moreover, if the Wolfe conditions are used, we
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assume that ∇f is Lipschitz continuous, with Lipschitz constant L, on the level set

L = {x ∈ Rn : f(x) ≤ f(x0)}.

Let L denote the collection of x ∈ Rn whose distance to L is at most µdmax, (µ > 0),

where dmax = supk ||dk||. If the Armijo conditions are used, we assume that ∇f is Lipschitz

continuous, with Lipschitz constant L, on L. Then the iteates xk by the nonmonotone line

search algorithm have the property that

lim inf
k→∞

‖gk‖2 = 0.

Moreover, if ηmax ∈ [0, 1), then

lim
k→∞

‖gk‖2 = 0.

Hence, every convergent subsequence of the iterates approaches a point x∗, where

∇f(x∗) = 0.

2.7.3 Summary

Overall, a typical line search strategy involves a condition of the form

f(xk + αkdk) ≤ f rk + γαkg
T
k dk, γ ∈ (0, 1),

where f rk is a reference function value. If f rk = +∞, there is no line search. If f rk = fk,

then the above reduces to the condition in a (monotone) Armijo line search. The two non-

monotone line search strategies above can be derived by setting f rk = max0≤j≤m f(xk−j)

and f rk = Ck, respectively.
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2.8 Barzilai-Borwein Methods Variants

In BB methods, Barzilai and Borwein proposed two quadratic models for convex quadratic

functions and generated two types of stepsizes. These ideas have been extended in various

ways with the goal of producing better stepsizes.

2.8.1 Alternative Step (AS) Gradient Method

Dai (see [13]) proposed some approaches alternatively using exact line searches (i.e.,

Cauchy stepsizes) and BB stepsizes in the iterative sequence known as alternate step

(AS) gradient method to solve convex quadratic problems. The motivation is that when

minimizing convex quadratics, the SD method produces zigzags and the zigzagging phe-

nomenon will not occur if one of the two SD steps is replaced with a BB step. This

motivates the consideration of the gradient method that chooses its stepsize as follows:

αk =


αSDk , for odd k,

αBBk , for even k.

For convex quadratic case, we have

αSDk =
gTk gk

gTk Agk
,

αBBk =
sTk−1sk−1

sTk−1yk−1
=

gTk−1gk−1

gTk−1Agk−1
,

from which we can see that

αSDk−1 = αBBk .

We can also consider

αmk+i =


αSDmk+i, for i = 1, · · · ,m− 1,

αBBmk+m, for i = m,

where m ≥ 1 and obviously the previous one is a special case with m = 2.
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The theoretical and numerical analyses show that the AS method is a promising alter-

native or even better than the BB method. A two-step (3− ε)-Q-superlinear convergence

result ||gk+2|| = O(||gk||3−ε) is established for n = 2 and an R-linear convergence result

for the general case.

2.8.2 Cyclic BB (CBB) Method

Dai (see [13]) and Dai et al. (see [14]) also proposed the method of repeatedly using one

BB stepsize in the next m (history length) steps, which is known as cyclic BB (CBB)

method for solving unconstrained optimization problems. The motivation for the cyclic

BB method comes from the superior performance of cyclic SD compared to the ordinary

SD, where in cyclic SD, we have

αmk+i = αSDmk+1, for i = 1, · · · ,m.

In fact, the AS method described in Chapter 2.8.1 is also a special case of cyclic SD with

m = 2, since for convex quadratic function, the BB step at iteration k is the SD step at

iteration k − 1.

Similarly, in cyclic BB method, we have

αmk+i = αBBmk+1, for i = 1, · · · ,m.

CBB method is locally linearly convergent at a local minimizer with positive definite

Hessian. Numerical evidence in Dai et al. (see [14]) indicates that when m > n/2 ≥ 3,

where n is the problem dimension, CBB method is locally superlinearly convergent. In

the special case m = 3 and n = 2, it is proved that the convergence rate is no better than

linear.

The reason that the CBB approach is better than the BB gradient algorithm is that

it requires less computation. In addition, like in the conjugate gradient method, there

is also a quadratic termination result in gradient methods, for convex quadratic function

with Hessian matrix A, if we have stepsize {α−11 , · · · , α−1n } = {λ1, · · · , λn}, which is the
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set of all the eigenvalues of A, the steepest descent method gives the exact solution in at

most n+ 1 iterations. We will prove such a finite termination result in the next chapter.

From the numerical experiments in Dai (see [13]) and Dai et al. (see [14]), the stepsizes

generated by the cyclic methods are usually closer to the inverse eigenvalues of A than

those by the BB method.

Theoretically, under suitable assumptions, the Rayleigh quotient

gTk+lAgk+l

gTk+lgk+l
,

generated by the gradient method with constant stepsizes

xk+l = xk+l−1 − αgk+l−1, l = 1, 2, · · · ,

converges to some eigenvalue of the matrix A if l →∞. Thus, it is reasonable to assume

that repeated use of a BB stepsize leads to good approximations of eigenvalues of A.

An implementation of the CBB method combines a non-monotone line search and

an adaptive choice for the cycle length m performs better than the existing BB gradient

algorithm, while it is competitive with the well-known conjugate gradient algorithm.

2.8.3 Alternate Minimization (AM) Method

Dai and Yuan (see [16]) proposed alternate minimization method whose stepsizes alter-

nately minimize the function value and the gradient norm along the line of steepest descent

for convex quadratic function, where

αAMk =


αMG
k =

gTk Agk
gTk A

2gk
, for odd k,

αSDk =
gTk gk
gTk Agk

, for even k.

The motivation of this method is that suppose the dimension of the problem is very large,

so each algorithm can compute only a few iterations. Then one should prefer a monotonic

algorithm to a nonmonotonic one (like BB method) since the objective is to minimize the
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function. Therefore the question whether there also exists a monotonic gradient algorithm

that is much faster than the SD method rises and one basic idea is to alternately minimize

the gradient norm and the function value.

Dai et al. (see [57]) also modified this AM method as

αk =


αMG
k , if

αMG
k

αSDk
> κ,

αSDk , otherwise,

where κ ∈ (0, 1) and close to 0.5.

For convex quadratics, the AM method is proved to be Q-superlinearly convergent in

two dimensions, and Q-linearly convergent in any dimension. Numerical results suggest

that the AM method is much better than the SD method and comparable with the BB and

AS methods. It can also be extended to unconstrained optimization with a line search.

2.8.4 Adaptive BB (ABB) Method

Dai et al. (see [57]) and Yuan (see [55]) also proposed the alternative BB method which

alternatively uses two BB stepsizes for convex quadratic function.

αk =


αBB2
k , if

αBB2
k

αBB1
k

< κ,

αBB1
k , otherwise,

where κ ∈ (0, 1). Obviously we have

αBB1
k = αSDk−1,

αBB2
k = αMG

k−1.

Here is the intuition of this method, when we have

αBB2
k

αBB1
k

=
αMG
k−1
αSDk−1

≈ 0,
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the MG methods performs poorly at point xk−1 and there is little reduction in ||g(x)||2,

then choose the smaller step-size αBB2
k , othwewise, choose the larger step-size αBB1

k . This

is also similar to the trust-region approach, which uses a somewhat similar strategy while

choosing the trust-region radius.

For convex quadratics, the ABB method is proved to be R-linearly convergent. Nu-

merical results suggest that the ABB method is comparable and in general preferable to

the BB, AS, and AM methods. Particularly, the ABB method is a good option if the coef-

ficient matrix is very ill-conditioned and a high precision is required. And it outperforms

the linear CG method when a low precision is required.

This method itself requires no line searches for general functions and therefore might

be able to save a lot of computational work while solving unconstrained optimization

problems. To ensure global convergence, we could combine the ABB method with the

non-monotone line search.

2.8.5 Cubic Interpolation Model

Dai, Yuan, and Yuan (see [12]) employed higher-order models and proposed interpolation

techniques to derive a few alternative stepsizes; they use interpolation to recover the

original BB stepsizes and employ a cubic model to derive alternatives. Defining the model

f(xk+1 − αsk) ≈ mk+1(α) := fk+1 − αgTk+1sk + 1
2qkα

2‖sk‖22 − 1
6ckα

3‖sk‖32,

they automatically have

mk+1(0) = fk+1 and ∇mk+1(0) = gTk+1sk,

and, in addition, consider the potential interpolation conditions

mk+1(1) = fk and ∇mk+1(1) = gTk sk.
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Enforcing one, the other, or both of these conditions to determine the pair (qk, ck), Dai,

Yuan, and Yuan recovered one of the basic BB stepsizes along with two alternative stepsize

options:

αk =sTk−1sk−1/[2(fk−1 − fk + gTk sk−1)],

αk =sTk−1sk−1/[6(fk−1 − fk) + 4gTk sk−1 + 2gTk−1sk−1].

Their methods are also globalized by the line search of Grippo et al.. Numerical results

suggest they require fewer numbers of function and gradient evaluations and perform

better compared with some known algorithms.

2.8.6 Modified Secant Equation Model

There has also been recent work by Xiao, Wang, and Wang (see [53]) that proposed alter-

native stepsizes using an alternative secant equation motivated by better approximating

Bksk. They use the formula

Bksk−1 = ỹk−1 = yk−1 + γ̃sk−1,

γ̃ =
3(gk + gk−1)

T sk−1 + 6(fk−1 − fk)
||sk−1||2

.

and

Bksk−1 = yk−1 = yk−1 + γsk−1,

γ =
(gk + gk−1)

T sk−1 + 2(fk−1 − fk)
||sk−1||2

.

They derived two new stepsize formulae

α̃k =
sTk−1ỹk−1

ỹTk−1ỹk−1
,

αk =
sTk−1yk−1

yTk−1yk−1
.

Together with nonmonotone line search by Zhang and Hager (see [56]), they showed these

proposed methods are globally convergent as well as efficient numerical results.
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2.8.7 Alternative Modified Secant Equation Model

There is recent work by Kafaki and Fatemi (see [33]) that modifies a BB stepsize using a

similar strategy as the modified BFGS method proposed by Li and Fukushima (see [35])

for general nonlinear functions. In particular, they modify the BB stepsize αk =
sTk−1sk−1

sTk−1yk−1

when there is a negative curvature (sTk−1yk−1 < 0). The method is:

Bksk−1 = yk−1, yk−1 = yk−1 + hk−1||gk−1||rsk−1,

where we have

r > 0 and hk−1 = C + max{−
sTk1yk−1

‖sk−1‖2
, 0}‖gk−1‖−r,

with some constant C.

We observe that sTk−1yk−1 > 0 regardless of the sign of sTk−1yk−1. This method solves

the negative curvature issue by using the modified BB step

αk =
sTk−1sk−1

sTk−1yk−1
.

Together with nonmonotone line search, it is globally convergent and the numerical ex-

periments illustrate good performances.

2.8.8 Other Stepsizes and Models

Besides the above stepsizes and models, Yuan (see [54]) proposed the incorporation of

Cauchy stepsizes into the iterative process to improve the efficiency of the algorithm, a

technique later extended by De Asmundis, Serafino, and Toraldo (see [17]), motivated by

work in [18] with their collaborator Riccio in a monotone gradient scheme. There has also

been work by Biglari and Solimanpur (see [5]) that proposes alternative stepsizes derived

by fourth-order interpolation models. These articles employ the nonmonotone line search

of Zhang and Hager.
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2.9 Fletcher’s Limited Memory Steepest Descent (LMSD)

Method

The foundation of Fletcher’s method is a strategy for attaining finite convergence when

minimizing a convex quadratic function. Fletcher’s LMSD method represents an alterative

to the original BB methods that is entirely different than those described in Chapter 2.5.

Rather than attempt to compute a better stepsize based on information that can be ex-

tracted only from the previous iteration, his approach involves the storage and exploitation

of information from m previous iterations, with which a sequence of m stepsizes—to be

employed in the subsequent m iterations—are computed. To be more precise, consider

iteration k ≥ m for some user-specified integer parameter m ≥ 1 and suppose that a

matrix of gradients (computed at previous iterates), namely

Gk :=

[
gk−m · · · gk−1

]
, (2.15)

is available. The key idea underlying Fletcher’s proposed method is that, in the case of

minimizing the quadratic function 1
2x

TAx for some A � 0, a reasonable set of stepsizes can

be obtained by computing the reciprocals of the eigenvalues of the symmetric tridiagonal

matrix

Tk := QTkAQk,

where Qk is the orthogonal matrix obtained in the (thin) QR-factorization of the matrix

Gk (see [26, Theorem 5.2.2]). In fact, if one has m = n, then choosing stepsizes in this

manner leads to finite termination of the algorithm in n steps. We formalize this result

as the following theorem.

Theorem 2.9.1 (Finite Termination of an LMSD method for minimizing 1
2x

TAx from

an arbitrary starting point with m = n). Suppose the matrix A has n distinct eigenvalues

0 < λ1 < λ2 < · · · < λn.

If αk−1 ← λ−1i for i ∈ {1, 2, . . . n}, then gn = 0.
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Furthermore, the matrix Tk can be obtained without access to the matrix A, such as

through the partially extended Cholesky factorization GTk [Gk gk] = RTk [Rk rk] to obtain

Tk =

[
Rk rk

]
JkR

−1
k , (2.16)

where Rk is the upper triangular matrix obtained in the (thin) QR-factorization of Gk

(meaning that it is the upper triangular Cholesky factor of GTkGk (see [26, Theorem 5.2.2]))

and

Jk :=



α−1k−m

−α−1k−m
. . .

. . . α−1k−1

−α−1k−1


. (2.17)

Exploiting this latter representation, Fletcher extends his approach to the minimization

of general objective functions. In particular, by storing Gk and computing Tk in a manner

similar to (2.16), he outlines a “Ritz Sweep” algorithm that, in his experiments, performs

as well as the well-known L-BFGS method (see Nocedal [40]). In this extension to a more

general setting (i.e., nonquadratic functions), Fletcher incorporates line searches and other

features to overcome certain issues that may arise and to promote convergence. Some of

his procedures are discussed below, but the reader should refer to his article for a more

complete discussion.

It should be noted that in the case of minimizing a strictly convex quadratic and

with m = 1, the formula (2.16) yields Tk = qk (recall (2.13)), which reveals that choosing

stepsizes as the reciprocals of the eigenvalues of Tk corresponds to the first BB alternative.

Fletcher also remarks that a similar strategy can be designed corresponding to the second

BB stepsize. In particular, defining

Rk rk

0 ρk


T Rk rk

0 ρk

 as the Cholesky factorization of

[
Gk gk

]T [
Gk gk

]
,
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he defines the corresponding pentadiagonal matrix

Pk := R−Tk JTk

Rk rk

0 ρk


T Rk rk

0 ρk

 JkR−1k . (2.18)

He explains that, in the case of minimizing a strictly convex quadratic function, ap-

propriate stepsizes are given by the eigenvalues of P−1k Tk; in particular, with m = 1,

the formulas (2.16) and (2.18) yield P−1k Tk = α̂k (recall (2.14)). While he refers to the

eigenvalues of Tk as Ritz values, he refers to the reciprocals of the eigenvalues of P−1k Tk

as harmonic Ritz values [42].

2.10 Stochastic Gradient (SG) Methods

2.10.1 Introduction

When it comes to optimization methods for machine learning, the goal is to minimize the

sum of cost functions over samples from a finite training set, which has the form

min
x∈Rn

F (x) :=
1

n

n∑
i=1

fi(x), (2.19)

where n is the sample size, and each fi : Rd → R is the cost function corresponding to

the i-th sample data. If the objective is prediction, a classical example is linear regression

and the cost function is least squares

fi(x) := (aTi x− bi)2,

where ai ∈ Rd and bi ∈ R are the data samples associated with a linear regression problem.

If the objective is classification, two important examples are logistic regression and support

vector machine (SVM). As for logistic regression, the cost function has the form

fi(x) := log(1 + exp(−biaTi x)).
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While for squared hinge loss SVM, we can have the following as cost function

fi(x) = ([1− biaTi x]+)2,

where ai ∈ Rd and bi ∈ {−1, 1} in logistic regression and SVM models are the data

samples associated with a binary classification problem. Note that unlike Chapter 2.9, in

Chapter 2.10, we use n to refer to sample size and d for problem size.

2.10.2 Stochastic Gradient (SG) Methods

The optimization methods for solving problem (2.19) fall into two broad categories as

explained in [7]. We refer to them as batch and stochastic. The methods introduced

previously (including BB methods, LMSD methods, etc.) all employ a full gradient dur-

ing each iteration, which are considered as batch / full gradient methods, they use the

iterations of the form

xk+1 ← xk −
αk
n

n∑
i=1

∇fi(xk), (2.20)

where αk is a positive stepsize on iteration k.

A key challenge arising in (2.19) is that the number of data points n (also known

as training examples) can be extremely large such that computing of ∇F (x) for given x

can be very expensive. That triggers the methods which belong to the other category,

i.e., stochastic gradient (SG) methods (prototype described in [46]). Stochastic gradient

(SG) methods and their variants have been the main approaches for solving (2.19). The

iterations of stochastic gradient (SG) methods are defined as

xk+1 ← xk − αk∇fik(xk), (2.21)

where ik is randomly chosen from {1, · · · , n} and αk is a positive stepsize on iteration k.

Here is the framework of stochastic gradient (SG) methods.
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Algorithm 3 Stochastic Gradient (SG) Framework

1: input x0 ∈ Rn

2: for kinN do

3: randomly choose an index ik from {1, · · · , n}

4: compute a stochastic gradient ∇fik(xk)

5: choose αk ∈ (0,∞)

6: set xk+1 ← xk − αk∇fik(xk)

7: end for

The rate of convergence of a batch gradient method is faster than a basic stochastic

method. If F (x) is strongly convex, then the batch method iterates defined by (2.20)

has R-linear convergence rate and the SG iterates defined by (2.21) satisfy the sublinear

convergence property if each ik is drawn uniformly from {1, · · · , n}, while on the other

side, the per-iteration cost of (2.20) is more expensive than the one of (2.21). We combine

the best properties of both approaches. Instead of employing information from one sample

point or whole sample points per iteration, one can employ a mini-batch approach in which

a small subset of samples, call it Sk ⊆ {1, · · · , n}, is chosen randomly in each iteration,

leading to

xk+1 ← xk −
αk
|Sk|

∑
i∈Sk

∇fi(xk). (2.22)

Such an approach falls under the framework set out by [46].

As for stepsizes in stochastic gradient (SG) methods, people usually use a best-tuned

fixed stepsize αk = C, or a diminishing stepsize, for example αk = 1/(k + 1). For a

strongly convex function, SG with fixed stepsize will converge to a neighborhood of the

optimal solution, SG with diminishing stepsize will converge to the optimal solution.
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Chapter 3

R-Linear Convergence of Limited

Memory Steepest Descent

The limited memory steepest descent method (LMSD) proposed by Fletcher is an exten-

sion of the Barzilai-Borwein “two-point stepsize” strategy for steepest descent methods

for solving unconstrained optimization problems. It is known that the Barzilai-Borwein

strategy yields a method with an R-linear rate of convergence when it is employed to

minimize a strongly convex quadratic. This part extends this analysis for LMSD, also for

strongly convex quadratics. In particular, it is shown that, under reasonable assumptions,

the method is R-linearly convergent for any choice of the history length parameter. The

results of numerical experiments are also provided to illustrate behaviors of the method

that are revealed through the theoretical analysis.

3.1 Introduction

For solving unconstrained nonlinear optimization problems, one of the simplest and most

widely used techniques is steepest descent (SD). This refers to any strategy in which, from

any solution estimate, a productive step is obtained by moving some distance along the

negative gradient of the objective function, i.e., the direction along which function descent

is steepest.
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While SD methods have been studied for over a century and employed in numerical

software for decades, a unique and powerful instance came about relatively recently in the

work by [2], where a “two-point stepsize” strategy is proposed and analyzed. The resulting

SD method, commonly referred to as the BB method, represents an effective alternative

to other SD methods that employ an exact or inexact line search when computing the

stepsize in each iteration.

The theoretical properties of the BB method are now well-known when it is employed to

minimize an n-dimensional strongly convex quadratic objective function. Such objective

functions are interesting in their own right, but one can argue that such analyses also

characterize the behavior of the method in the neighborhood of a strong local minimizer

of any smooth objective function. In the original work (i.e., [2]), it is shown that the

method converges R-superlinearly when n = 2. In [44], it is shown that the method

converges from any starting point for any natural number n, and in [15] it is shown that

the method converges R-linearly for any such n.

In each iteration of the BB method, the stepsize is determined by a computation in-

volving the displacement in the gradient of the objective observed between the current

iterate and the previous iterate. As shown in [22], this idea can be extended to a limited

memory steepest descent (LMSD) method in which a sequence of m stepsizes is computed

using the displacements in the gradient over the previous m steps. This extension can be

motivated by the observation that these displacements lie in a Krylov subspace determined

by a gradient previously computed in the algorithm, which in turn yields a computation-

ally efficient strategy for computing m distinct eigenvalue estimates of the Hessian (i.e.,

matrix of second derivatives) of the objective function. The reciprocals of these eigenvalue

estimates represent reasonable stepsize choices. Indeed, if the eigenvalues are computed

exactly, then the algorithm terminates in a finite number of iterations; e.g., see [34], [22],

and §3.2.

In [22], it is shown that the proposed LMSD method converges from any starting point

when it is employed to minimize a strongly convex quadratic function. However, to the

best of our knowledge, the convergence rate of the method for m > 1 has not yet been
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analyzed. The main purpose of this chapter is to show that, under reasonable assumptions,

this LMSD method converges R-linearly when employed to minimize such a function. Our

analysis builds upon the analyses in [22] and [15].

We mention at the outset that numerical evidence has shown that the practical perfor-

mance of the BB method is typically much better than known convergence proofs suggest;

in particular, the empirical rate of convergence is often Q-linear with a contraction con-

stant that is better than that observed for a basic SD method. Based on such evidence,

we do not claim that the convergence results proved in this chapter fully capture the

practical behavior of LMSD methods. To explore this claim, we present the results of

numerical experiments that illustrate our convergence theory and demonstrate that the

practical performance of LMSD can be even better than the theory suggests. We conclude

with a discussion of possible explanations of why this is the case for LMSD, in particular

by referencing a known finite termination result for a special (computationally expensive)

variant of the algorithm.

Organization In §3.2, we formally state the problem of interest, notation to be used

throughout the chapter, Fletcher’s LMSD algorithm, and a finite termination property for

it. In §3.3, we prove that the LMSD algorithm is R-linearly convergent for any history

length. The theoretical results proved in §3.3 are demonstrated numerically in §3.4 and

concluding remarks are presented in §3.6.

Notation The set of real numbers (i.e., scalars) is denoted as R, the set of nonnegative

real numbers is denoted as R+, the set of positive real numbers is denoted as R++, and the

set of natural numbers is denoted as N := {1, 2, . . . }. A natural number as a superscript

is used to denote the vector-valued extension of any of these sets—e.g., the set of n-

dimensional real vectors is denoted as Rn—and a Cartesian product of natural numbers

as a superscript is used to denote the matrix-valued extension of any of these sets—e.g.,

the set of n×n real matrices is denoted as Rn×n. A finite sequence of consecutive positive

integers of the form {1, . . . , n} ⊂ N is denoted using the shorthand [n]. Subscripts are

used to refer to a specific element of a sequence of quantities, either fixed or generated by

41



an algorithm. For any vector v ∈ Rn, its Euclidean (i.e., `2) norm is denoted by ‖v‖.

3.2 Fundamentals

In this Chapter, we state the optimization problem of interest along with corresponding

definitions and concepts to which we will refer throughout the remainder of the chapter.

We then state Fletcher’s LMSD algorithm and prove a finite termination property for it,

as is done in [34] and [22].

3.2.1 Problem Statement

Consider the problem to minimize a strongly convex quadratic function f : Rn → R

defined by a symmetric positive definite matrix A ∈ Rn×n and vector b ∈ Rn, namely,

min
x∈Rn

f(x), where f(x) = 1
2x

TAx− bTx. (3.1)

Formally, we make the following assumption about the problem data.

Assumption 3.2.1. The matrix A in problem (3.1) has r ≤ n distinct eigenvalues

denoted by

λ(r) > · · · > λ(1) > 0. (3.2)

Consequently, this matrix yields the eigendecomposition A = QΛQT , where

Q =

[
q1 · · · qn

]
is orthogonal

and Λ = diag(λ1, . . . , λn) with λn ≥ · · · ≥ λ1 > 0

and λi ∈ {λ(1), . . . , λ(r)} for all i ∈ [n].

(3.3)

The eigendecomposition of A defined in Assumption 3.2.1 plays a crucial role in our

analysis. In particular, we will make extensive use of the fact that any gradient of the

objective function computed in the algorithm, a vector in Rn, can be written as a linear

combination of the columns of the orthogonal matrix Q. This will allow us to analyze

the behavior of the algorithm componentwise according to the weights in these linear
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combinations corresponding to the sequence of computed objective gradients. Such a

strategy has been employed in all of the aforementioned articles on BB and LMSD.

3.2.2 Limited memory steepest descent (LMSD) method

Fletcher’s limited memory steepest descent method is stated as Algorithm LMSD. The

iterate update in the algorithm is the standard update in an SD method: each subsequent

iterate is obtained from the current iterate minus a multiple of the gradient of the objective

function evaluated at the current iterate. With this update at its core, Algorithm LMSD

operates in cycles. At xk,1 ∈ Rn representing the initial point of the kth cycle, a sequence

of m positive stepsizes {αk,j}j∈[m] are selected to be employed in an inner cycle composed

of m updates, the result of which is set as the initial point for cycle k + 1.

Once such an inner cycle has been performed, the stepsizes to be employed in the next

cycle are computed as the reciprocals of Ritz values of A, i.e., estimates of eigenvalues of A

that are contained in the spectrum of A in a certain desirable sense (e.g., see Lemma 3.3.6

in §3.3.2). [22] describes how these can be obtained in one of three ways, all offering the

same estimates (in exact arithmetic). The most intuitive definition is that, for cycle k+1,

the estimates come as the eigenvalues of Tk := QTkAQk, where Qk ∈ Rn×m satisfying

QTkQk = I is defined by a thin QR factorization of the matrix of kth cycle gradients, i.e.,

for some upper triangular matrix Rk ∈ Rm×m, such a factorization satisfies the equation

QkRk = Gk :=

[
gk,1 · · · gk,m

]
. (3.4)

(For now, let us assume that Gk has linearly independent columns, in which case the

matrix Rk in (3.4) is nonsingular. For a discussion of situations when this is not the case,

see Remark 3.2.2 later on.) Practically, however, obtaining Tk in this manner requires

multiplications with A as well as storage of the n-vectors composing the columns of Qk.

Both can be avoided in the following manner. First, it can be shown from the iterate

update in Step 7 of Algorithm LMSD (e.g., see the proof of Lemma 3.2.3 in §3.2.3) that

gk,j+1 = gk,j−αk,jAgk,j for all (k, j) ∈ N× [m]. This means that, with the gradient at the

initial point of cycle k+ 1, namely gk+1,1 ≡ gk,m+1, and the matrix of kth-cycle reciprocal
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stepsizes, namely

Jk ←



α−1k,1

−α−1k,1
. . .

. . . α−1k,m

−α−1k,m


, (3.5)

one has AGk =

[
Gk gk,m+1

]
Jk, which in turn means that

GTkAGk = GTk

[
Gk gk,m+1

]
Jk. (3.6)

Hence, by computing (upper triangular) Rk and rk from the partially extended Cholesky

factorization

GTk

[
Gk gk,m+1

]
= RTk

[
Rk rk

]
, (3.7)

one can see (by plugging (3.7) into (3.6) and using Gk = QkRk) that Tk can be computed

by

Tk ←
[
Rk rk

]
JkR

−1
k . (3.8)

Fletcher’s third approach, which also avoids multiplications with A, is to compute

Tk ←
[
Rk QTk gk,m+1

]
JkR

−1
k . (3.9)

However, this is less efficient than using (3.8) due to the need to store Qk and since the

QR factorization of Gk requires ∼m2n flops, as opposed to the ∼1
2m

2n flops required for

(3.8); see [22].
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Algorithm LMSD Limited Memory Steepest Descent Method

1: choose an initial point x1,1 ∈ Rn, history length m ∈ [n], and termination tolerance

ε ∈ R+

2: choose stepsizes {α1,j}j∈[m] ⊂ R++

3: compute g1,1 ← ∇f(x1,1)

4: if ‖g1,1‖ ≤ ε, then return x1,1

5: for k ∈ N do

6: for j ∈ [m] do

7: set xk,j+1 ← xk,j − αk,jgk,j

8: compute gk,j+1 ← ∇f(xk,j+1)

9: if ‖gk,j+1‖ ≤ ε, then return xk,j+1

10: end for

11: set xk+1,1 ← xk,m+1 and gk+1,1 ← gk,m+1

12: set Gk by (3.4) and Jk by (3.5)

13: compute Rk and rk to satisfy (3.7) and set Tk by (3.8)

14: set {θk,j}j∈[m] ⊂ R++ as the eigenvalues of Tk in decreasing order

15: set {αk+1,j}j∈[m] ← {θ−1k,j}j∈[m] ⊂ R++

16: end for

The choice to order the eigenvalues of Tk in decreasing order is motivated by [22]. In

short, this ensures that the stepsizes in cycle k + 1 are ordered from smallest to largest,

which improves the likelihood that the objective function and the norm of the objective

gradient decrease monotonically, at least initially, in each cycle. This ordering is not

essential for our analysis, but is a good choice for any implementation of the algorithm;

hence, we state the algorithm to employ this ordering.

One detail that remains for a practical implementation of the method is how to choose

the initial stepsizes {α1,j}j∈[m] ⊂ R++. This choice has no effect on the theoretical results

proved in this chapter, though our analysis does confirm the fact that the practical per-

formance of the method can be improved if one has the knowledge to choose one or more

stepsizes exactly equal to reciprocals of eigenvalues of A; see §3.2.3. Otherwise, one can
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either provide a full set of m stepsizes or carry out an initialization phase in which the

first few cycles are shorter in length, dependent on the number of objective gradients that

have been observed so far; see [22] for further discussion on this matter.

Remark 3.2.2. In (3.4), if Gk for some k ∈ N does not have linearly independent

columns, then Rk is singular and the formulas (3.8) and (3.9) are invalid, meaning that

the employed approach is not able to provide m eigenvalue estimates for cycle k. As

suggested in [22], an implementation of the method can address this by iteratively removing

“older” columns of Gk until the columns form a linearly independent set of vectors, in

which case the approach would be able to provide m̃ ≤ m stepsizes for the subsequent

(shortened) cycle. We advocate such an approach in practice and, based on the results

proved in this chapter, conjecture that the convergence rate of the algorithm would be R-

linear. However, the analysis for such a method would be extremely cumbersome given

that the number of iterations in each cycle might vary from one cycle to the next within

a single run of the algorithm. Hence, in our analysis in §3.3, we assume that Gk has

linearly independent columns for all k ∈ N. In fact, we go further and assume that

‖R−1k ‖ is bounded proportionally to the reciprocal of the norm of the objective gradient

at the first iterate in cycle k (meaning that the upper bound diverges as the algorithm

converges to the minimizer of the objective function). These norms are easily computed

in an implementation of the algorithm; hence, we advocate that a procedure of iteratively

removing “older” columns of Gk would be based on observed violations of such a bound.

See the discussion following Assumption 3.3.4 in §3.3.

3.2.3 Finite Termination Property of LMSD

If, for some k ∈ N and j ∈ [m], the stepsizes in Algorithm LMSD up through iteration

(k, j) ∈ N×[m] include the reciprocals of all of the r ≤ n distinct eigenvalues of A, then the

algorithm terminates by the end of iteration (k, j) with xk,j+1 yielding ‖gk,j+1‖ = 0. This

is shown in the following lemma and theorem, which together demonstrate and extend the

arguments made, e.g., in §2 of [22].
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Lemma 3.2.3. Under Assumption 3.2.1, for each (k, j) ∈ N × [m], there exist weights

{dk,j,i}i∈[n] such that gk,j can be written as a linear combination of the columns of Q in

(3.3), i.e.,

gk,j =

n∑
i=1

dk,j,iqi. (3.10)

Moreover, these weights satisfy the recursive property

dk,j+1,i = (1− αk,jλi)dk,j,i for all (k, j, i) ∈ N × [m]× [n]. (3.11)

Proof. Since gk,j = Axk,j − b for all (k, j) ∈ N × [m], it follows that

xk,j+1 = xk,j − αk,jgk,j ,

=⇒ Axk,j+1 = Axk,j − αk,jAgk,j ,

=⇒ gk,j+1 = gk,j − αk,jAgk,j ,

=⇒ gk,j+1 = (I − αk,jA)gk,j ,

=⇒ gk,j+1 = (I − αk,jQΛQT )gk,j ,

from which one obtains that

n∑
i=1

dk,j+1,iqi =
n∑
i=1

dk,j,i(I−αk,jQΛQT )qi =
n∑
i=1

dk,j,i(qi−αk,jλiqi) =
n∑
i=1

dk,j,i(1−αk,jλi)qi.

The result then follows since the columns of Q form an orthogonal basis of Rn.

Theorem 3.2.4. Suppose that Assumption 3.2.1 holds and that Algorithm LMSD is run

with termination tolerance ε = 0. If, for some (k, j) ∈ N×[m], the set of computed stepsizes

up through iteration (k, j) includes all of the values {λ−1(l) }l∈[r], then, at the latest, the

algorithm terminates finitely at the end of iteration (k, j) with xk,j+1 yielding ‖gk,j+1‖ = 0.

Proof. Consider any (k, j) ∈ N × [m] such that the stepsize is equal to the reciprocal of

an eigenvalue of A, i.e., αk,j = λ−1(l) for some l ∈ [r]. By Lemma 3.2.3, it follows that

dk,j+1,i = (1− αk,jλi)dk,j,i = (1− λ−1(l) λi)dk,j,i = 0 for all i ∈ [n] such that λi = λ(l).
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Along with the facts that Lemma 3.2.3 also implies

dk,j,i = 0 =⇒ dk,j+1,i = 0 for all (k, j) ∈ N × [m]

and xk+1,1 ← xk,m+1 (and gk+1,1 ← gk,m+1) for all k ∈ N, the desired conclusion follows.

Remark 3.2.5. Theorem 3.2.4 implies that Algorithm LMSD will converge finitely by

the end of the second cycle if m ≥ r and the eigenvalues of T1 include all eigenvalues

{λ(l)}l∈[r]. This is guaranteed, e.g., when the first cycle involves m = n steps and G1 has

linearly independent columns.

3.3 R-Linear Convergence Rate of LMSD

Our primary goal in this Chapter is to prove that Algorithm LMSD converges R-linearly

for any choice of the history length parameter m ∈ [n]. For context, we begin by citing

two known convergence results that apply to Algorithm LMSD, then turn our attention

to our new convergence rate results.

3.3.1 Known Convergence Properties of LMSD

In the Appendix of [22], the following convergence result is proved for Algorithm LMSD.

The theorem is stated slightly differently here only to account for our different notation.

Theorem 3.3.1. Suppose that Assumption 3.2.1 holds and that Algorithm LMSD is run

with termination tolerance ε = 0. Then, either gk,j = 0 for some (k, j) ∈ N × [m] or the

sequences {gk,j}∞k=1 for each j ∈ [m] converge to zero.

As a consequence of this result, we may conclude that if Algorithm LMSD does not

terminate finitely, then, according to the relationship (3.10), the following limits hold:

lim
k→∞

gk,j = 0 for each j ∈ [m] and (3.12a)

lim
k→∞

dk,j,i = 0 for each (j, i) ∈ [m]× [n]. (3.12b)
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Fletcher’s result, however, does not illuminate the rate at which these sequences converge

to zero. Only for the case of m = 1 in which Algorithm LMSD reduces to a BB method

do the following results from [15] (see Lemma 2.4 and Theorem 2.5 therein) provide a

convergence rate guarantee.

Lemma 3.3.2. Suppose that Assumption 3.2.1 holds and that Algorithm LMSD is run

with history length m = 1 and termination tolerance ε = 0. Then, there exists K ∈ N,

dependent only on (λ1, λn), such that

‖gk+K,1‖ ≤ 1
2‖gk,1‖ for all k ∈ N.

Theorem 3.3.3. Suppose that Assumption 3.2.1 holds and that Algorithm LMSD is run

with history length m = 1 and termination tolerance ε = 0. Then, either gk,1 = 0 for some

k ∈ N or

‖gk,1‖ ≤ c1ck2‖g1,1‖ for all k ∈ N,

where, with K ∈ N from Lemma 3.3.2, the constants are defined as

c1 := 2

(
λn
λ1
− 1

)K−1
and c2 := 2−1/K ∈ (0, 1).

Overall, the computed gradients vanish R-linearly with constants that depend only on

(λ1, λn).

3.3.2 R-Linear Convergence Rate of LMSD for Arbitrary m ∈ [n]

Our goal in this Chapter is to build upon the proofs of the results stated in the previous

Chapter (as given in the cited references) to show that, under reasonable assumptions,

Algorithm LMSD possesses an R-linear rate of convergence for any m ∈ [n]. More pre-

cisely, our goal is to show that the gradients computed by the algorithm vanish R-linearly

with constants that depend only on the spectrum of the data matrix A. One of the main

challenges in this pursuit is the fact, hinted at by Lemma 3.3.2 for the case of m = 1, that

the gradients computed in Algorithm LMSD might not decrease monotonically in norm.
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This is one reason why the analysis in [15] is so remarkable, and, not surprisingly, it is an

issue that must be overcome in our analysis as well. But our analysis also overcomes new

challenges. In particular, the analysis in [15] is able to be more straightforward due to the

fact that, in a BB method, a stepsize computation is performed after every iterate update.

In particular, this means that, in iteration k ∈ N, the current gradient gk,1 plays a role

in the computation of αk,1. In LMSD, on the other hand, a set of stepsizes are computed

and employed in sequence, meaning that multiple iterate updates are performed until the

next set of stepsizes are computed. This means that, in each cycle, iterate updates are

performed using stepsizes computed using old gradient information. Another challenge

that our analysis overcomes is the fact that the computed stepsizes cannot all be charac-

terized in the same manner; rather, as revealed later in Lemma 3.3.7, each set of stepsizes

is spread through distinct intervals in the spectrum of A. Our analysis overcomes all of

these challenges by keeping careful track of the affects of applying each sequence of step-

sizes vis-à-vis the weights in (3.10) for all (k, j) ∈ N × [m]. In particular, we show that

even though the gradients might not decrease monotonically in norm and certain weights

in (3.10) might increase within each cycle and from one cycle to the next, the weights

ultimately vanish in a manner that corresponds to R-linear vanishing of the gradients for

any m ∈ [n].

Formally, for simplicity and brevity in our analysis, we make the following standing

assumption throughout this Chapter.

Assumption 3.3.4. Assumption 3.2.1 holds, as do the following:

(i) Algorithm LMSD is run with ε = 0 and gk,j 6= 0 for all (k, j) ∈ N × [m].

(ii) For all k ∈ N, the matrix Gk has linearly independent columns. Further, there

exists a scalar ρ ≥ 1 such that, for all k ∈ N, the nonsingular matrix Rk satisfies

‖R−1k ‖ ≤ ρ‖gk,1‖
−1.

Assumption 3.3.4(i) is reasonable since, in any situation in which the algorithm terminates

finitely, all of our results hold for the iterations prior to that in which the algorithm

terminates. Hence, by proving that the algorithm possesses an R-linear rate of convergence
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for cases when it does not terminate finitely, we claim that it possesses such a rate in all

cases. As for Assumption 3.3.4(ii), first recall Remark 3.2.2. In addition, the bound on the

norm of the inverse of Rk is reasonable since, in the case of m = 1, one finds that QkRk =

Gk = gk,1 has Qk = gk,1/‖gk,1‖ and Rk = ‖gk,1‖, meaning that the bound holds with ρ = 1.

(This means that, in practice, one might choose ρ ≥ 1 and iteratively remove columns of

Gk for the computation of Tk until one finds ‖R−1k ‖ ≤ ρ‖gk,1‖−1, knowing that, in the

extreme case, there will remain one column for which this condition is satisfied. However,

for the reasons already given in Remark 3.2.2, we make Assumption 3.3.4, meaning that

Gk always has m columns.)

Remark 3.3.5. Our analysis hinges on properties of the stepsizes computed in Steps 12–

15 of Algorithm LMSD as they relate to the spectrum of the matrix A. These properties do

not necessarily hold for the initial set of stepsizes {α1,j}j∈[m], which are merely restricted

to be in R++. However, for ease of exposition in our analysis, rather than distinguish

between the stepsizes in the initial cycle (i.e., k = 1) versus all subsequent cycles (i.e.,

k ≥ 2), we proceed under the assumption that all properties that hold for k ≥ 2 also

hold for k = 1. (One could instead imagine that an “initialization cycle” is performed

corresponding to k = 0, in which case all of our subsequent results are indeed true for

all k ∈ N.) We proceed in this manner, without stating it as a formal assumption, since

our main conclusion (see Theorem 3.3.13) remains true whether or not one counts the

computational effort in the initial cycle.

We begin by stating two results that reveal important properties of the eigenvalues

(corresponding to the elements of {Tk}) computed by the algorithm, which in turn reveal

properties of the stepsizes. The first result is a direct consequence of the Cauchy Interlacing

Theorem. Since this theorem is well-known—see, e.g., [43]—we state the lemma without

proof.

Lemma 3.3.6. For all k ∈ N, the eigenvalues of Tk (= QTkAQk where QTkQk = I) satisfy

θk,j ∈ [λm+1−j , λn+1−j ] for all j ∈ [m].

51



The second result provides more details about how the eigenvalues computed by the

algorithm at the end of iteration k ∈ N relate to the weights in (3.10) corresponding to k

for all j ∈ [m].

Lemma 3.3.7. For all (k, j) ∈ N × [m], let qk,j ∈ Rm denote the unit eigenvector

corresponding to the eigenvalue θk,j of Tk, i.e., the vector satisfying Tkqk,j = θk,jqk,j and

‖qk,j‖ = 1. Then, defining

Dk :=


dk,1,1 · · · dk,m,1

...
. . .

...

dk,1,n · · · dk,m,n

 and ck,j := DkR
−1
k qk,j , (3.13)

it follows that, with the diagonal matrix of eigenvalues (namely, Λ) defined in Assump-

tion 3.2.1,

θk,j = cTk,jΛck,j and cTk,jck,j = 1. (3.14)

Proof. For any k ∈ N, it follows from (3.13) and Lemma 3.2.3 (in particular, (3.11)) that

Gk = QDk where Q is the orthogonal matrix defined in Assumption 3.2.1. Then, since

Gk = QkRk (recall (3.4)), it follows that Qk = QDkR
−1
k , according to which one finds

Tk = QTkAQk = R−Tk DT
kQ

TAQDkR
−1
k = R−Tk DT

k ΛDkR
−1
k .

Hence, for each j ∈ [m], the first equation in (3.14) follows since

θk,j = qTk,jTkqk,j = qTk,jR
−T
k DT

k ΛDkR
−1
k qk,j = cTk,jΛck,j .

In addition, since Gk = QDk and the orthogonality of Q imply that DT
kDk = GTkGk,

and since Qk = GkR
−1
k with Qk having orthonormal columns (i.e., with Qk satisfying

QTkQk = I), it follows that

cTk,jck,j = qTk,jR
−T
k DT

kDkR
−1
k qk,j = qTk,jR

−T
k GTkGkR

−1
k qk,j = qTk,jQ

T
kQkqk,j = qTk,jqk,j = 1,
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which yields the second equation in (3.14).

The implications of Lemma 3.3.7 are seen later in our analysis. For now, combining

Lemma 3.3.6, Lemma 3.2.3 (in particular, (3.11)), and the fact that (3.10) implies

‖gk,j‖2 =

n∑
i=1

d2k,j,i for all (k, j) ∈ N × [m], (3.15)

one is lead to the following result pertaining to recursive properties of the weights in (3.10).

Lemma 3.3.8. For each (k, j, i) ∈ N × [m]× [n], it follows that

|dk,j+1,i| ≤ δj,i|dk,j,i| where δj,i := max

{∣∣∣∣1− λi
λm+1−j

∣∣∣∣ , ∣∣∣∣1− λi
λn+1−j

∣∣∣∣} . (3.16)

Hence, for each (k, j, i) ∈ N × [m]× [n], it follows that

|dk+1,j,i| ≤ ∆i|dk,j,i| where ∆i :=
m∏
j=1

δj,i. (3.17)

Furthermore, for each (k, j, p) ∈ N × [m]× [n], it follows that

√√√√ p∑
i=1

d2k,j+1,i ≤ δ̂j,p

√√√√ p∑
i=1

d2k,j,i where δ̂j,p := max
i∈[p]

δj,i, (3.18)

while, for each (k, j) ∈ N × [m], it follows that

‖gk+1,j‖ ≤ ∆‖gk,j‖ where ∆ := max
i∈[n]

∆i. (3.19)

Proof. Recall that, for any given (k, j, i) ∈ N × [m] × [n], Lemma 3.2.3 (in particular,

(3.11)) states

dk,j+1,i = (1− αk,jλi)dk,j,i.

The relationship (3.16) then follows due to Lemma 3.3.6, which, in particular, shows that

αk,j ∈
[

1

λn+1−j
,

1

λm+1−j

]
⊆
[

1

λn
,

1

λ1

]
for all (k, j) ∈ N × [m].
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The consequence (3.17) then follows by combining (3.16) for all j ∈ [m] and recalling that

Step 11 yields gk+1,1 ← gk,m+1 for all k ∈ N. Now, from (3.16), one finds that

p∑
i=1

d2k,j+1,i ≤
p∑
i=1

δ2j,id
2
k,j,i ≤ δ̂2j,p

p∑
i=1

d2k,j,i for all (k, j, p) ∈ N × [m]× [n],

yielding the desired conclusion (3.18). Finally, combining (3.17) and (3.15), one obtains

that

‖gk+1,j‖2 =
n∑
i=1

d2k+1,j,i ≤
n∑
i=1

∆2
i d

2
k,j,i ≤ ∆2

n∑
i=1

d2k,j,i = ∆2‖gk,j‖2 for all (k, j) ∈ N× [m],

yielding the desired conclusion (3.19).

A consequence of the previous lemma is that if ∆i ∈ [0, 1) for all i ∈ [n], then ∆ ∈ [0, 1),

from which (3.19) implies that, for each j ∈ [m], the gradient norm sequence {‖gk,j‖}k∈N

vanishes Q-linearly. For example, such a situation occurs when λn < 2λ1. However, as

noted in [15], this is a highly uncommon case that should not be assumed to hold widely in

practice. A more interesting and widely relevant consequence of the lemma is that for any

i ∈ [n] such that ∆i ∈ [0, 1), the sequences {|dk,j,i|}k∈N for each j ∈ [m] vanish Q-linearly.

For example, this is always true for i = 1, where

δj,1 = max

{
1− λ1

λm+1−j
, 1− λ1

λn+1−j

}
∈ [0, 1) for all j ∈ [m],

from which it follows that

∆1 =

m∏
j=1

δj,1 ∈ [0, 1). (3.20)

The following is a crucial consequence that one can draw from this observation.

Lemma 3.3.9. If ∆1 = 0, then d1+k̂,ĵ,1 = 0 for all (k̂, ĵ) ∈ N × [m]. Otherwise, if

∆1 > 0, then:

(i) for any (k, j) ∈ N × [m] such that dk,j,1 = 0, it follows that dk+k̂,ĵ,1 = 0 for all

(k̂, ĵ) ∈ N × [m];
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(ii) for any (k, j) ∈ N × [m] such that |dk,j,1| > 0 and any ε1 ∈ (0, 1), it follows that

|dk+k̂,ĵ,1|
|dk,j,1|

≤ ε1 for all k̂ ≥ 1 +

⌈
log ε1
log ∆1

⌉
and ĵ ∈ [m].

Proof. If ∆1 = 0, then the desired conclusion follows from Lemma 3.3.8; in particular, it

follows from the inequality (3.17) for i = 1. Similarly, for any (k, j) ∈ N × [m] such that

dk,j,1 = 0, the conclusion in part (i) follows from the same conclusion in Lemma 3.3.8,

namely, (3.17) for i = 1. Hence, let us continue to prove part (ii) under the assumption

that ∆1 ∈ (0, 1) (recall (3.20)).

Suppose that the given condition holds with j = 1, i.e., consider k ∈ N such that

|dk,1,1| > 0. Then, it follows by Lemma 3.3.8 (in particular, (3.17) for j = 1 and i = 1)

that
|dk+k̂,1,1|
|dk,1,1|

≤ ∆k̂
1 for any k̂ ∈ N. (3.21)

Since ∆1 ∈ (0, 1), taking the logarithm of the term on the right-hand side with k̂ =

dlog ε1/ log ∆1e yields

⌈
log ε1
log ∆1

⌉
log ∆1 ≤

(
log ε1
log ∆1

)
log ∆1 = log (ε1) . (3.22)

Since log(·) is nondecreasing, the inequalities yielded by (3.22) combined with (3.21) and

(3.17) yield the desired result for j = 1. On the other hand, if the conditions of part (ii)

hold for some other j ∈ [m], then the desired conclusion follows from a similar reasoning,

though an extra cycle may need to be completed before the desired conclusion holds for

all points in the cycle, i.e., for all ĵ ∈ [m]. This is the reason for the addition of 1 to

dlog ε1/ log ∆1e in the general conclusion.

One may conclude from Lemma 3.3.9 and (3.10) that, for any (k, j) ∈ N × [m] and

ε1 ∈ (0, 1), one has

|dk+k̂,ĵ,1|
‖gk,j‖

≤ ε1 for all k̂ ≥ K1 and ĵ ∈ [m]
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for some K1 ∈ N that depends on the desired contraction factor ε1 ∈ (0, 1) and the

problem-dependent constant ∆1 ∈ (0, 1), but does not depend on the iteration number

pair (k, j). Our goal now is to show that if a similar, but looser conclusion holds for

a squared sum of the weights in (3.10) up through p ∈ [n − 1], then the squared weight

corresponding to index p+1 eventually becomes sufficiently small in a number of iterations

that is independent of the iteration number k. (For this lemma, we fix j = ĵ = 1 so as to

consider only the first gradient in each cycle. This choice is somewhat arbitrary since our

concluding theorem will confirm that a similar result holds for any j ∈ [m] and ĵ = j.)

For the lemma, we define the following constants that depend only on p, the spectrum of

A (which, in particular, yields the bounds and definitions in Lemma 3.3.8), and the scalar

constant ρ ≥ 1 from Assumption 3.3.4:

δ̂p :=

1 + δ̂21,p + δ̂21,pδ̂
2
2,p + · · ·+

m−1∏
j=1

δ̂2j,p

 ∈ [1,∞), (3.23a)

∆̂p+1 := max

{
1

3
, 1− λp+1

λn

}m
∈ (0, 1), (3.23b)

and K̂p :=


log
(

2δ̂pρεp∆
−(Kp+1)
p+1

)
log ∆̂p+1

 . (3.23c)

Lemma 3.3.10. For any (k, p) ∈ N × [n − 1], if there exists (εp,Kp) ∈ (0, 1
2δ̂pρ

) × N

independent of k with

p∑
i=1

d2
k+k̂,1,i

≤ ε2p‖gk,1‖2 for all k̂ ≥ Kp, (3.24)

then one of the following holds:

(i) ∆p+1 ∈ [0, 1) and there exists Kp+1 ≥ Kp dependent only on εp, ρ, and the spectrum

of A with

d2k+Kp+1,1,p+1 ≤ 4δ̂2pρ
2ε2p‖gk,1‖2; (3.25)

(ii) ∆p+1 ∈ [1,∞) and, with Kp+1 := Kp + K̂p + 1, there exists k̂0 ∈ {Kp, . . . ,Kp+1}

56



with

d2
k+k̂0,1,p+1

≤ 4δ̂2pρ
2ε2p‖gk,1‖2. (3.26)

Proof. By Lemma 3.3.8 (in particular, (3.17) with j = 1 and i = p + 1) and (3.15), it

follows that

d2
k+k̂,1,p+1

≤
(

∆k̂
p+1dk,1,p+1

)2
= ∆2k̂

p+1d
2
k,1,p+1 ≤ ∆2k̂

p+1‖gk,1‖2 for all k̂ ∈ N. (3.27)

If ∆p+1 ∈ [0, 1), then (3.27) immediately implies the existence of Kp+1 dependent only

on εp, ρ, and the spectrum of A such that (3.25) holds. Hence, let us continue under the

assumption that ∆p+1 ≥ 1, where one should observe that ρ ≥ 1, δ̂p ≥ 1, εp ∈ (0, 1
2δ̂pρ

),

Kp ∈ N, and ∆p+1 ≥ 1 imply 2δ̂pρεp∆
−Kp
p+1 ∈ (0, 1), meaning that K̂p ∈ N. To prove the

desired result, it suffices to show that if

d2
k+k̂,1,p+1

> 4δ̂2pρ
2ε2p‖gk,1‖2 for all k̂ ∈ {Kp, . . . ,Kp+1 − 1}, (3.28)

then (3.26) holds at the beginning of the next cycle (i.e., when k̂0 = Kp+1). From

Lemma 3.3.7, Lemma 3.3.8 (in particular, (3.18)), (3.24), and (3.28), it follows that

with {ck+k̂,j,i}
n
i=1 representing the elements of the vector ck+k̂,j and the matrix Dk+k̂,p

representing the first p rows of Dk+k̂, one finds

p∑
i=1

c2
k+k̂,j,i

≤ ‖Dk+k̂,p‖
2
2‖R−1k+k̂‖

2‖qk+k̂,j‖
2

≤

1 + δ̂21,p + δ̂21,pδ̂
2
2,p + · · ·+

m−1∏
j=1

δ̂2j,p

( p∑
i=1

d2
k+k̂,1,i

)
ρ2‖gk+k̂,1‖

−2

≤ δ̂2p(ε2p‖gk,1‖2)ρ2(4δ̂2pρ2ε2p)−1‖gk,1‖−2

≤ 1
4 for all k̂ ∈ {Kp, . . . ,Kp+1 − 1} and j ∈ [m].

Along with Lemma 3.3.7, this implies that

θk+k̂,j =

n∑
i=1

λic
2
k+k̂,j,i

≥ 3
4λp+1 for all k̂ ∈ {Kp, . . . ,Kp+1 − 1} and j ∈ [m]. (3.29)
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Together with Lemma 3.2.3 (see (3.11)) and αk+k̂+1,j = θ−1
k+k̂,j

for all j ∈ [m], the bound

(3.29) implies

d2
k+k̂+2,1,p+1

=

 m∏
j=1

(
1− αk+k̂+1,jλp+1

)2 d2
k+k̂+1,1,p+1

≤ ∆̂2
p+1d

2
k+k̂+1,1,p+1

for all k̂ ∈ {Kp, . . . ,Kp+1 − 1}. (3.30)

Applying this bound recursively, it follows with Kp+1 = Kp + K̂p + 1 and (3.27) for

k̂ = Kp+1 that

d2k+Kp+1,1,p+1 ≤ ∆̂
2K̂p
p+1d

2
k+Kp+1,1,p+1 ≤ ∆̂

2K̂p
p+1∆

2(Kp+1)
p+1 ‖gk,1‖2 ≤ 4δ̂2pr

2ε2p‖gk,1‖2,

where the last inequality follows by the definition of K̂p in (3.23c).

We have shown that small squared weights in (3.10) associated with indices up through

p ∈ [n− 1] imply that the squared weight associated with index p+ 1 eventually becomes

small. The next lemma shows that these latter squared weights also remain sufficiently

small indefinitely.

Lemma 3.3.11. For any (k, p) ∈ N × [n − 1], if there exists (εp,Kp) ∈ (0, 1
2δ̂pρ

) × N

independent of k such that (3.24) holds, then, with ε2p+1 := (1 + 4 max{1,∆4
p+1}δ̂2pρ2)ε2p

and Kp+1 ∈ N from Lemma 3.3.10,

p+1∑
i=1

d2
k+k̂,1,i

≤ ε2p+1‖gk,1‖2 for all k̂ ≥ Kp+1. (3.31)

Proof. For the same reasons as in the proof of Lemma 3.3.10, the result follows if ∆p+1 ∈

[0, 1). Hence, we may continue under the assumption that ∆p+1 ≥ 1 and define ∆̂p+1 ∈

(0, 1) and K̂p ∈ N as in (3.23). By Lemma 3.3.10, there exists k̂0 ∈ {Kp, . . . ,Kp+1} such

that

d2
k+k̂,1,p+1

≤ 4δ̂2pρ
2ε2p‖gk,1‖2 when k̂ = k̂0. (3.32)

If the inequality in (3.32) holds for all k̂ ≥ k̂0, then (3.31) holds with ε2p+1 = (1 + 4δ̂2pρ
2)ε2p.
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Otherwise, let k̂1 ∈ N denote the smallest natural number such that

d2
k+k̂,1,p+1

≤ 4δ̂2pρ
2ε2p‖gk,1‖2 for all k̂0 ≤ k̂ ≤ k̂1, (3.33)

but

d2
k+k̂1+1,1,p+1

> 4δ̂2pρ
2ε2p‖gk,1‖2. (3.34)

As in the arguments that lead to (3.30) in the proof of Lemma 3.3.10, combining (3.24)

and (3.34) implies

d2
k+k̂1+3,1,p+1

≤ ∆̂2
p+1d

2
k+k̂1+2,1,p+1

.

Generally, this same argument can be used to show that

k̂ ≥ Kp and d2
k+k̂+1,1,p+1

> 4δ̂2pρ
2ε2p‖gk,1‖2 imply d2

k+k̂+3,1,p+1
≤ ∆̂2

p+1d
2
k+k̂+2,1,p+1

.

Since ∆̂p+1 ∈ (0, 1), this fact and (3.34) imply the existence of k̂2 ∈ N such that

d2
k+k̂+1,1,p+1

> 4δ̂2pρ
2ε2p‖gk,1‖2 for all k̂1 ≤ k̂ ≤ k̂2 − 2, (3.35)

but

d2
k+k̂2,1,p+1

≤ 4δ̂2pρ
2ε2p‖gk,1‖2,

while, from above,

d2
k+k̂+3,1,p+1

≤ ∆̂2
p+1d

2
k+k̂+2,1,p+1

for all k̂1 ≤ k̂ ≤ k̂2 − 2. (3.36)

Moreover, by Lemma 3.3.8 (in particular, (3.17)) and (3.33), it follows that

d2
k+k̂1+1,1,p+1

≤ ∆2
p+1d

2
k+k̂1,1,p+1

≤ 4∆2
p+1δ̂

2
pρ

2ε2p‖gk,1‖2 (3.37a)

and d2
k+k̂1+2,1,p+1

≤ 4∆4
p+1δ̂

2
pρ

2ε2p‖gk,1‖2. (3.37b)
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Combining (3.36) and (3.37b), it follows that

d2
k+k̂+3,1,p+1

≤ 4∆̂2
p+1∆

4
p+1δ̂

2
pρ

2ε2p‖gk,1‖2 for all k̂1 ≤ k̂ ≤ k̂2 − 2.

Overall, since (3.23b) ensures ∆̂p+1 ∈ (0, 1), we have shown that

d2
k+k̂,1,p+1

≤ 4∆4
p+1δ̂

2
pρ

2ε2p‖gk,1‖2 for all k̂ ∈ {k̂0, . . . , k̂2}. (3.38)

Repeating this argument for later iterations, we arrive at the desired conclusion.

The following lemma is a generalization of Lemma 3.3.2 for any m ∈ [n]. Our proof is

similar to that of Lemma 2.4 in [15]. We provide it in full for completeness.

Lemma 3.3.12. There exists K ∈ N dependent only on the spectrum of A such that

‖gk+K,1‖ ≤ 1
2‖gk,1‖ for all k ∈ N.

Proof. By Lemma 3.3.11, if for some (εp,Kp) ∈ (0, 1
2δ̂pρ

)× N independent of k one finds

p∑
i=1

d2
k+k̂,1,i

≤ ε2p‖gk,1‖2 for all k̂ ≥ Kp, (3.39)

then for ε2p+1 := (1 + 4 max{1,∆4
p+1}δ̂2pρ2)ε2p and some Kp+1 ≥ Kp independent of k one

finds
p+1∑
i=1

d2
k+k̂,1,i

≤ ε2p+1‖gk,1‖2 for all k̂ ≥ Kp+1. (3.40)

Since Lemma 3.3.9 implies that for any ε1 ∈ (0, 1) one can find K1 independent of k such

that (3.39) holds with p = 1, it follows that, independent of k, there exists a sufficiently

small ε1 ∈ (0, 1) such that

ε21 ≤ · · · ≤ ε2n ≤ 1
4 .

Hence, for any k ∈ N, it follows that there exists K = Kn such that

‖gk+k̂,1‖
2 =

n∑
i=1

d2
k+k̂,1,i

≤ 1
4‖gk,1‖

2 for all k̂ ≥ K,

60



as desired.

We are now prepared to state our final result, the proof of which follows in the same

manner as Theorem 3.3.3 follows from Lemma 3.3.2 in [15]. We prove it in full for com-

pleteness.

Theorem 3.3.13. The sequence {‖gk,1‖} vanishes R-linearly.

Proof. If ∆ ∈ [0, 1), then it has already been argued (see the discussion following Lemma 3.3.8)

that {‖gk,1‖} vanishes Q-linearly. Hence, let us continue assuming that ∆ ≥ 1. By

Lemma 3.3.12, there exists K ∈ N dependent only on the spectrum of A such that

‖g1+Kl,1‖ ≤ 1
2‖g1+K(l−1),1‖ for all l ∈ N.

Applying this result recursively, it follows that

‖g1+Kl,1‖ ≤ (12)l‖g1,1‖ for all l ∈ N. (3.41)

Now, for any k ≥ 1, let us write k = Kl + k̂ for some l ∈ {0} ∪ N and k̂ ∈ {0} ∪ [K − 1].

It follows that

l = k/K − k̂/K ≥ k/K − 1.

By this fact, (3.19), and (3.41), it follows that for any k = Kl + k̂ ∈ N one has

‖gk,1‖ ≤ ∆k̂−1‖g1+Kl,1‖ ≤ ∆K−1(12)k/K−1‖g1,1‖ ≤ c1ck2‖g1,1‖,

where

c1 := 2∆K−1 and c2 := 2−1/K ∈ (0, 1),

which implies the desired conclusion.
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3.4 Numerical Demonstrations

The analysis in the previous Chapter provides additional insights into the behavior of

Algorithm LMSD beyond its R-linear rate of convergence. In this Chapter, we provide

the results of numerical experiments to demonstrate the behavior of the algorithm in a few

types of cases. The algorithm was implemented and the experiments were performed in

Matlab. It is not our goal to show the performance of Algorithm LMSD for various values

of m, say to argue whether the performance improves or not as m is increased. This is an

important question for which some interesting discussion is provided by [22]. However, to

determine what is a good choice of m for various types of cases would require a larger set

of experiments that are outside of the scope of this chapter. For our purposes, our only

goal is to provide some simple illustrations of the behavior as shown by our theoretical

analysis.

Our analysis reveals that the convergence behavior of the algorithm depends on the

spectrum of the matrix A. Therefore, we have constructed five test examples, all with

n = 100, but with different eigenvalue distributions. For the first problem, the eigenvalues

of A are evenly distributed in [1, 1.9]. Since this ensures that λn < 2λ1, our analysis

reveals that the algorithm converges Q-linearly for this problem; recall the discussion

after Lemma 3.3.8. All other problems were constructed so that λ1 = 1 and λn = 100,

for which one clearly finds λn > 2λ1. For the second problem, all eigenvalues are evenly

distributed in [λ1, λn]; for the third problem, the eigenvalues are clustered in five distinct

blocks; for the fourth problem, all eigenvalues except one are clustered around λ1; and for

the fifth problem, all eigenvalues except one are clustered around λn. Table 3.1 shows the

spectrum of A for each problem.

Table 3.1 also shows the numbers of outer and (total) inner iterations required by

Algorithm LMSD (indicated by column headers “k” and “j”, respectively) when it was

run with ε = 10−8 and either m = 1 or m = 5. In all cases, the initial m stepsizes were

generated randomly from a uniform distribution over the interval [λ−1100, λ
−1
1 ]. One finds

that the algorithm terminated in relatively few outer and inner iterations relative to n,

especially when many of the eigenvalues are clustered. This dependence on clustering of
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the eigenvalues should not be surprising since, recalling Lemma 3.3.6, clustered eigenvalues

makes it likely that an eigenvalue of Tk will be near an eigenvalue of A, which in turn

implies by Lemma 3.2.3 that the weights in the representation (3.10) will vanish quickly.

On the other hand, for the problems for which the eigenvalues are more evenly spread

in [1, 100], the algorithm required relatively more outer iterations, though still not an

excessively large number relative to n. For these problems, the performance was mostly

better for m = 5 versus m = 1, both in terms of outer and (total) inner iterations.

In Table 3.1, we also provide the maximum over k of the ratio ‖R−1k ‖/(‖gk,1‖
−1)

(indicated by the column header “ρ”) observed during the run of the algorithm for each test

problem and each m. The purpose of this is to confirm that Assumption 3.3.4 indeed held

in our numerical experiments, but also to demonstrate for what value of ρ the assumption

holds. As explained following Assumption 3.3.4, for m = 1 the ratio was always equal

to 1. As for m = 5, on the other hand, the ratio was sometimes quite large, though

it is worthwhile to remark that the ratio was typically much smaller than this maximum

value. We did not observe any predictable behavior about when this maximum value was

observed; sometimes it occurred early in the run, while sometimes it occurred toward the

end. Overall, the evolution of this ratio depends on the initial point and path followed by

the algorithm to the minimizer.

Table 3.1: Spectra of A for five test problems along with outer and (total) inner iteration
counts required by Algorithm LMSD and maximum value of the ratio ‖R−1k ‖/(‖gk,1‖

−1)
observed during the run of Algorithm LMSD. For each spectrum, a set of eigenvalues in
an interval indicates that the eigenvalues are evenly distributed within that interval.

m = 1 m = 5
Problem Spectrum k j ρ k j ρ

1 {λ1, . . . , λ100} ⊂ [1, 1.9] 13 13 1 3 14 ∼ 6× 103

2 {λ1, . . . , λ100} ⊂ [1, 100] 124 124 1 23 114 ∼ 1× 104

3 {λ1, . . . , λ20} ⊂ [1, 2] 112 112 1 16 79 ∼ 2× 105

{λ21, . . . , λ40} ⊂ [25, 26]
{λ41, . . . , λ60} ⊂ [50, 51]
{λ61, . . . , λ80} ⊂ [75, 76]
{λ81, . . . , λ100} ⊂ [99, 100]

4 {λ1, . . . , λ99} ⊂ [1, 2] 26 26 1 4 20 ∼ 2× 1016

λ100 = 100

5 λ1 = 1 16 16 1 5 25 ∼ 2× 1010

{λ2, . . . , λ100} ⊂ [99, 100]

As seen in our analysis (inspired by [44], [15], and [22]), a more refined look into the
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behavior of the algorithm is obtained by observing the step-by-step magnitudes of the

weights in (3.10) for the generated gradients. Hence, for each of the test problems, we

plot in Figures 3.1, 3.3, 3.5, 3.7, and 3.9 these magnitudes (on a log scale) for a few

representative values of i ∈ [n]. Each figure consists of four sets of plots: the first and

third show the magnitudes corresponding to {gk,1} (i.e., for the first point in each cycle)

when m = 1 and m = 5, respectively, while the second and fourth show the magnitudes

at all outer and inner iterations, again when m = 1 and m = 5, respectively. In a few of

the images, the plot ends before the right-hand edge of the image. This is due to the log

of the absolute value of the weight being evaluated as −∞ in Matlab.

The figures show that the magnitudes of the weights corresponding to i = 1 always

decrease monotonically, as proved in Lemma 3.3.9. The magnitudes corresponding to

i = 2 also often decrease monotonically, but, as seen in the results for Problem 5, this is

not always the case. In any case, the magnitudes corresponding to i = 50 and i = 100

often do not decrease monotonically, though, as proved in our analysis, one observes that

the magnitudes demonstrate a downward trend over a finite number of cycles.

Even further insight into the plots of these magnitudes can be gained by observing the

values of the constants {∆i}i∈[n] for each problem and history length. Recalling (3.17),

these constants bound the increase that a particular weight in (3.10) might experience

from one point in a cycle to the same point in the subsequent cycle. For illustration,

we plot in Figures 3.2, 3.4, 3.6, 3.8, and 3.10 these constants. Values less than 1 are

indicated by a purple bar while values greater than or equal to 1 are indicated by a blue

bar. Note that, in Figure 3.8, all values are small for both history lengths except ∆100. In

Figure 3.10, ∆1 is less than one in both figures, but the remaining constants are large for

m = 1 while being small for m = 5.
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Figure 3.1: Weights in (3.10) for problem 1 with history length m = 1 (left two plots) and

m = 5 (right two plots).

Figure 3.2: Constants in (3.17) for problem 1 with history length m = 1 (left plot) and

m = 5 (right plot).

Figure 3.3: Weights in (3.10) for problem 2 with history length m = 1 (left two plots) and

m = 5 (right two plots).
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Figure 3.4: Constants in (3.17) for problem 2 with history length m = 1 (left plot) and

m = 5 (right plot).

Figure 3.5: Weights in (3.10) for problem 3 with history length m = 1 (left two plots) and

m = 5 (right two plots).

Figure 3.6: Constants in (3.17) for problem 3 with history length m = 1 (left plot) and

m = 5 (right plot).
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Figure 3.7: Weights in (3.10) for problem 4 with history length m = 1 (left two plots) and

m = 5 (right two plots).

Figure 3.8: Constants in (3.17) for problem 4 with history length m = 1 (left plot) and

m = 5 (right plot).

Figure 3.9: Weights in (3.10) for problem 5 with history length m = 1 (left two plots) and

m = 5 (right two plots).
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Figure 3.10: Constants in (3.17) for problem 5 with history length m = 1 (left plot) and

m = 5 (right plot).

3.5 LMSD with Harmonic Ritz Values

As explained in §7 of [22], an alternative LMSD method is one that replaces Ritz values of

A with harmonic Ritz values; see also [11]. In the case of m = 1, this reduces to replacing

the “first” with the “second” BB stepsize formula; see (5)–(6) in [2]. In this Chapter, we

briefly describe the differences in the computations involved in this alternative approach,

then argue that the resulting algorithm is also R-linearly convergent. In fact, much of the

analysis in §3.3.2 remains true for this alternative algorithm, so here we only highlight the

minor differences.

First, let us briefly review the differences in the computations involved in this al-

ternative algorithm. For this, we follow the description in [22]. Recalling that Tk =

QTkAQk, the Ritz values used in Algorithm LMSD can be viewed as being determined

by the eigensystem (QTkAQk)V = (QTkQk)VΘ, i.e., the solution of this system has Θ =

diag(θk,1, . . . , θk,m). Including another instance of A on both sides of this system, one ob-

tains the generalized eigensystem (QTkA
2Qk)V = (QTkAQk)VΘ, the eigenvalues of which

are referred to as harmonic Ritz values of A; see [42]. Defining Pk := QTkA
2Qk, the eigen-

values are those of (P−1k Tk)
−1, which we shall denote as {µk,j}j∈[m] ⊂ R++ in decreasing

order. The alternative LMSD method is simply Algorithm LMSD with {µk,j}j∈[m] in place

of {θk,j}j∈[m]. As explained in [22], the matrix Pk, like Tk, can be computed with relative

little computation and storage, and without explicit access to A. In particular, if Gk has

linearly independent columns, one can compute upper triangular Rk ∈ Rm×m, rk ∈ Rm,
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and ξk ∈ R from the Cholesky factorization

[
Gk gk,m+1

]T [
Gk gk,m+1

]
=

Rk rk

ξk


T Rk rk

ξk

 , (3.42)

then, with Jk again from (3.5), compute

Pk ← R−Tk JTk

Rk rk

ξk


T Rk rk

ξk

 JkR−1k . (3.43)

One also finds that Pk = T Tk Tk + ζkζ
T
k , where ζTk =

[
0 ξk

]
JkR

−1
k ; see [11].

Let us now argue that this alternative LMSD method is R-linearly convergent. For

this, we first show that the harmonic Ritz values satisfy the same property as shown for

the Ritz values in Lemma 3.3.6.

Lemma 3.5.1. Given Tk from (3.8) and Pk from (3.43), the eigenvalues {µk,j}j∈[m] of

(P−1k Tk)
−1 satisfy

µk,j ∈ [λm+1−j , λn+1−j ] for all j ∈ [m].

Proof. One can apply, e.g., Theorem 2.1 from [3] with “K”= A, “M”= I, and “P”= Qk,

the proof of which follows from min-max characterizations of the eigenvalues.

Given Lemma 3.5.1, one can verify that the results shown in Lemmas 3.3.8 and 3.3.9

also hold for our alternative LMSD method. The result in Lemma 3.3.10 remains true as

well, though the argument for this requires a slight addition to the proof. First, we need

the following known property that the Ritz and harmonic Ritz values are interlaced; e.g.,

see Theorem 3.3 in [11].

Lemma 3.5.2. Given Tk from (3.8) and Pk from (3.43), the eigenvalues {θk,j}j∈[m] of

Tk and the eigenvalues {µk,j}j∈[m] of (P−1k Tk)
−1 are interlaced in the sense that

µk,1 ≥ θk,1 ≥ µk,2 ≥ θk,2 ≥ · · · ≥ µk,m ≥ θk,m > 0.
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Using this result, let us now argue that Lemma 3.3.10 remains true. Indeed, our

previous proof remains valid through the statement of (3.29). Then, combining (3.29)

with Lemma 3.5.2, one may conclude that

µk+k̂,j ≥ θk+k̂,j ≥
3
4λp+1 for all k̂ ∈ {Kp, . . . ,Kp+1 − 1} and j ∈ [m].

The remainder of the proof then follows as before with αk+k̂+1,j = µ−1
k+k̂,j

for all j ∈

[m]. A similar modification is needed in the proof of Lemma 3.3.11 since it employs

a similar argument as in the proof of Lemma 3.3.10. This way, one can verify that

Lemma 3.3.11 remains true for the alternative LMSD method. Finally, as for Lemma 3.3.12

and Theorem 3.3.13, our proofs follow as before without any modifications.

3.6 Conclusion

We have shown that the limited memory steepest descent (LMSD) method proposed by

[22] possesses an R-linear rate of convergence for any history length m ∈ [n] when it

is employed to minimize a strongly convex quadratic function. Our analysis effectively

extends that in [15], which covers only the m = 1 case. We have also provided the results

of numerical experiments to demonstrate that the behavior of the algorithm reflects certain

properties revealed by the theoretical analysis.

One might wonder whether the convergence rate of LMSD is the same when Ritz values

are replaced by harmonic Ritz values; see §7 in [22]. We answer this in the affirmative in

Chapter 3.5.
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Chapter 4

Handling Nonpositive Curvature

in a Limited Memory Steepest

Descent Method

We propose a limited memory steepest descent method for solving unconstrained opti-

mization problems. As a steepest descent method, the step computation in each iteration

only requires the evaluation of a gradient of the objective function and the calculation of

a scalar stepsize. When employed to solve certain convex problems, our method reduces

to a variant of the limited memory steepest descent method proposed by Fletcher [22]

which means that, when the history length parameter is set to one, it reduces to a steep-

est descent method inspired by that proposed by Barzilai and Borwein [2]. However, our

method is novel in that we propose new algorithmic features for cases when nonpositive

curvature is encountered. That is, our method is particularly suited for solving nonconvex

problems. With a nonmonotone line search, we ensure global convergence for a variant of

our method. We also illustrate with numerical experiments that our approach often yields

superior performance when employed to solve nonconvex problems.
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4.1 Introduction

Algorithms for finding minimizers of continuously differentiable functions have been the

subject of research for centuries. In particular, steepest descent methods—the most basic

gradient-based methods—have been the focus of a great deal of work due to their simplicity

and effectiveness in many applications. Over the past few decades, great improvements

in the practical performance of steepest descent methods have been made simply by the

design of clever techniques for choosing the stepsize in each iteration.

In this chapter, we propose a limited memory steepest descent (LMSD) method for

solving unconstrained optimization problems whose objective functions are continuously

differentiable. Our method is based on the LMSD method recently proposed by Fletcher

(see [22]). In a given iteration, this method, by exploiting previously computed gradient

information stored as a set ofm vectors, computes a sequence ofm stepsizes to be employed

in a “sweep” over the next m iterations. The calculations involved in determining these

stepsizes are motivated by the case of minimizing a strictly convex quadratic form defined

by a positive definite matrix A, where with m previously computed gradients one can

define a Krylov sequence that provides m estimates of eigenvalues of A. (These estimates,

or Ritz values, are contained in the spectrum of A, so Fletcher’s method belongs to the

class often referred to as spectral gradient descent methods.) In particular, considering

the choice of m = 1 leads to stepsizes as chosen in the algorithms proposed by Barzilai and

Borwein (see [2]), which many consider to be the work responsible for inspiring renewed

interest in steepest descent methods.

Many have observed the impressive practical performance of Barzilai-Borwein (BB)

methods when solving unconstrained optimization problems. Moreover, in his work,

Fletcher illustrates that his approach represents a competitive alternative to the well

known limited memory variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-

rithm (see [8, 21, 24, 47]), otherwise known as the L-BFGS method (see [40]). However,

in our opinion, these approaches and their proposed enhancements (see §4.2) suffer from

the fact that when the objective function is nonconvex, the sophisticated mechanisms de-

signed to compute stepsizes are abandoned, and instead the stepsizes are chosen arbitrarily
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(e.g., as prescribed constants). Such choices can lead to poor performance when solving

nonconvex problems.

The main contribution of the algorithm proposed in this chapter is that it provides

a novel strategy for computing stepsizes when solving nonconvex optimization problems.

In particular, when nonpositive curvature (as defined later) is encountered, our method

adopts a local cubic model of the objective function in order to determine a stepsize (for

m = 1) or sequence of stepsizes (for m > 1). (As mentioned in §4.2, cubic models have

previously been employed in the computation of stepsizes for steepest descent methods.

However, in the work that we cite, emphasis was placed on computing stepsizes in convex

settings. By contrast, when only positive curvature is encountered, we use a standard

quadratic model, as such a choice typically yielded good performance in our experiments.

We only employ a cubic model in iterations when nonpositive curvature is present.) As

in the case of the original BB methods and the LMSD method of Fletcher, our basic

algorithm does not enforce sufficient decrease in the objective in every iteration. However,

as is commonly done for variants of BB methods, we remark that, with a nonmonotone

line search, a variant of our algorithm attains global convergence guarantees under weak

assumptions. Our method also readily adopts the convergence rates attainable by a BB

method if/when it reaches a neighborhood of the solution in which the objective is strictly

convex (see §4.2).

Overall, our proposed algorithm is designed to strike a balance between multiple (po-

tentially conflicting) goals simultaneously. On one hand, our method preserves the im-

pressive theoretical and practical performance of an LMSD method when nonpositive

curvature is not an issue; indeed, when nonpositive curvature is not encountered, our ap-

proach reduces to a variant of Fletcher’s LMSD method. On the other hand, however, our

method is designed to compute and employ meaningful stepsizes when nonpositive curva-

ture is encountered in such a way that (i) the cost of the stepsize computation remains

negligible, (ii) the strategy for handling nonpositive curvature can be generalized to cases

when more historical information is maintained and exploited (i.e., when m > 1), and, (iii)

on a diverse set of large-scale test problems, our method yields consistently better perfor-
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mance than a method that follows the typical strategy of setting the stepsize to a large

prescribed constant when nonpositive curvature is encountered. To achieve these goals, we

do not adopt the approach of other authors that attempt to compute accurate higher-order

models using, e.g., Hermite interpolation, as such a technique may not shed any light on

what may be a reasonable stepsize when nonpositive curvature is encountered, and may

not be readily generalized when m > 1. Rather, we account for nonpositive curvature in

the objective function by observing the difference between two quadratic models obtained

using typical LMSD estimation strategies—with which we construct a (bounded below)

cubic model for determining a stepsize—in a manner that offers a generalized approach

for cases when m > 1.

This chapter is organized as follows. In §4.2, we provide a brief summary of the original

BB methods and a few of their proposed variants. We also briefly review Fletcher’s LMSD

algorithm, which can be viewed as another BB method variant/extension. In §4.3, we

present the details of our proposed algorithm. We first motivate the ideas underlying

our approach by considering the case when, at a given iteration, information from the

previous iteration is exploited, and then discuss a generalization of the method for cases

when information from any number of previous iterations is maintained and utilized. We

discuss the details of an implementation of our method in §4.4, then present the results

of numerical experiments in §4.5 which illustrate that our strategies typically yield better

performance than some related approaches when solving nonconvex problems. Finally, in

§4.6, we present concluding remarks.

The problem that we consider herein is the unconstrained optimization problem

min
x∈Rn

f(x), (4.1)

where Rn is the set of n-dimensional real vectors (with R := R1) and f : Rn → R is

continuously differentiable. The algorithms that we discuss are iterative in that, over

k ∈ N := {0, 1, 2, . . . }, they produce a sequence {xk} ⊂ Rn of iterates, where for each

element of the sequence the subscript corresponds to the iteration number in the algorithm.

Given an iterate xk for some k ∈ N, we define fk := f(xk) as the corresponding function
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value and gk := ∇f(xk) as the corresponding gradient value. Throughout the chapter, we

also apply the subscript k to other quantities that appear in an algorithm during iteration

k.

4.2 Literature Review

4.2.1 Barzilai-Borwein Methods

We have described BB methods, their convergence results with and without line search

in detail in Chapter 2.5, Chapter 2.6 and Chapter 2.7. An interesting feature of BB

methods, even when applied to minimize strictly convex quadratics, is that they are not

guaranteed to yield monotonic decreases in the objective function or a typical stationarity

measure for problem (4.1). That is, when they converge to a minimizer of f , neither the

sequence of function values {fk} nor the sequence of gradient norms {‖gk‖} is guaranteed

to decrease monotonically. Hence, a variety of extensions of the original BB methods

have been designed that ensure convergence when minimizing general continuously dif-

ferentiable objective functions by incorporating a nonmonotone line search such as the

one proposed by Grippo, Lampariello, and Lucidi (see [29]), or, more recently, the one

proposed by Zhang and Hager (see [56]). Extensions of BB methods also typically try to

produce better stepsizes by employing higher-order models of f and/or alternating exact

line searches (i.e., Cauchy stepsizes) into the iterative sequence (2.11). A few examples are

the following. Raydan (see [45]) proposed a globally convergent BB method using the line

search of Grippo et al.. Dai, Yuan, and Yuan (see [12]) followed this work by proposing

interpolation techniques to derive a few alternative stepsizes; they use interpolation to

recover the original BB stepsizes and employ a cubic model to derive alternatives. Their

methods are also globalized by the line search of Grippo et al.. More recently, Yuan (see

[54]) proposed the incorporation of Cauchy stepsizes into the iterative process to improve

the efficiency of the algorithm, a technique later extended by De Asmundis, Serafino, and

Toraldo (see [17]), motivated by work in [18] with their collaborator Riccio) in a monotone

gradient scheme. There has also been recent work by Xiao, Wang, and Wang (see [53])

75



that proposes alternative stepsizes using an alternative secant equation, as well as work

by Biglari and Solimanpur (see [5]) that proposes alternative stepsizes derived by fourth-

order interpolation models. These later articles employ the nonmonotone line search of

Zhang and Hager.

Despite all of the unique features of the BB method variants that have been proposed

in the literature, to the best of our knowledge there are no variants that focus on the

inefficiencies that may arise when f is nonconvex. (One exception is the recent work

by Kafaki and Fatemi (see [33]) that modifies a BB stepsize using a similar strategy as

the modified BFGS method proposed by Li and Fukushima (see [35]). However, this

strategy is quite different than the strategy proposed in this chapter.) In such cases, the

inner product sTk yk may be nonpositive, which must be handled as a special case in all

of the algorithms previously described. For example, in [5], [12], [45], and [53], when a

nonpositive stepsize is computed, the algorithms revert to setting the stepsize to a large

user-defined constant. (In [2], [17], [44], and [54], only convex quadratics are considered,

so no strategies are proposed for handling nonpositive curvature.) Such a choice fails

to capture any information from the objective function, which may be detrimental to

performance.

As a brief illustration of the stepsizes computed in a BB method in which sTk yk < 0

implies that one sets αk to a prescribed positive constant (as in [5], [12], [45], and [53]),

consider an arbitrary k ∈ N+ and suppose that gk−1 = (−1, 0) and αk−1 = 1 so that

sk = −αk−1gk−1 = (1, 0). The contour plots in Figure 4.2.1 illustrate the stepsizes that

would be computed as a function of the gradient gk ∈ [−3, 1] × [−2, 2]. The plots differ

since, on the left (respectively, right), we plot the stepsizes that would be computed when

sTk yk > 0 implies αk ← 1/qk (respectively, αk ← 1/q̂k). These plots lead to a few important

observations. First, one can observe that when sTk yk > 0 and the vectors sk and yk are

parallel (corresponding to the horizontal axes in the plots), the stepsizes in the two plots

are the same since qk = q̂k in such cases. However, it is interesting to note the stepsizes

that result when sTk yk > 0 while sk and yk are nearly orthogonal: Setting αk ← 1/qk

leads to extremely large stepsizes, whereas setting αk ← 1/q̂k leads to extremely small
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stepsizes. Clearly, the two BB alternatives differ significantly for such gk. That being

said, if one were to employ a globalization mechanism such as a Wolfe line search (see

[41]), then a typical strategy would ensure that sTk yk is large in proportion to ‖sk‖22. In

such an approach, the only values computed in the algorithm would be those illustrated

in the regions between the two lines emanating from (−1, 0) drawn in the plots. In these

regions, the two BB stepsize alternatives do not reach such extremes, though they still

differ substantially for certain values of gk. Hence, a Wolfe line search can diminish the

effect of the differences between these stepsizes, though it should be noted that such a

line search can be expensive as it may require many additional function and gradient

evaluations. One final (striking) observation about the contours in Figure 4.2.1 is that

both strategies fail to exploit any useful information when sTk yk < 0. We comment on this

further in §4.3.

Figure 4.1: Illustration of the stepsizes computed, as a function of the gradient gk, in
an algorithm in which sTk yk > 0 implies αk ← 1/qk (left) versus one in which sTk yk > 0
implies αk ← 1/q̂k (right). In both cases, sTk yk < 0 implies αk is set to a constant; hence,
no contour lines appear in the left half of each plot.

4.2.2 Fletcher’s limited memory steepest descent (LMSD) method

We described Fletcher’s LMSD method in Chapter 2.9, despite the sophisticated mecha-

nisms employed in his stepsize computation procedure, Fletcher admits that his approach

leaves unanswered the question of how to handle nonconvexity. (In the case of the two-
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point stepsize methods described above, we say that nonpositive curvature is encountered

whenever one computes sTk yk ≤ 0, which can only hold strictly when the objective func-

tion is nonconvex. By contrast, in the case of an LMSD method, we say that nonpositive

curvature is encountered whenever the matrix whose eigenvalues are used to compute the

stepsizes has a nonpositive eigenvalue. It should be noted that nonpositive eigenvalues

may arise merely due to non-quadratic features in the objective function f . For ease of

exposition, however, we merely refer to the phenomenon of having nonpositive eigenvalues

as nonpositive curvature.) In his implementation, Fletcher employs a strategy that carries

out a line search whenever a nonpositive stepsize is computed, and then terminates the

sweep to effectively throw out previously computed information. By contrast, in our ap-

proach, we avoid discarding previously computed information, yet are still able to obtain

reasonable stepsizes.

4.3 Algorithm Descriptions

In this Chapter, we present our limited memory steepest descent algorithm. We motivate

our method by describing the development of a variant of our approach in which informa-

tion from only one previous iteration is stored throughout the algorithm. We then present

a generalized version of our approach that can exploit information maintained from any

number of previous iterations.

4.3.1 An algorithm that stores information from one previous iteration

Suppose that an initial solution estimate x0 (with g0 6= 0) and an initial stepsize α0 > 0

are given. Then, after k iterations, we obtain a solution estimate xk for k ∈ N+. At this

point, the calculations in the kth iteration of our algorithm are based on the cubic model

mk : Rn → R of f at xk defined by

mk(s) = fk + gTk s+ 1
2qk‖s‖

2
2 + 1

6ck‖s‖
3
2 ≈ f(xk + s), (4.2)
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where qk and ck are scalars to be determined. In particular, as will be seen in this Chapter,

we choose ck ≥ 0 in such a way that mk has a unique minimizer from the origin along its

steepest descent direction −gk. As such, we choose the stepsize αk as an optimal solution

of the one-dimensional problem

min
α≥0

φk(α), where φk(α) = mk(−αgk) for all α ∈ R. (4.3)

A solution of this problem is easily obtained in the cases that will be of interest in our

algorithm. In particular, if qk > 0 and ck = 0, then, similar to a basic BB method (recall

(2.14)), we have αk ← 1/qk > 0; otherwise, if qk ≤ 0 and ck > 0, then it is easily verified

that (4.3) is solved by setting

αk ←
2

qk +
√
q2k + 2ck‖gk‖2

> 0. (4.4)

We now present our strategies for setting qk ∈ R and ck ≥ 0 for a given k ∈ N.

(For simplicity in the majority of our algorithm development, let us suppose that sk 6= 0,

yk 6= 0, and sTk yk 6= 0; our techniques for handling cases when one or more of these

conditions does not hold will be considered later.) First, consider qk. Defining θk as the

angle between sk and yk, two options for qk come from (2.13):

qk :=
sTk yk

sTk sk
= cos(θk)

‖yk‖2
‖sk‖2

and q̂k :=
yTk yk

sTk yk
=

1

cos(θk)

‖yk‖2
‖sk‖2

.

(4.5)

Through these representations, it is clear that |qk| ≤ |q̂k|, and hence the quantities in

(2.14) satisfy |ᾱk| ≥ |α̂k|. Indeed, even though both qkI and q̂kI are valid approximations

of the Hessian of f along [xk−1, xk], it can be seen that qk only estimates the curvature

of f by observing the change in its gradient along the line segment [xk−1, xk], whereas q̂k

actually accounts for changes in the gradient along an orthogonal vector as well. To see
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this, let

uk :=

(
sTk yk

sTk sk

)
sk and vk := yk − uk so that yk = uk + vk,

i.e., we define uk to be the vector projection of yk onto span(sk), which implies that we

have sTk yk = sTk uk and sTk vk = 0. We then find from (2.13) that

qk :=
sTk yk

sTk sk
=
sTk uk

sTk sk

and q̂k :=
yTk yk

sTk yk
=
uTk uk + vTk vk

sTk uk
= qk +

vTk vk

sTk uk
,

(4.6)

where the last equation follows since sTk uk/s
T
k sk = uTk uk/s

T
k uk. Through these represen-

tations, it is clear that qk is unaffected by vk (i.e., the component of yk orthogonal to sk),

whereas q̂k takes the magnitude of this vector into account. Comparing these representa-

tions to those in (4.5) and recalling that uk is parallel to sk, one observes that if vk = 0,

then qk = q̂k, whereas if vk 6= 0, then |qk| < |q̂k|. Overall, these observations provide a

clearer understanding of the differing contour lines illustrated in Figure 4.2.1.1

In our approach, we could follow the common strategy of setting qk ← qk or qk ← q̂k, or

even choose randomly between these two options based on some probability distribution.

For various reasons, we choose to always set qk ← q̂k. This reasoning can be explained by

considering the two cases depending on the sign of the inner product sTk yk. If sTk yk > 0,

then we set qk ← q̂k primarily due to the fact that, when sTk yk ≈ 0, this leads to smaller

(i.e., more conservative) stepsizes. Indeed, this will be consistent with our preference for

choosing a small stepsize in the extreme case when sTk yk = 0 (as explained in our later

discussion of handling special cases). On the other hand, when sTk yk < 0 and sTk yk ≈ 0,

then setting qk ← q̂k corresponds to an extremely large negative quadratic coefficient,

which has the potential to cause (4.14) to yield large stepsizes. This would be inconsistent

with our choice of having smaller stepsizes when sTk yk > 0 and sTk yk ≈ 0! Hence, when

sTk yk < 0, we set qk ← q̂k, but will rely on a nonzero cubic term to lead the algorithm to

1These observations have motivated our choice of notation. In particular, the “bar” quantities are
computed based on information straight along sk, whereas the “hat” quantities are computed based on
information along sk plus an orthogonal direction—a vector that can be visualized by the bent line in the
“hat” over the corresponding quantities.
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computing a reasonable stepsize, as explained next.

With qk fixed at q̂k, consider ck. If sTk yk > 0, then, as mentioned, a reasonable choice

is ck ← 0, since then mk is strictly convex from the origin along −gk. On the other hand,

if sTk yk < 0, then we desire an intuitive, meaningful strategy for choosing ck > 0 so that

problem (4.3) has a unique minimizer. We examine two possible strategies, both of which

lead to a similar conclusion:

• Consider choosing ck to minimize the least squared error between the gradient of

the model mk at −sk (corresponding to the previous point xk−1) and the previous

gradient gk−1, i.e.,

1
2‖∇mk(−sk)− gk−1‖22. (4.7)

Differentiating mk, we have for all s ∈ Rn that

∇mk(s) = gk + qks+ 1
2ck‖s‖2s. (4.8)

It can then easily be verified that one minimizes (4.7) by choosing

ck ←
2

‖sk‖2
(qk − qk). (4.9)

• Consider choosing ck so that the curvature of mk at −sk along sk is equal to qk, i.e.,

so that

sTk∇2mk(−sk)sk = qk‖sk‖22. (4.10)

This is a reasonable goal since, in a BB method, it is established that qkI is a sensible

approximation of the Hessian of f along [xk−1, xk], and in particular at xk−1 (i.e.,

the point corresponding to mk evaluated at −sk) along sk. Differentiating ∇mk

(recall (4.8)), we have for all s ∈ Rn that

∇2mk(s) = qkI +
1

2
ck

(
‖s‖2I +

1

‖s‖2
ssT
)
.
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Hence, we obtain (4.10) by setting

ck ←
1

‖sk‖2
(qk − qk) . (4.11)

The similarity between (4.9) and (4.11) is immediately apparent, as they only differ

by a constant factor. Overall, we propose that the cubic term coefficient should be set,

for some constant c > 0, as

ck ←
c

‖sk‖2
(qk − qk) . (4.12)

Using the notation of (4.5), if sTk yk < 0 and cos(θk) 6= 1, then this formula yields ck > 0.

Similarly, using the notation of (4.6), if sTk uk = sTk yk < 0 and vTk vk > 0, then ck > 0.

Overall, one can see that we have taken the curvature that has been captured orthogonal

to sk and have used it to determine an appropriate magnitude of a cubic term so that (4.3)

has a unique minimizer. A relatively large discrepancy between qk and qk = q̂k indicates

a relatively large displacement in the gradient orthogonal to sk, which in turn suggests

a relatively large cubic term coefficient should be used to safeguard the next stepsize.

One may also observe that (4.11) is particularly appealing in the sense that it represents a

finite-difference approximation of a third-order (directional) derivative using the difference

between the two available second-order (directional) derivative estimates for the interval

[xk−1, xk].

We are almost prepared to present a complete description of our algorithm (for m = 1),

but first we must remark on the special cases that we have ignored until this point. That

is, we must specify how the algorithm is to proceed when sk = 0, yk = 0, sTk yk = 0, or

sTk yk < 0 while sk and yk are parallel. In fact, as long as the algorithm terminates in any

iteration k ∈ N for which gk = 0, and otherwise computes a stepsize αk > 0, the algorithm

cannot produce sk = 0. Hence, we need only consider the computation of stepsizes when

sk 6= 0, so the only special cases that remain to be considered are as follows.

• If yk = 0, then the step from xk−1 to xk has yielded a zero displacement in the

gradient of f . Consequently, between the points xk−1 and xk, we have no useful

information to approximate the Hessian of f ; in fact, based on the relationship
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between gradients at these points, f “appears affine” at xk along −gk = −gk−1. In

such cases, we set αk to a maximum allowable stepsize, call it Ω > 0, in an attempt

to aggressively minimize f along the steepest descent direction −gk.

• If yk 6= 0, but sTk yk = 0, then the displacement from xk−1 to xk has yielded a

nonzero displacement in the gradient of f , but this displacement is orthogonal to sk =

xk − xk−1. Hence, as there has been no displacement of the gradient in a direction

parallel to the displacement in the iterate, a two-point stepsize approximation of

the Hessian of f at xk is inadequate. Thus, since the next iteration will involve

exploring f along −gk 6= −gk−1, in this “new” direction we conservatively set αk to

a minimum allowable stepsize, call it ω > 0 (with ω ≤ Ω).

• If yk 6= 0, sTk yk < 0, and sk and yk are parallel, then the displacement from xk−1 to

xk has only yielded a nonzero displacement in the gradient of f in the direction of

sk. Consequently, similar to cases when yk = 0, we have no useful information to

approximate the Hessian of f in any direction other than sk; in fact, based on the

relationship between the gradients at these points, f “appears affine” at xk along

any direction other than sk. In such cases, since −gk is parallel to sk, we set αk to

the large stepsize Ω > 0 to try to aggressively minimize f along −gk.

We are now prepared to provide a complete description of our first approach, given as

Algorithm 5. Along with the safeguards employed in the special cases discussed above,

we employ the universal safeguard of projecting any computed stepsize onto the interval

[ω,Ω]. For simplicity in our description, we omit mention of the computation of function

and gradient values, as well as of the displacement vectors in (2.12); these are implied

whenever a new iterate is computed. Furthermore, we suppress any mention of a termi-

nation condition, but remark that any practical implementation of our algorithm would

terminate as soon as a gradient is computed that has a norm that is approximately zero.

Hence, in the algorithm, we assume for all practical purposes that gk 6= 0 for all k ∈ N.
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Algorithm 5 LMSD Method with Cubic Regularization (for m = 1)

1: choose (ω,Ω) ∈ R × R satisfying 0 < ω ≤ Ω and c ∈ R+ := {c ∈ R : c > 0}

2: choose x0 ∈ Rn and α0 ∈ [ω,Ω]

3: set x1 ← x0 − α0g0 and k ← 1

4: loop

5: if yk = 0 or sTk yk = −‖sk‖2‖yk‖2 < 0 then

6: set αk ← Ω

7: else if sTk yk = 0 then

8: set αk ← ω

9: else

10: set qk ← sTk yk/s
T
k sk and qk ← yTk yk/s

T
k yk

11: if qk > 0 then set ck ← 0 else set ck ← c(qk − qk)/‖sk‖2

12: if qk > 0 then set αk ← 1/qk else set αk ← 2/(qk +
√
q2k + 2ck‖gk‖2)

13: replace αk by its projection onto the interval [ω,Ω]

14: end if

15: set xk+1 ← xk − αkgk and k ← k + 1

16: end loop

We close this Chapter by providing an illustration of the types of stepsizes computed

in Algorithm 5, which may be compared to those illustrated in Figure 4.2.1. Using the

same set-up as for Figure 4.2.1 and with c ← 1, we plot in Figure 4.3.1 the stepsizes

computed via Algorithm 5 as a function of the gradient gk ∈ [−3, 1]× [−2, 2]. In this plot,

it is clear that, when sTk yk > 0, Algorithm 5 computes stepsizes that are equal to those

in the plot on the right in Figure 4.2.1. More important, however, is that Algorithm 5

computes reasonable stepsizes that exploit problem information even when sTk yk < 0. In

particular, when sTk yk < 0 and sTk yk ≈ 0, the algorithm computes stepsizes consistent with

those computed in “nearby cases” when sTk yk > 0. On the other hand, if sTk yk < 0 while

sk and yk are (nearly) parallel, then the algorithm computes very large stepsizes, which

has been motivated in the third special case above.
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Figure 4.2: Illustration of the stepsizes computed, as a function of the current gradient
gk, by Algorithm 5.

4.3.2 An algorithm that stores information from m ≥ 1 previous itera-

tion(s)

We have presented our algorithm for m = 1 as one that, at xk, computes a stepsize based

on minimizing a cubic model of the objective from xk along the steepest descent direction

−gk. On the other hand, in §4.2, we described Fletcher’s LMSD method for m ≥ 1 as one

that, at xk, computes m stepsizes to be employed in the next m iterations by computing

(reciprocals of) the eigenvalues of an m × m matrix. On the surface, these approaches

are quite different. Therefore, in order to extend our approach to cases when m ≥ 1 and

have it reduce to (a variant of) Fletcher’s LMSD method, we must explain how Fletcher’s

stepsize computation procedure can be understood in terms of minimizing a local model

of f at xk. This can be done with the use of a quadratic model, but for our purposes of

generalizing the approach, we employ a cubic model (and refer to his approach as one in

which the cubic term is zero).

For a given j ∈ {0, . . . ,m− 1}, consider the cubic model mk+j : Rn → R of f at xk+j

defined by

mk+j(s) = fk+j + gTk+js+ 1
2qk+j‖s‖

2
2 + 1

6ck+j‖s‖
3
2 ≈ f(xk+j + s), (4.13)
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where qk+j and ck+j are scalars to be determined. Furthermore, consider the problem

min
α≥0

φk+j(α), where φk+j(α) := mk+j(−αgk+j) for all α ∈ R. (4.14)

It is easily seen that when qk+j > 0 and ck+j = 0, the solution of problem (4.14) is given

by αk+j = q−1k+j , while if qk+j ≤ 0 and ck+j > 0, then the solution is given by a formula

similar to (4.4).

Supposing that iteration k represents the beginning of a “sweep,” Fletcher’s approach

can be understood in terms of minimizing the local model of f at xk+j given by (4.13)

simultaneously for all j ∈ {0, . . . ,m − 1}, despite the fact that, for j > 0, the point

xk+j and gradient gk+j are unknown at the beginning of iteration k. In particular, his

approach involves the construction of an m×m matrix, call it Mk, based on information

obtained from the m iterations prior to, and including, iteration k. He computes the

eigenvalues of Mk, say composing {qk, . . . , qk+m−1}, the reciprocals of which, say com-

posing {αk, . . . , αk+m−1}, are to be used as the stepsizes in the next m iterations. In

fact, Fletcher orders these stepsizes from smallest to largest before employing them in the

algorithm.

Our approach proceeds in a similar manner, but with some notable differences. Specif-

ically, at the beginning of a “sweep” occurring from iteration k, we compute scalars that

may be used for qk+j for all j ∈ {0, . . . ,m− 1}. However, we do not simply use the recip-

rocals of these values as the stepsizes in the subsequent m iterations, especially since some

or all of these values may be negative. Instead, we iterate in the usual manner through

iterations k+ j for all j ∈ {0, . . . ,m−1}, where for each such j we compute ck+j ≥ 0 such

that mk+j is bounded below over −gk+j and (4.14) yields a unique minimizer.

For computing the quadratic term coefficients, we follow the approach of Fletcher and

assume that, at the beginning of iteration k, we have available an invertible symmetric

tridiagonal matrix T̃k ∈ Rm×m and an invertible symmetric pentadiagonal matrix P̃k ∈

Rm×m. (It is possible that our formulas for these matrices, provided later, yield matrices

that are not invertible, but we handle these as special cases later on.) We then define the
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following sets, each ordered from largest to smallest:

{qk, . . . , qk+m−1} as the eigenvalues of T̃k

and {q̂k, . . . , q̂k+m−1} as the eigenvalues of (P̃−1k T̃k)
−1.

(4.15)

At iteration k + j for j ∈ {0, . . . ,m − 1}, we follow the strategy of the m = 1 case and

set qk+j ← q̂k+j . If q̂k+j > 0, then we set ck+j ← 0, but otherwise we again follow the

strategy of the m = 1 case and set

ck+j ←
c

‖sk+j‖2
(qk+j − qk+j). (4.16)

Observe that when m = 1, the approach described in the previous paragraph reduces

to that in §4.3.1, and in that case we have qk+j−qk+j > 0 for j = 0 whenever sTk+jyk+j < 0

and yk+j is not parallel to sk+j . However, for m > 1, we must ensure that (4.16) yields

ck+j ≥ 0. In fact, this is guaranteed by our approach for constructing T̃k and P̃k, but,

before describing this construction, we remark the following.

• If m = 1, T̃k = qk, and P̃k = ‖yk‖22/‖sk‖22, then (P̃−1k T̃k)
−1 = q̂k and (4.16) reduces

to (4.12).

• If m ≥ 1 and f(x) = 1
2x

TAx for some A � 0, then with T̃k ← Tk from (2.16) and

P̃k ← Pk from (2.18), we have that T̃k is symmetric tridiagonal and P̃k is symmetric

pentadiagonal. Furthermore, in this case, we have Tk � 0 and (P−1k Tk)
−1 � 0,

meaning that our approach for computing stepsizes reduces to Fletcher’s method

when harmonic Ritz values are employed. On the other hand, when T̃k and P̃k are

set in the same manner but A 6� 0, the eigenvalues of T̃k and (P̃−1k T̃k)
−1 will be

interlaced. In such a case, (4.16) involves qk+j − qk+j ≥ 0 for any j ∈ {0, . . . ,m− 1}

with qk+j < 0.

A critical feature of our algorithm is how we choose T̃k and P̃k when f is not quadratic.

In Fletcher’s work, he remarks that, in the nonquadratic case, the matrix Tk in (2.16) will

be upper Hessenberg, but not necessarily tridiagonal. He handles this by constructing T̃k,
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which is set to Tk except that its strict upper triangle is replaced by the transpose of its

strict lower triangle, thus creating a tridiagonal matrix. We employ the same strategy in

our algorithm. Then, observing from (2.18) that

Pk = T Tk Tk + ζkζ
T
k , where ζTk :=

[
0 ρk

]
JkR

−1
k , (4.17)

we set P̃k as T̃ Tk T̃k + ζkζ
T
k , i.e., we use the same expression as in (4.17), but with Tk

replaced by T̃k.

The strategy described in the previous paragraph is well-defined if Tk in (2.16) is well-

defined, and (4.16) ensures ck+j ≥ 0 for all k ∈ N+ and j ∈ {0, . . . ,m−1} if the eigenvalues

of T̃k and (P̃−1k T̃k)
−1 are interlaced. For these cases, we provide the following theorems

with proofs.

Theorem 4.3.1. The matrix Tk in (2.16) is well-defined if and only if the columns of

Gk are linearly independent. Furthermore, with αk > 0 for all k ∈ N, the matrix Tk is

invertible if and only if the columns of Gk are linearly independent and the elements of

the vector R−1k QTk gk do not sum to one.

Proof of Theorem 4.3.1. The matrix Rk in the (thin) QR-factorization of Gk is in-

vertible if and only if the columns of Gk are linearly independent (see [26]), which is the

first part of the theorem. Now, for the remainder of the proof, we may proceed under

the assumption that the columns of Gk are linearly independent (which implies that Rk

is inverible). Since Rk is invertible, we have

Tk =

[
Rk rk

]
JkR

−1
k

=

[
QTkQkRk QTkQkrk

]
JkR

−1
k

= QTk

[
Gk gk

]
JkR

−1
k

= R−Tk GTk

[
Gk gk

]
JkR

−1
k ,
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which implies that Tk is invertible if and only if GTk [Gk gk]Jk is invertible. We find that

GTk

[
Gk gk

]
Jk = GTk

[
α−1k−m(gk−m+1 − gk−m) . . . α−1k−1(gk − gk−1)

]
,

which, along with the fact that αk > 0 for all k ∈ N, implies that GTk [Gk gk]Jk is invertible

if and only if

GTk

[
gk − gk−m · · · gk − gk−1

]
= GTk (

[
gk · · · gk

]
−Gk) (4.18)

is invertible. Since Gk has linearly independent columns, we have by properties of deter-

minants that

det(GTk (

[
gk · · · gk

]
−Gk)) = det(GTk

[
gk · · · gk

]
−GTkGk)

= det(GTkGk) det((GTkGk)
−1GTk

[
gk · · · gk

]
− I),

from which it follows that (4.18) is invertible if and only if

1 6= trace((GTkGk)
−1GTk

[
gk · · · gk

]
) = trace(R−1k QTk

[
gk · · · gk

]
),

which is true if and only if the elements of R−1k QTk gk do not sum to one.

Theorem 4.3.2. Suppose that Tk in (2.16) is well-defined. Then, let T̃k be set equal

to Tk, except that its strict upper triangle is replaced by the transpose of its strict lower

triangle, and let P̃k ← T̃ Tk T̃k + ζkζ
T
k where ζk is defined in (4.17). Then, T̃k is symmetric

tridiagonal and P̃k is symmetric pentadiagonal.

Proof of Theorem 4.3.2. LettingR
(j)
k denote the jth column ofRk for all j ∈ {1, . . . ,m},

we have

[
Rk rk

]
Jk =

[
α−1k−m(R

(1)
k −R

(2)
k ) · · · α−1k−2(R

(m−1)
k −R(m)

k ) α−1k−1(R
(m)
k − rk)

]
.

(4.19)

Since Rk is upper triangular, it follows that (4.19) is upper Hessenberg and that R−1k is
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upper triangular. Then, since the product of an upper Hessenberg and an upper triangular

matrix is upper Hessenberg, it follows that Tk is upper Hessenberg. Thus, our construction

of T̃k ensures that it is symmetric tridiagonal.

Now consider P̃k = T̃ Tk T̃k + ζkζ
T
k where ζTk :=

[
0 ρk

]
JkR

−1
k . For any pair of indices

{i, j} ⊆ {1, . . . ,m} such that |i− j| > 2, we have [T̃ Tk T̃k]i,j = 0, from which it follows that

T̃ Tk T̃k is symmetric pentadiagonal. Moreover, by the structure of Jk and the fact that R−1k

is upper triangular, it follows that ζkζ
T
k is zero except for its (m,m) entry, which overall

implies that P̃k is symmetric pentadiagonal.

Theorem 4.3.3. Suppose that Tk in (2.16) is well-defined and that the matrices T̃k and

P̃k, constructed as described in Theorem 4.3.2, are invertible. Then, the eigenvalues in

(4.15) satisfy

|qk+j | ≤ |q̂k+j | for all j ∈ {0, . . . ,m− 1}.

In particular, if for some j ∈ {0, . . . ,m−1} one has q̂k+j < 0, then (4.16) yields ck+j ≥ 0.

Proof of Theorem 4.3.3. For ease of exposition in this proof, we drop the tilde and

iteration subscript from all quantities of interest; in particular, we let T = T̃k, P = P̃k,

and ζ = ζk. Since T is invertible, there exists an orthogonal matrix V such that T = V ΛV T

where Λ is a diagonal matrix whose diagonal elements are the (nonzero) eigenvalues of T ; in

particular, for some nonnegative integers p and q with p+q = m, we have Λ = diag(a,−b)

for some positive vectors a ∈ Rp and b ∈ Rq. Without loss of generality, we assume that

a1 ≥ · · · ≥ ap > 0 and b1 ≥ · · · ≥ bq > 0. Letting w = V T ζ, we have

V T (P−1T )−1V = V T (T−1(T TT + ζζT ))V

= Λ + V TT−1ζζTV

= Λ + Λ−1V T ζζTV

= Λ + Λ−1wwT .

Thus, denoting by |Λ| the diagonal matrix whose diagonal elements are the absolute values
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of the elements of Λ, we have for some vectors c ∈ Rp and d ∈ Rm that

V T (P−1T )−1V = |Λ|−1/2Λ|Λ|1/2 + |Λ|−1/2(|Λ|1/2Λ−1wwT |Λ|−1/2)|Λ|1/2

= |Λ|−1/2


diag(a) 0

0 diag(−b)

+

 c

−d


c
d


T |Λ|1/2

= |Λ|−1/2


diag(a) + ccT cdT

−dcT diag(−b)− ddT


 |Λ|1/2.

It follows that the eigenvalues of (P−1T )−1 are the same as those for

Ω :=

diag(a) + ccT cdT

−dcT diag(−b)− ddT

 .
Now, for i ∈ {1, . . . , p}, let ej denote the jth unit vector in Rp and note that, for all

j ∈ {1, . . . , i}, ej
0


T

(Ω− aiI)

ej
0

 = (aj + c2j )− ai ≥ 0.

We may conclude from this fact that, for all i ∈ {1, . . . , p}, the matrix Ω−aiI has at least

i positive eigenvalue(s). Similarly, for a given i ∈ {1, . . . , q} and with ej denoting the jth

unit vector in Rq, we have for all j ∈ {1, . . . , i} that

 0

ej


T

(Ω + biI)

 0

ej

 = (−bj − d2j ) + bi ≤ 0,

from which it follows that Ω + biI has at least i negative eigenvalue(s). Recalling that

(a,−b) are the eigenvalues of T , we conclude that the eigenvalues of (P−1T )−1, call them

(a,−b), satisfy

−b1 ≤ −b1 ≤ · · · ≤ −bq ≤ −bq < 0 < ap ≤ ap ≤ · · · ≤ a1 ≤ a1,

as desired.
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Overall, like Fletcher’s method, our strategy reduces to using Ritz and harmonic Ritz

values in the quadratic case, and otherwise manipulates the matrices in (2.16) and (2.18) to

obtain matrices with similar structure as would be obtained automatically in the quadratic

case.

We are almost prepared to discuss our main algorithm, but first we must discuss the

special cases that must be considered for our algorithm to be well-defined.

• Suppose that the columns of Gk are linearly dependent, or the columns of Gk are

linearly independent while the elements of R−1k QTk gk sum to one. In such cases, Tk

is not well-defined, so our desired procedure for constructing T̃k and P̃k also is not

well-defined. To handle this, we iteratively consider fewer previous gradients (where,

at each stage, the eldest member is ignored in favor of newer gradients) until the set

of considered previous gradients consists of linearly independent vectors for which

R−1k QTk gk has elements that do not sum to one. (Note that the situation in which Gk

has linearly dependent columns did not need to be considered when m = 1 since, in

that case, Gk = [gk−1] having a linearly dependent column corresponds to gk−1 = 0,

in which case Algorithm 5 would have terminated in iteration k − 1. Also note

that in the m = 1 case, having 1 = R−1k QTk gk corresponds to the special case of

having yk = 0.) In the extreme case when the set of previously computed gradients

is reduced to only the most recently computed previous gradient, we compute a

stepsize as in Algorithm 5.

• Suppose that Tk is well defined, but for some qk+j ≤ 0 we obtain ck+j = 0. This is

similar to the last of the special cases considered when m = 1, and so, as in that

case, we aggressively minimize f by computing a stepsize as Ω > 0.

Our main approach is presented as Algorithm 6. As for Algorithm 5, we suppress

mention of the computation of function values, gradient values, and displacement vectors,

and suppress mention of termination checks throughout the algorithm. Correspondingly,

we assume for all practical purposes that gk 6= 0 for all k ∈ N. Also for simplicity in

its description, we state Algorithm 6 in such a way that it iterates in order through the
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sets of eigenvalues in (4.15). Note, however, that during a given iteration k, one may also

consider computing all stepsizes that would be obtained by any of the available pair of

eigenvalues, and then choosing the pair that leads to the smallest corresponding stepsize.

This would be consistent with Fletcher’s approach in that, at each point in a “sweep,” the

eigenvalue yielding the smallest stepsize is chosen. For this reason, this is the strategy that

we have adopted in our numerical experiments. (Note that by ordering the eigenvalues

from largest to smallest, employing them in order corresponds to choosing stepsizes in

increasing order of magnitude if all of the eigenvalues are positive.)

In our implementation described in the following Chapter, we incorporated a nonmono-

tone line search into Algorithm 6, which, for ease of exposition, has also been suppressed

in the presentation of the algorithm. In particular, we incorporated the Armijo (i.e., back-

tracking) line search of [56] with moving average parameter ηk = η ∈ (0, 1) for all k ∈ N,

which is employed in every step of the algorithm. With this line search, we claim the

following global convergence result for our algorithm; the proof is a special case of [56,

Theorem 2.2].

Theorem 4.3.4. Suppose f is bounded below and ∇f is Lipschitz continuous on

{x ∈ Rn : f(x) ≤ f(x0)}+ {d ∈ Rn : ‖d‖2 ≥ sup
k∈N
‖αkgk‖2}. (4.20)

Then, the iterate sequence {xk} generated by Algorithm 6 yields

lim
k→∞

gk = 0.

That is, every convergent subsequence of {xk} approaches a point x∗ with ∇f(x∗) = 0.
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Algorithm 6 LMSD Method with Cubic Regularization (for m ≥ 1)

1: choose (ω,Ω) ∈ R × R satisfying 0 < ω ≤ Ω, c ∈ R+, and m ∈ N+

2: choose x0 ∈ Rn and αj ∈ [ω,Ω] for all j ∈ {0, . . . ,m− 1}
3: for j = 0, . . . ,m− 1 do

4: set xj+1 ← xj − αjgj
5: end for

6: set k ← m

7: loop

8: loop

9: set Gk as in (2.15) and Jk as in (2.17).

10: compute the (thin) QR-factorization Gk = QkRk.

11: if Gk is composed of only one column then break

12: if Rk is invertible and the elements of R−1k QTk gk do not sum to one then break

13: remove the first column each of Gk and Jk

14: end loop

15: set m̃ as the number of columns of Gk

16: if m̃ = 1 then

17: set αk as in Algorithm 5 and xk+1 ← xk − αkgk
18: else

19: set Tk as in (2.16) and set T̃k and P̃k as described in Theorem 4.3.2

20: set {qk, . . . , qk+m̃−1} and {q̂k, . . . , q̂k+m̃−1} as in (4.15)

21: for j = 0, . . . , m̃− 1 do

22: Set qk+j ← q̂k+j .

23: if qk+j > 0 then set ck+j ← 0 else set ck+j ← c(qk+j − qk+j)/‖sk+j‖2
24: if qk+j > 0 then set αk+j ← 1/qk+j

25: else if ck+j > 0 then set αk+j ← 2/(qk+j +
√
q2k+j + 2ck+j‖gk+j‖2)

26: else if qk+j = 0 then set αk+j ← ω

27: else set αk+j ← Ω

28: set xk+j+1 ← xk+j − αk+jgk+j
29: end for

30: end if

31: set k ← k + m̃

32: end loop
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4.4 Implementation

Algorithm 6 (which includes Algorithm 5 as a special case) was implemented in Matlab

along with two other algorithms for comparison purposes. In this Chapter, we describe

the implementations of these algorithms along with input parameter settings that were

used in our experiments (see §4.5).

We used built-in Matlab functions to compute matrix factorizations and eigenvalues in

all of the implemented algorithms. In order to avoid the influence of numerical error and

the computation of excessively small or large stepsizes, we removed previously computed

gradients (in a similar manner as in the inner loop of Algorithm 6) if more than one was

currently being held and any of the corresponding computed eigenvalues were smaller than

10−12 or larger than 1012 in absolute value. Similarly, prior to computing corresponding

stepsizes, we projected any computed quadratic term coefficient so that it would have an

absolute value at least 10−12 and at most 1012, and we projected any computed cubic

term coefficient onto the widest possible subset of the positive reals so that the resulting

stepsize would be at least 10−12 and at most 1012. (For the quadratic term coefficients,

this projection was performed to maintain the sign of the originally computed coefficient.)

Overall, this implied ω = 10−12 and Ω = 1012 for all algorithms. As described in §4.3, the

eigenvalues, once computed, were ordered from largest to smallest, though the implemen-

tation of Algorithm 6 potentially used these eigenvalues out-of-order in order to ensure

that, in any given iteration, the eigenvalue pair leading to the smallest stepsize was used

(after which this pair was removed from the set for subsequent iterations).

The three implemented algorithms only differed in the manner in which stepsizes were

computed. Our implementation of Algorithm 6—hereafter referred to as cubic—employed

the strategy described in §4.3 with c← 1. The other two algorithms, on the other hand,

were two variants of an algorithm derived from the ideas in [22]. In particular, the al-

gorithm we refer to as quad-ritz computes stepsizes as reciprocals of the Ritz values

{qk, . . . , qk+m−1}, whereas the algorithm we refer to as quad-hritz computes stepsizes

as reciprocals of the harmonic Ritz values {q̂k, . . . , q̂k+m−1} (recall (4.15)). In both quad-

ritz and quad-hritz, the standard approach of handling nonpositive curvature was em-
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ployed; i.e., if a computed eigenvalue was negative, then the stepsize was simply set to

Ω.

For simplicity and consistency, all algorithms employed the same nonmonotone line

search in every step, using the stepsize computed in the main procedure as the initial

stepsize for the line search. As mentioned in §4.3, for this purpose, we implemented the

Armijo (i.e., backtracking) line search of [56]. This strategy requires a sufficient decrease

parameter, for which we used 10−12, a backtracking parameter, for which we used 0.5,

and a moving average parameter (see ηk as defined in [56]), for which we used 0.5 for

all k ∈ N. For the history length parameter m, we experimented with values in the set

{1, 3, 5}. (As discussed further in §4.5, results for larger values of m did not lead to im-

proved performance beyond the values considered here. This is consistent with Fletcher’s

experience with his LMSD method, and in some previous studies of L-BFGS.) All algo-

rithms terminated whenever either the `∞-norm of a computed gradient was less than

or equal to 10−8 max{1, ‖g0‖∞}—indicating a successful run—or the maximum iteration

count of 1010 was reached—indicating a failure.

4.5 Numerical Experiments

We tested the algorithms cubic, quad-ritz, and quad-hritz by employing them to solve

unconstrained problems from the CUTEst collection; see [28] (and [27] for information

about a previous version of the test set). We resized all unconstrained problems to the

largest of their preset sizes, and from that set kept those (a) that had at least 50 variables,

so as to have m � n; (b) for which at least one run of an algorithm required at least 5

seconds, so as to focus on the more difficult problems in the set; (c) for which at least one

run of an algorithm involved the computation of a nonpositive quadratic term coefficient,

so as to focus on the issue of handling nonpositive curvature; and (d) for which at least

one run of an algorithm led to a successful termination. The resulting set of 30 problems

and their sizes can be found in the tables of results provided at the end of this chapter.

Over all runs of all algorithms on all of our test problems, we compiled the number of

function and gradient evaluations required prior to termination. (Note that the number
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of iterations can be considered equal to the number of gradient evaluations.) To compare

the results of the experiments, we consider the technique proposed in [38], which proceeds

as follows. Letting funcjA and funcjB be the number of function evaluations required by

algorithms A and B, respectively, on the jth problem in the set, we compute the logarith-

mic outperforming factor rjAB := − log2(funcjA/funcjB). For example, rjAB = 2 indicates

that algorithm A required 2−2 of the function evaluations required by algorithm B. Such

a factor is similarly defined for comparing the numbers of gradient evaluations required

by two algorithms. By computing all such factors for each problem in the test set, one

can compare the performance of two algorithms side-by-side in a bar plot, where positive

bars indicate better performance with respect to a particular measure for algorithm A

and negative bars indicate better performance for algorithm B. In all cases, we restrict

attention to rjAB ∈ [−1, 1] since the particular magnitude of a factor beyond this interval

is not of great interest; it is sufficient to know that an algorithm performed fewer than

half (or more than double) the number of function or gradient evaluations as did another

algorithm.

As a first comparison, we consider the performance of the algorithms for m = 1, for

which we have the bar plots in Figures 4.3 and 4.4, corresponding to function and gradient

evaluations, respectively. In each figure, the performance of each pair of algorithms is

revealed in a side-by-side comparison with the name of algorithm “A” indicated above

the plot and the name of algorithm “B” indicated below the plot. The profiles clearly

indicate that the use of harmonic Ritz values led to better performance than the use of

Ritz values in that cubic and quad-hritz consistently outperformed quad-ritz with

respect to both measures on most (if not all) problems in our test set.
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Figure 4.3: Outperforming factors for function evaluations with m = 1.

Figure 4.4: Outperforming factors for gradient evaluations with m = 1.

One observes in Figures 4.3 and 4.4 that cubic and quad-hritz performed similarly

on many problems, with better performance provided by quad-hritz on some problems in

the set. This situation changed, however, when we considered m = 3 and m = 5, for which

we have the bar plots in Figures 4.5–4.8. Particularly in terms of function evaluations and

often in terms of gradient evaluations, cubic outperformed both quad-ritz and quad-

hritz on a majority of problems in our set.
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Figure 4.5: Outperforming factors for function evaluations with m = 3.

Figure 4.6: Outperforming factors for gradient evaluations with m = 3.

Figure 4.7: Outperforming factors for function evaluations with m = 5.
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Figure 4.8: Outperforming factors for gradient evaluations with m = 5.

As a final comparison, we consider the performance of cubic for m ∈ {1, 3, 5}. The

results are provided in the bar plots in Figures 4.9 and 4.10. Despite mixed results in

terms of function evaluations, the factors computed based on gradient evaluations indicate

better performance when m = 5. Combining this conclusion with those drawn from the

results above, we claim that we obtained the best results in our experiments with cubic

and m = 5. (We also experimented with larger values of m, but they did not lead to

improved performance over those obtained with m = 5. We suspect that this was due

to the presence of nonpositive curvature—i.e., nonpositive eigenvalues—much more often

than would have been observed with a smaller value of m. This led us to conclude that

while one may benefit by confronting a modest amount of nonpositive curvature with our

proposed technique, an excessive amount of nonpositive curvature is not easily overcome.)

Figure 4.9: Outperforming factors for function evaluations for cubic for m ∈ {1, 3, 5}.
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Figure 4.10: Outperforming factors for gradient evaluations for cubic for m ∈ {1, 3, 5}.

We provide details of the results of our numerical experiments that were summarized

in §4.5. The following tables provide function and gradient evaluation counts for the imple-

mented algorithms quad-ritz, quad-hritz, and cubic for the history length parameter

values m ∈ {1, 3, 5}.
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Table 4.1: Results for m = 1

quad-ritz quad-hritz cubic

Name n #f #g #f #g #f #g

CHAINWOO 10000 809 412 507 454 676 644

CHNROSNB 50 2977 1486 1927 1371 1459 1433

DECONVU 61 276033 126801 23625 23553 23625 23553

DIXMAANE 9000 3597 1705 1205 1151 1205 1151

DIXMAANF 9000 3788 1789 1284 1224 1284 1224

DIXMAANG 9000 3755 1763 791 761 791 761

DIXMAANH 9000 2610 1265 939 918 939 918

DIXMAANI 9000 158013 70930 16912 16764 16912 16764

DIXMAANJ 9000 2402 1156 1033 999 1033 999

DIXMAANK 3000 10612 4851 1275 1238 1275 1238

DIXON3DQ 10000 1907708 865306 222481 222086 222481 222086

EIGENALS 110 20405 9231 3049 2947 3049 2947

EIGENBLS 110 24276 11095 1232 894 10075 9351

EIGENCLS 462 49256 22791 9640 8186 11355 11086

ERRINROS 50 714084 331317 20352 20105 20352 20105

EXTROSNB 1000 1031208 474887 126174 126096 126174 126096

FMINSRF2 15625 6454 3104 1709 1681 1709 1681

FMINSURF 1024 2541 1298 817 778 817 778

GENHUMPS 5000 29372 14564 2135 1109 19378 19305

GENROSE 500 9483 4245 9517 3140 5353 4899

HYDC20LS 99 4614763 2095069 1071208 1070629 1071208 1070629

MODBEALE 2000 1273 527 204 164 204 164

MSQRTALS 529 248340 113968 28812 28688 28812 28688

MSQRTBLS 529 218650 100286 24993 24882 24993 24882

NONCVXU2 10000 39042 18952 13287 9734 11375 11151

NONCVXUN 10000 75236 36361 15263 10987 16727 16418

NONDQUAR 10000 612 368 266 257 266 257

SPMSRTLS 10000 1451 753 632 597 632 597

TQUARTIC 10000 11279 2026 1282 1016 1282 1016

WOODS 10000 2760 960 887 479 842 621
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Table 4.2: Results for m = 3

quad-ritz quad-hritz cubic

Name n #f #g #f #g #f #g

CHAINWOO 10000 139022 72636 440326 77900 116431 97997

CHNROSNB 50 1678 953 2792 908 1078 995

DECONVU 61 101433 57765 18820 18680 19120 19019

DIXMAANE 9000 2782 1822 875 863 875 863

DIXMAANF 9000 1499 932 1069 952 1100 1044

DIXMAANG 9000 1731 1070 1009 905 755 729

DIXMAANH 9000 1544 958 922 829 920 886

DIXMAANI 9000 98504 59120 33824 33723 32322 32270

DIXMAANJ 9000 1325 850 875 721 714 662

DIXMAANK 3000 1053 668 2530 2479 478 467

DIXON3DQ 10000 1779714 1079416 1421808 1421753 1387582 1387527

EIGENALS 110 6016 3150 3348 2522 2320 2144

EIGENBLS 110 12932 7548 11406 6405 10798 10116

EIGENCLS 462 25440 13729 15027 10957 10025 9556

ERRINROS 50 25428 9363 10147 6269 25089 24050

EXTROSNB 1000 265288 147208 85540 82318 86104 85247

FMINSRF2 15625 17509 2928 15208 2211 13905 2605

FMINSURF 1024 8793 1388 4919 948 6470 1178

GENHUMPS 5000 7414 2054 89478 16611 22323 17068

GENROSE 500 7754 3820 19232 3264 5067 4724

HYDC20LS 99 3989081 2379958 1527159 1527100 1527159 1527100

MODBEALE 2000 901 221 534 226 269 220

MSQRTALS 529 134835 83020 54501 54410 53480 53414

MSQRTBLS 529 123556 76020 47057 46951 43885 43854

NONCVXU2 10000 29644 13907 28592 8941 16091 10200

NONCVXUN 10000 54336 24814 55618 15836 27385 16938

NONDQUAR 10000 4286 536 6664 769 1319 384

SPMSRTLS 10000 1307875 729339 607 554 8370 7667

TQUARTIC 10000 6068 491 20204 1593 4746 826

WOODS 10000 2461 458 2023 347 908 415

103



Table 4.3: Results for m = 5

quad-ritz quad-hritz cubic

Name n #f #g #f #g #f #g

CHAINWOO 10000 156942 56418 4233 689 1122 563

CHNROSNB 50 3314 839 5818 1062 1769 944

DECONVU 61 12229 7398 4551 3381 4397 3928

DIXMAANE 9000 2089 1498 1094 971 843 784

DIXMAANF 9000 1223 867 996 809 1099 956

DIXMAANG 9000 1575 1006 1062 856 876 776

DIXMAANH 9000 1583 1005 1097 738 876 797

DIXMAANI 9000 53132 35845 21932 21797 20201 20120

DIXMAANJ 9000 1202 776 849 667 583 537

DIXMAANK 3000 854 442 557 386 493 415

DIXON3DQ 10000 1777107 1213356 850208 849833 909144 908761

EIGENALS 110 2392 1076 2687 880 1510 982

EIGENBLS 110 8701 5418 14548 4788 1764 903

EIGENCLS 462 22116 7112 17196 7464 13688 8888

ERRINROS 50 9760 1427 10927 1944 6244 1517

EXTROSNB 1000 22726 10282 18073 7767 12199 8480

FMINSRF2 15625 9062 1506 10264 1806 7293 1752

FMINSURF 1024 5143 908 3931 828 3325 836

GENHUMPS 5000 57998 18114 143813 18945 6110 1393

GENROSE 500 6639 3152 30851 4620 10119 5182

HYDC20LS 99 1241851 780101 493466 492033 885588 885337

MODBEALE 2000 1106 254 2611 464 739 292

MSQRTALS 529 82328 56605 39500 39273 39734 39589

MSQRTBLS 529 72615 50086 30137 29798 36146 35852

NONCVXU2 10000 24633 9768 32486 8602 27062 10662

NONCVXUN 10000 50520 19570 59028 14601 42572 14875

NONDQUAR 10000 2662 461 3564 589 2149 472

SPMSRTLS 10000 3857 947 3462 907 1962 844

TQUARTIC 10000 6336 487 5953 534 2906 497

WOODS 10000 1804 255 377 94 213 69
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4.6 Conclusion

We have designed, analyzed, and experimented with a limited memory steepest descent

(LMSD) method for solving unconstrained nonconvex optimization problems. The unique

feature of our algorithm is a novel approach for handling nonpositive curvature; in particu-

lar, we propose that when nonpositive curvature is encountered, stepsizes can be computed

by constructing local cubic models of the objective function, for which reasonable values

of the quadratic and cubic term coefficients can be derived using previously computed gra-

dient information. Our numerical experiments suggest that our approach yields superior

performance in practice compared to algorithms that do not attempt to incorporate prob-

lem information when computing stepsizes when nonpositive curvature is encountered.
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Chapter 5

A Limited Memory Stochastic

Gradient Method

We propose a limited memory stochastic gradient (LMSG) method for optimization prob-

lems arising in machine learning. We focus on problems that are strongly convex. When

a dataset is too large such that the computation of a full gradient is too expensive, our

method computes stepsizes and iterates based on stochastic gradients or mini-batch gra-

dients. Although in stochastic gradient (SG) methods, a best-tuned fixed stepsize or

diminishing stepsize is most widely used, it can be inefficient in practice. Our method

adopts a cubic model and always guarantees a positive meaningful stepsize, even when

nonconvexity / nonpositive curvature is encountered. It reduces to a limited memory

steepest descent method with cubic regularization described in Chapter 4.3.2 when full

gradients are used. With a projection of stepsizes, we ensure convergence to a neighbor-

hood of the optimal solution when the interval is fixed and convergence to the optimal

solution when the interval is diminishing with 1/k. We also illustrate with numerical

experiments that our approach can outperform a stochastic gradient (SG) method with

fixed stepsizes.
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5.1 Introduction

The following optimization problem, which minimizes the sum of cost functions over sam-

ples from a finite training set, appears frequently in machine learning

min
x∈Rn

F (x) :=
1

n

n∑
i=1

fi(x), (5.1)

where n is the sample size, and each fi : Rd → R is the cost function corresponding to the

i-th sample point. For example, in logistic regression, the cost function has the form

fi(x) := log(1 + exp(−biaTi x)),

where ai ∈ Rd and bi ∈ {−1, 1} are the data samples associated with a binary classification

problem.

In this work, we focus on problems where each fi is convex and smooth and assume F

is strongly convex (see (2.4) in Chapter 2.1.3).

One important issue regarding to stochastic algorithms is how to choose an appropri-

ate stepsize αk while running the algorithm. In a full gradient method, the stepsize is

often obtained by carrying out a line search. However, line searches are computationally

prohibitive in stochastic gradient methods because only sub-sampled information of gradi-

ent is available. As a result, for stochastic gradient (SG), people usually use a best-tuned

fixed stepsize αk = C, or a diminishing stepsize, for example αk = 1/(k + 1), which can

be time consuming sometimes.

Recently, a stochastic Barzilai-Borwein (BB) method, which borrows the idea of Barzilai-

Borwein two point stepsize methods used in full gradient methods, is proposed by [49].

The original BB methods are developed for strongly convex quadratic which employ one

previous iteration and gradient information (history length m = 1) to compute stepsizes.

For full gradient methods, we can always guarantee the positiveness of BB stepsize when

F (x) is strongly convex, however, for stochastic gradient (SG) or mini-batch gradient,

there appear to be nonpositive curvature / nonconvexity which will result in nonpositive
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BB stepsize. In [49], they simply take the absolute value of the original BB stepsize, we

have an idea that might be better.

In this Chapter, we provide a novel strategy for computing stepsizes when there is

nonpositive curvature. In particular, instead of taking the absolute value of a negative

stepsize, we adopt a local cubic model of the objective function in order to determine a

positive stepsize (see [11]). In addition, since Fletcher extends BB methods by exploiting

information from more than one previous iteration (history length m ≥ 1), which are

known as Limited Memory Steepest Descent (LMSD) methods, we also apply the ideas of

LMSD methods to SG. We also adopt a local cubic model in order to determine a sequence

of positive stepsizes.

Our contributions in this Chapter are as follows:

• We introduce Barzilai-Borwein Stochastic Gradient (BBSG) Method, apply BB step-

sizes to SG and extend the stochastic BB methods proposed in [49]. Instead of simply

taking the absolute value, we adopt a cubic model to determine a positive stepize

when nonpositive curvature / nonpositive BB stepsizes are encountered.

• We extend BBSG to Limited Memory Stochastic Gradient (LMSG) Method, from

exploiting only one previous iteration and gradient information (m = 1) to more

than one previous information (m ≥ 1), incorporate LMSD stepsizes into SG and

propose a cubic model for nonpositive curvature in order to determine a sequence of

positive stepsizes.

• We prove convergence (rate) properties for LMSG with Fixed Interval Projection

and Diminishing Interval Projection for strongly convex objective under mild as-

sumptions, respectively.

• We conduct numerical experiments for LMSG on solving logistic regression problems.

The numerical results show that LMSG can outperform an SG method with a fixed

stepsize.

The rest of this Chapter is organized in the following manner. In Chapter 5.2 and 5.3,

we propose BBSG and LMSG methods, including models and algorithm descriptions. We
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also prove convergence (rate) properties for LMSG with Fixed Interval Projection and

Diminishing Interval Projection for strongly convex objective under mild assumptions,

respectively. We conduct numerical experiments for LMSG and show its superior perfor-

mances in Chapter 5.4. Final conclusions are presented in Chapter 5.5.

5.2 Barzilai-Borwein Stochastic Gradient (BBSG) Method

5.2.1 Motivation

At xk, if sTk yk < 0 then BB stepsize αk = (sTk sk)/(s
T
k yk) computed in [49] is negative.

We show a concrete example and explain why we think simply taking absolute value of

the stepsize is not always the best approach. We assume sTk sk = 1, sTk yk = −1 and −10,

respectively. Since sTk yk represents curvature of the function at xk, a more negative sTk yk

implies a more concave curvature and we can be aggressive by taking a larger stepsize,

while on the opposite, a less negative sTk yk implies a less concave curvature and we should

be conservative by taking a smaller stepsize. However, in this example, when sTk yk = −1,

we obtain the stepsize (after taking absolute value) αk = 1 and when sTk yk = −10,

αk = 0.1, which contradicts the discussion and intuition. However, we will obtain a

positive meaningful stepsize by adopting a local cubic model.

5.2.2 Algorithm Description

At xk, the calculations in the kth iteration of our algorithm are based on the cubic model

mk : Rn → R of f at xk defined by

mk(s) = fk + gTk s+ 1
2qk‖s‖

2
2 + 1

6ck‖s‖
3
2 ≈ f(xk + s), (5.2)

where qk and ck are scalars to be determined.

When there is no nonpositive curvature encountered, we would like the cubic model

to reduce to the quadratic model described in Chapter 2.5 and hence we set qk the same

as (2.13). While when qk < 0, we require a positive ck and consider two different options:

• Consider choosing ck to minimize the least squared error between the gradient of
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the model mk at −sk and the previous gradient gk−1, i.e., 1
2‖∇mk(−sk) − gk−1‖22

and obtain

ck ←
2

‖sk‖2
(qk − qk). (5.3)

• Consider choosing ck so that the curvature of mk at −sk along sk is equal to qk, i.e.,

so that sTk∇2mk(−sk)sk = qk‖sk‖22, and we obtain

ck ←
1

‖sk‖2
(qk − qk) . (5.4)

Overall, we propose that the cubic term coefficient should be set, for some constant c > 0,

as

ck ←
c

‖sk‖2
(qk − qk) . (5.5)

As such, we choose the stepsize αk as an optimal solution of the one-dimensional problem

min
α≥0

φk(α), where φk(α) = mk(−αgk) for all α ∈ R. (5.6)

It is easily verified that (5.6) is solved by setting

αk ←
2

qk +
√
q2k + 2ck‖gk‖2

> 0. (5.7)

The algorithm is described as follows and gk can be computed using formula (2.20), (2.22)

or (2.21) depending on which method the algorithm uses. Before computing qk and q̂k,

we consider some special cases when qk or q̂k is not well-defined.
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Algorithm BBSG Barzilai-Borwein Stochastic Gradient Method

1: choose (ω,Ω) ∈ R × R satisfying 0 < ω ≤ Ω and c ∈ R+ := {c ∈ R : c > 0}

2: choose x0 ∈ Rn and α0 ∈ [ω,Ω]

3: set x1 ← x0 − α0g0 and k ← 1

4: loop

5: if yk = 0 or sTk yk = −‖sk‖2‖yk‖2 < 0 then

6: set αk ← Ω

7: else if sTk yk = 0 then

8: set αk ← ω

9: else

10: set qk ← sTk yk/s
T
k sk and qk ← yTk yk/s

T
k yk

11: if qk > 0 then set ck ← 0 else set ck ← c(qk − qk)/‖sk‖2

12: if qk > 0 then set αk ← 1/qk else set αk ← 2/(qk +
√
q2k + 2ck‖gk‖2)

13: replace αk by its projection onto the interval [ω,Ω]

14: end if

15: set xk+1 ← xk − αkgk and k ← k + 1

16: end loop

5.3 Limited Memory Stochastic Gradient (LMSG) Method

5.3.1 Algorithm Description

Similar to the cubic model described in Chapter 5.2.2, in LMSD methods, we employ cubic

models to generate a sequence of m positive stepsizes. For a given j ∈ {0, . . . ,m − 1},

consider the cubic model mk+j : Rn → R of f at xk+j defined by

mk+j(s) = fk+j + gTk+js+ 1
2qk+j‖s‖

2
2 + 1

6ck+j‖s‖
3
2 ≈ f(xk+j + s), (5.8)

where qk+j and ck+j are scalars to be determined. We still compute qk as eigenvalues of

Tk and (P−1k Tk)
−1. However, when f is not quadratic, Tk will be upper Hessenberg, but

not necessarily symmetric. We modify Tk to T̃k by setting it equal to Tk, except that
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its strict upper triangle is replaced by the transpose of its strict lower triangle, and let

P̃k ← T̃ Tk T̃k + ζkζ
T
k where ζk := [0ρk] JkR

−1
k . Now we obtain symmetric tridiagonal T̃k,

symmetric pentadiagonal P̃k and compute the following sets with elements ordered largest

to smallest:

{qk, . . . , qk+m−1} as the eigenvalues of T̃k

and {q̂k, . . . , q̂k+m−1} as the eigenvalues of (P̃−1k T̃k)
−1.

If q̂k+j > 0, then we set ck+j ← 0, but otherwise we again follow the strategy of the m = 1

case and set

ck+j ←
c

‖sk+j‖2
(qk+j − qk+j). (5.9)

Furthermore, consider the problem

min
α≥0

φk+j(α), where φk+j(α) := mk+j(−αgk+j) for all α ∈ R. (5.10)

It is easily seen that when qk+j > 0 and ck+j = 0, the solution of problem (5.10) is given

by αk+j = q−1k+j , while if qk+j ≤ 0 and ck+j > 0, then the solution is given by a formula

similar to (5.7).

The algorithm is described as follows. Before computing matrix T̃k and P̃k, we consider

some special cases when Tk is not well-defined.
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Algorithm LMSG Limited Memory Stochastic Gradient Method

1: choose (ω,Ω) ∈ R × R satisfying 0 < ω ≤ Ω, c ∈ R+, and m ∈ N+

2: choose x0 ∈ Rn and αj ∈ [ω,Ω] for all j ∈ {0, . . . ,m− 1}
3: for j = 0, . . . ,m− 1 do

4: set xj+1 ← xj − αjgj
5: end for

6: set k ← m

7: loop

8: loop

9: set Gk as in (2.15) and Jk as in (2.17).

10: compute the (thin) QR-factorization Gk = QkRk.

11: if Gk is composed of only one column then break

12: if Rk is invertible and the elements of R−1k QTk gk do not sum to one then break

13: remove the first column each of Gk and Jk

14: end loop

15: set m̃ as the number of columns of Gk

16: if m̃ = 1 then

17: set αk as in Algorithm BBSG and xk+1 ← xk − αkgk
18: else

19: set Tk as in (2.16) and set T̃k and P̃k as described in Theorem 4.3.2

20: set {qk, . . . , qk+m̃−1} and {q̂k, . . . , q̂k+m̃−1} as in (4.15)

21: for j = 0, . . . , m̃− 1 do

22: Set qk+j ← q̂k+j .

23: if qk+j > 0 then set ck+j ← 0 else set ck+j ← c(qk+j − qk+j)/‖sk+j‖2
24: if qk+j > 0 then set αk+j ← 1/qk+j

25: else if ck+j > 0 then set αk+j ← 2/(qk+j +
√
q2k+j + 2ck+j‖gk+j‖2)

26: else if qk+j = 0 then set αk+j ← ω

27: else set αk+j ← Ω

28: set xk+j+1 ← xk+j − αk+jgk+j
29: end for

30: end if

31: set k ← k + m̃

32: end loop

We can see that Algorithm BBSG is a special case of Algorithm LMSG when m = 1.
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5.3.2 Convergence Results

Our approach for establishing convergence guarantees for LMSG is built upon the assump-

tions of smoothness of the objective function, namely, Lipchitz continuity of its gradient

function (see (2.2) in Chapter 2.1.2).

From the properties of Lipchitz continuity (2.3) and strong convexity (2.4), we observe

that the strong convexity parameter σ and Lipschitz constant L must satisfy σ ≤ L. And

the convergence of LMSG also depends on the first and second moment limits of the

stochastic gradient, which are described as follows.

Assumption 5.3.1. (First and second moment limits). The objective function and

the Algorithm LMSG satisfy the following:

(a) The sequence of iterates {xk} is contained in an open set over which F is bounded

below by a scalar Finf .

(b) The stochastic gradient is an unbiased estimation of full gradient ∇F , i.e.

E[∇fik(xk)] = ∇F (xk) , where ik is randomly chosen from {1, · · · , n}.

(c) There exist scalars M1 > 0 and M2 ≥ 1 such that, for all k ∈ N,

E[||∇fik(xk)||22] ≤M1 +M2||∇F (xk)||22.

The following lemma, which is described in (2.5) in Chapter 2.1.3 and the next two

lemmas, which are from [7], are useful in our analysis.

Lemma 5.3.2. Under Assumption 2.4, the optimality gap at a given point in terms of

the squared l2-norm of the gradient of the objective at that point:

2σ(F (x)− F∗) ≤ ||∇F (x)||22 for all x ∈ Rd.

Lemma 5.3.3. Under Assumption 2.2, the iterates of LMSG (Algorithm LMSG) satisfy
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the following inequality for all k ∈ N:

E[F (xk+1)− F (xk)] ≤ −αLMSG
k ∇F (xk)

TE[∇fik(xk)] +
1

2
(αLMSG

k )2LE[||∇fik(xk)||22].

Lemma 5.3.4. Under Assumption 2.2 and 5.3.1, the iterates of LMSG (Algorithm LMSG)

satisfy the following inequality for all k ∈ N:

E[F (xk+1)]− F (xk) ≤ −(1− 1

2
αLMSG
k LM2)α

LMSG
k ||∇F (xk)||22 +

1

2
(αLMSG

k )2LM1.

In Algorithm LMSG, we project LMSG stepsize to an interval, if the interval is fixed,

we can have the algorithm converge to a neighborhood of a solution, if the interval is

diminishing with 1/k, the algorithm will converge. The theorems below show these two

situations, respectively. First we discuss the conclusion for fixed interval.

Theorem 5.3.5. (LMSG with Fixed Interval Projection). Under Assumptions 2.4

(with Finf = F∗), 2.2 and 5.3.1, suppose that LMSG method (Algorithm LMSG) is run

with projecting stepsize onto a fixed interval [A, B], i.e., αk = proj[A, B]

(
αLMSG
k

)
for all

k ∈ N, satisfying

0 < A ≤ αLMSG
k ≤ B ≤ 1

LM2
. (5.11)

Then the expected optimality gap satisfies the following inequality for all k ∈ N:

E[F (xk+1)− F∗] ≤
αLMSG
k LM1

2σ
+ (1− αLMSG

k σ)k−1
(
F (x1)− F∗ −

αLMSG
k LM1

2σ

)
,

lim
k→∞

E[F (xk+1)− F∗] ≤
αLMSG
k LM1

2σ
≤ BLM1

2σ
.

Proof. Using Lemma 5.3.4 with (5.11) and Lemma 5.3.2, we have for all k ∈ N that

E[F (xk+1)]− F (xk) ≤ −(1− 1

2
αLMSG
k LM2)α

LMSG
k ||∇F (xk)||22 +

1

2
(αLMSG

k )2LM1

≤ −1

2
αLMSG
k ||∇F (xk)||22 +

1

2
(αLMSG

k )2LM1

≤ −αLMSG
k σ(F (xk)− F∗) +

1

2
(αLMSG

k )2LM1.
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Subtracting F∗ from both sides, taking total expectations, and rearranging, this yields

E[F (xk+1)]− F (x∗) ≤ (1− αLMSG
k σ)E[F (xk)− F∗] +

1

2
(αLMSG

k )2LM1.

Subtracting the constant αLMSG
k LM1/(2σ) from both sides, one obtains

E[F (xk+1)]−
αLMSG
k LM1

2σ

≤(1− αLMSG
k σ)E[F (xk)− F∗] +

1

2
(αLMSG

k )2LM1 −
αLMSG
k LM1

2σ

≤(1− αLMSG
k σ)

(
E[F (xk)− F∗]−

αLMSG
k LM1

2σ

)
.

Observe that the above inequality is a contraction inequality since

0 < αLMSG
k σ ≤ 1

LM2
σ =

1

M2

σ

L
≤ 1.

We repeatedly apply the above contraction inequality through iteration k ∈ N and obtain

the results.

When it comes to interval diminishing with 1/k, to achieve the desired balance between

diminishing the stepsizes sufficiently quickly to ensure convergence, but not so quickly so

as to prevent the iterates from reaching the minimizer, one can choose the stepsizes to

satisfy
∞∑
k=1

αk =∞ and
∞∑
k=1

α2
k <∞. (5.12)

Hence when we compute the stepsize from LMSG, we project it onto the interval
[

A
γ+k ,

B
γ+k

]
in order to satisfy (5.12). Below is the formal statement.

Theorem 5.3.6. (LMSG with Diminishing Interval Projection). Under Assump-

tions 2.4 (with Finf = F∗), 2.2 and 5.3.1, suppose that LMSG method (Algorithm LMSG)

is run with projecting stepsize onto a diminishing interval
[

A
γ+k ,

B
γ+k

]
,
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i.e., αk = proj[ A
γ+k

, B
γ+k

](αLMSG
k ) for all k ∈ N, satisfying

A >
1

σ
, B ≥ A and γ > 0 such that

B

γ + 1
≤ 1

LM2
. (5.13)

Then, for all k ∈ N, the expected optimality gap satisfies

E[F (xk+1)]− F (x∗)] ≤
ν

γ + k
, (5.14)

where

ν := max

{
A2LM1

2(Aσ − 1)
,

B2LM1

2(Bσ − 1)
, (γ + 1)(F (x1)− F∗)

}
. (5.15)

Proof. Using the similar argument of the proof in Theorem 5.3.5, one obtains

E[F (xk+1)]− F (x∗) ≤ (1− αLMSG
k σ)E[F (xk)− F∗] +

1

2
(αLMSG

k )2LM1.

We now prove (5.14) by induction. First, the definition of ν ensures that it holds for k = 1.

Then, assuming (5.14) holds for some k > 1, now we prove (5.14) holds for k+1. Defining

k̂ := γ + k, then it follows from the above inequality that

E[F (xk+1)]− F (x∗) ≤ (1− αLMSG
k σ)

ν

k̂
+

1

2
(αLMSG

k )2LM1

=
k̂ − αLMSG

k k̂σ

k̂2
ν +

1

2
(αLMSG

k )2LM1

=
k̂ − 1

k̂2
ν +

1− αLMSG
k k̂σ

k̂2
ν +

1

2
(αLMSG

k )2LM1.

Now we prove the term
1−αLMSG

k k̂σ

k̂2
ν + 1

2(αLMSG
k )2LM1 in the above inequality is nonpos-

itive. Defining t := αLMSG
k k̂ where t ∈ [A, B] and considering the function h(t) := t2

tσ−1 .

Taking the derivative of h(t), we obtain h′(t) = t2σ−2t
(tσ−1)2 . Letting the derivative be

equal to 0 and given that t ∈ [A, B] with A > 1
σ , we know minh(t) = h( 2

σ ) and

maxh(t) = max{h(A), h(B)}. From the definition of ν, it is true that

2ν

LM1
≥ max{h(A), h(B)} = max

{
A2

Aσ − 1
,

B2

Bσ − 1

}
≥ h(t) for all t ∈ [A, B].
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Replacing t with αLMSG
k k̂ and the followings are true:

2(αLMSG
k σ − 1)

k̂2
ν ≥ (αLMSG

k )2LM1,

1− αLMSG
k k̂σ

k̂2
ν +

1

2
(αLMSG

k )2LM1 ≤ 0.

Finally we complete the final step of induction that

E[F (xk+1)]− F (x∗) ≤
k̂ − 1

k̂2
ν ≤ k̂ − 1

k̂2 − 1
ν ≤ 1

k̂ + 1
ν.

Extension to Nonconvex Objective. Even though we mainly focus on solving

strongly convex objective and obtain convergence (rate) results in this Chapter, Algo-

rithm LMSG is specifically designed to deal with nonpositive curvature and solve noncon-

vex problems, Algorithm LMSG always guarantees a positive meaningful stepsize.

As for convegence results, with only Assumptions 2.2 and 5.3.1, we have the follow-

ing conclusions. For LMSG with Fixed Interval Projection, the sum of squared gradients

remains finite. For LMSG with Diminishing Interval Projection, the infimum of the ex-

pected gradient norms converges to zero. To be more precisely, the weighted average norm

of the squared gradients converges to zero.

5.4 Numerical Experiments

5.4.1 Implementation

In this section, we conduct numerical experiments on LMSG (Algorithm LMSG), which

includes BBSG (Algorithm BBSG) as a special case. In order to demonstrate its efficiency,

we implement LMSG together with fixed stepsize algorithms for comparison purposes. In

particular, we apply LMSG to solving a standard testing problems in machine learning:

logistic regression. We test LMSG on standard real data sets, which were downloaded

from the LIBSVM website. Detailed information of the data sets are given in Table 5.1.
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Table 5.1: Dataset Description

Dataset n d Dataset n d

a1a 1605 123 heart 270 13

australian 690 14 madelon 2000 500

diabetes 768 8 splice 1000 60

german.numer 1000 24 svmguide3 1243 21

For each dataset, we run 5 epochs. We first implement gradient descent method with

different fixed stepsizes and choose the optimal constant C = 0.1 from {0.01, 0.1, 1, 10, 100}.

Then we compare the performances of LMSG with history length m = 1, 3, 5 with gradi-

ent descent method using fixed stepsize C = 0.1. In LMSG, once a stepsize is computed

(described in Algorithm LMSG), it is projected to the range [ω, Ω] with ω = “low”×C

and Ω = “up”×C, where we choose “low” from {1/2, 1/4, 1/8, 1/16, 1/32} and “up” from

{2, 4, 8, 16, 32}.

Besides parameter settings, we conduct tests on different types of gradient descent,

including full gradient, mini-batch gradient and single gradient by choosing different pro-

portion (i.e. {1, 1/2, 1/4, 1/8, 1/16, 1/32}) of the full gradient. When the proportion is

not an integer, we take the smallest integer larger than that number.

In order to avoid the influence of numerical error and the computation of excessively

small or large stepsizes, we remove previously computed gradients (in a similar manner

as in the inner loop of Algorithm LMSG) if more than one was currently being held and

any of the corresponding computed eigenvalues were smaller than 10−4 or larger than 104

in absolute value. Similarly, prior to computing corresponding stepsizes, we projected

any computed quadratic term coefficient so that it would have an absolute value at least

10−4 and at most 104, and we projected any computed cubic term coefficient onto the

range [10−4, 104]. (For the quadratic term coefficients, this projection was performed to

maintain the sign of the originally computed coefficient.)
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5.4.2 Numerical Results

As a comparison, we show the results that at 1/16 of the full gradient, within the con-

sistent projection range [18×, 16×], for all testing problems, at least two out of three

LMSG algorithms (m = 1, 3, 5) works better than the one with fixed stepsize. The

table below shows the detailed description, note % indicates gradient proportion and

Fave − fix, Fave − 1, Fave − 3, Fave − 5 refers to the average function value over all

80 (5Epochs×16Iterations/Epoch) iterations for fixed stepsize, LMSG with history length

1, 3, 5, respectively.

Table 5.2: Numerical Results

Dataset % C low up Fave− fix Fave− 1 Fave− 3 Fave− 5

a1a 1/16 0.10 1/8 16 0.470 0.431 0.418 0.419

australian 1/16 0.10 1/8 16 0.438 0.370 0.371 0.377

diabetes 1/16 0.10 1/8 16 0.671 0.615 0.636 0.629

german.numer 1/16 0.10 1/8 16 0.638 0.660 0.634 0.615

heart 1/16 0.10 1/8 16 0.460 0.446 0.448 0.406

madelon 1/16 0.10 1/8 16 0.663 0.686 0.652 0.640

splice 1/16 0.10 1/8 16 0.557 0.638 0.551 0.549

svmguide3 1/16 0.10 1/8 16 0.585 0.562 0.566 0.568

We can observe from Table 5.2 that LMSG with history length 5 works best or almost

the best for all datasets. The comparison results of four algorithms for each dataset

are shown in the following figures. In these figures, we use “Fixed, LMSG-1, LMSG-3,

LMSG-5” for stochastic gradient with fixed stepsize, LMSG with history length 1, 3, 5,

respectively.
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Figure 5.1: Stepsize and average function value for “a1a” (left two plots) and “australian”

(right two plots).

Figure 5.2: Stepsize and average function value for “diabetes” (left two plots) and “ger-

man.numer” (right two plots).
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Figure 5.3: Stepsize and average function value for “heart” (left two plots) and “madelon”

(right two plots).

Figure 5.4: Stepsize and average function value for “splice” (left two plots) and

“svmguide3” (right two plots).

5.5 Conclusion

In this part we have designed, analyzed, and experimented with a limited memory stochas-

tic gradient (LMSG) method for solving optimization problems arising in machine learn-

ing. Our method was specifically designed for large scale optimization problems where the

computation of full gradient is too expensive. The method always guarantees a positive

meaningful stepsize especially when nonconvexity / nonpositive curvature is encountered.

With a projection of stepsizes, we ensure convergence to a neighborhood of the optimal
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solution or to the optimal solution depending on whether the projection interval is fixed

or diminishing with 1/k. Our numerical experiments suggest that our approach can out-

perform an SG method with a fixed stepsize.

123



Chapter 6

Conclusion

In this dissertation, we focus on the exploration and development of LMSD methods

from both theoretical and practical perspectives. First we have shown that the limited

memory steepest descent (LMSD) method proposed by [22] possesses an R-linear rate of

convergence for any history length m ∈ [n] when it is employed to minimize a strongly

convex quadratic function. Our analysis effectively extends that in [15], which covers

only the m = 1 case. We have also provided the results of numerical experiments to

demonstrate that the behavior of the algorithm reflects certain properties revealed by the

theoretical analysis. Besides, we also show that the convergence rate of LMSD is the same

when Ritz values are replaced by harmonic Ritz values; see §7 in [22].

Once the thoeretical convergence rate result is analyzed, we designed and experimented

with a limited memory steepest descent (LMSD) method for solving unconstrained non-

convex optimization problems. The unique feature of our algorithm is a novel approach

for handling nonpositive curvature; in particular, we propose that when nonpositive cur-

vature is encountered, stepsizes can be computed by constructing local cubic models of

the objective function, for which reasonable values of the quadratic and cubic term coef-

ficients can be derived using previously computed gradient information. Our numerical

experiments suggest that our approach yields superior performance in practice compared

to algorithms that do not attempt to incorporate problem information when computing

stepsizes when nonpositive curvature is encountered.
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Next, we extend this method from deterministic optimization to stochastic optimiza-

tion by proposing a limited memory stochastic gradient (LMSG) method for solving opti-

mization problems arising in machine learning. Our method was specifically designed for

large scale optimization problems where the computation of full gradient is too expensive

or even unavailable. The method always guarantees a positive meaningful stepsize even

when nonconvexity / nonpositive curvature is encountered. With a projection of step-

sizes, we ensure convergence to a neighborhood of the optimal solution or to the optimal

solution depending on whether the projection interval is fixed or diminishing with 1/k.

Our numerical experiments suggest that our approach yields comparable and sometimes

better results than stochastic gradient (SG) methods with best-tuned fixed stepsize.
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