
Computational Optimization and Applications (2023) 85:821–856
https://doi.org/10.1007/s10589-023-00469-0

Convergence of derivative-free nonmonotone Direct Search
Methods for unconstrained and box-constrained
mixed-integer optimization

Ubaldo M. García Palomares1

Received: 30 September 2019 / Accepted: 22 February 2023 / Published online: 25 April 2023
© The Author(s) 2023

Abstract
This paper presents a class of nonmonotone Direct Search Methods that converge to
stationary points of unconstrained and boxed constrained mixed-integer optimization
problems. A new concept is introduced: the quasi-descent direction. A point x is
stationary on a set of search directions if there exists no feasible qdd on that set. The
method does not require the computation of derivatives nor the explicit manipulation
of asymptotically dense matrices. Preliminary numerical experiments carried out on
small to medium problems are encouraging.

Keywords Non monotone · Direct Search Methods · Box constraints · Mixed-integer
variables · Quasi descent direction · Derivative free

1 Introduction

Direct Search Methods (DSM) have been extensively used for solving optimization
problems with continuous variables. Despite their simplicity, encouraging numeri-
cal results have been reported for solving small and medium size problems, with or
without first order derivative information (see [22] and references therein). DSMs
solve the minimization problem, minimize f (x), x ∈ F ⊆ R

n as follows: At
the i-th iteration an estimate xi ∈ F to the solution is known. A search direc-
tion di ∈ ∞

D= {d ∈ R
n : ||d|| = 1} and a stepsize τi ∈ R+ complying with

manageable conditions are found, and a new estimate xi+1 = xi + τi di ∈ F is gener-
ated. Early application of DSMs on optimization problems with continuous variables
were monotone; i.e. they forced a sufficient decrease to the function values, namely
f (xi+1) ≤ f (xi)−σi ; for some σi > 0. Steepest descent, variable metric and Newton
methods are classical DSM instanceswhich use or approximate first order information.

B Ubaldo M. García Palomares
ubaldo@gti.uvigo.es

1 Universidade de Vigo, Vigo, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-023-00469-0&domain=pdf
http://orcid.org/0000-0002-0288-5522

822 U. M. García Palomares

The pattern search method (PSM), introduced in [42], is an instance of a monotone
DSM with no derivative information. An extensive list of references for monotone
algorithms is given in [5]. Reference [23] stands as the pioneer work of nonmonotone
DSMs to problems with continuous variables. Several variants were suggested which
inherit the properties of Newton’s method with explicit derivative information [11,
14, 24, 44]. These authors claim that nonmonotone DSMs might improve the perfor-
mance of a monotone algorithm, when the estimates enter into a curved narrow valley.
In smooth constrained optimization, nonmonotone algorithms are used to avoid the
Maratos’ effect [45, and references therein]. Performance of nonmonotone DSMs is
more stable on noisy functions than its monotone counterpart [5, 16]. Authors in refer-
ences [14, 16, 17, 19, 20] employ nonmonotone DSMs to try to avoid convergence to
nearby local minimizers. Finally, the authors in [21] claim that almost any determinis-
ticmonotone optimization algorithm for solvingmodels with continuous variables has
a nonmonotone counterpart. This paper analyzes the basic theory needed for solving
minimize(x;z)∈F g(x; z) with a non-monotone DSM, whereF is an unspecified feasi-
ble set. The results are then adapted to solve the mixed integer optimization problem
(1) formulated as

minimize
(x;z)∈F

g(x; z) : R
n+p → R, (1a)

F = {x ∈ R
n, z ∈ Z

p : s ≤ (x; z) ≤ t}, (1b)

where g(·) might be nonsmooth.
To facilitate our exposition, (x; z) stands for a column vector of n+ p components,

with x ∈ R
n and z ∈ Z

p. Thus, in (1), s and t are known vectors in R
n+p, which

represent respectively, the lower and upper bounds of all variables in (1). An initial
effort to use PSMs for solving nonlinearly constrained problems with discrete -and/or
categorical- variables can be found in [1, 5]. This paper is an outgrowth of the non-
monotone DSM proposed in [19], where the discrete variables were assumed to lay
on a regular grid of discrete points.

This work presents a convergence theory for a class of monotone and nonmonotone
DSMs, which allows us to have at hand a common framework for solving problem (1)
and its particular instances: unconstrained and box-constrained optimization prob-
lems with mixed integer variables. We assume that we use penalization, Lagrangian
functions, filtering, or any other technique that may transform a constrained prob-
lem into a single or a sequence of box-constrained problems structured like (1). The
authors in [1, 2] propose a simple barrier function, which assumes that the objective
function is infinite at all infeasible points. Since there exist nonsmooth functions that
do not decrease along any direction from a point that is not a minimum [13, Exer-
cise 2.6], we always consider a finite set of search directions; nonetheless, we show
that our algorithm might detect directions of negative curvature. We solve the mixed
optimization problem (1) under relaxed conditions, regardless of the availability of
derivative information. Some degree of randomness is necessary to fully exploit the
algorithm’s capabilities, though the numerical tests show that a deterministic version
of the algorithm performs well.

123

Convergence of derivative-free nonmonotone Direct Search... 823

For nonsmooth problems, the nonmonotone DSM proposed in this paper shares
convergence properties with monotone DSMs frequently cited. As our purpose is to
apply this methodology in derivative free optimization (DFO), where differentiability
and other function features may be unknown to the user, no effort is devoted to the
rate of convergence.

The paper’s primary goal is to analyze non-monotone DSM algorithms, which in
general, have been scarcely considered in the open literature. All convergence results
hold with either explicit use of first order derivatives or for DFO. Moreover, if first
order information is at hand, the algorithms simplify significantly, and, generally, a
singleton search direction is easily identified.

The remainder of this paper is organized as follows. In the next section we prove
some lemmas that are essential for the understanding of the algorithms. We state
some useful definitions and display pseudocodes that will guide us in the analysis of
the optimization problems to be exposed in Sects. 3, 4 and 5. Section3 describes the
DSM proposed for solving problems with continuous variables. We show that non-
monotone DSMs generate a sequence onverging to a point satisfying a non-smooth
stationarity condition; which, to our knowledge, has been overlooked. For Lipschitzian
functions the sequence converges to a point satisfying the stationarity condition in the
Clarke sense. Section3 conforms the theory developed in Sect. 2 to unconstrained and
box-constrained problems. Compactness, Fréchet differentiability and continuous first
order derivatives around limit points are sufficient conditions to achieve convergence.
In Sects. 4 and 5 we assume that variables can take discrete values. The methodology
persists. Convergence to a stationarity point does not require to detect the best local
value in the vicinity of a solution estimate.We suggest a variable separation strategy to
solve Problem (1). In Sect. 6 we solve a group of low-dimensional academic problems.
The results look promising, and seem to validate the theoretical findings.We also solve
a real application problem and report a new global solution to the problem. The paper
concludes with some remarks and open questions to research topics that are under
investigation.

In short, and for the sake of clarity, we analyze convergence of the algorithms
that solve the basic unconstrained and box-constrained optimization problems. This
analysis is in substance carried over to the mixed variable problem (1), which is
formally studied in Sect. 5.

Notation Throughout the paper we use a rather standard notation with some pecu-
liarities.

– R
n, R

p, R
r , and so forth, are Euclidean spaces.

– F ⊆ R
n is the feasible set,

– superscripts stand for components and sub-indexes represent different vectors,
– dTw is the inner product of vectors d, w defined in the same Euclidean space,
– uuT is a matrix U with components U jk = u juk ;
– (x; z) is a vector with (n + p) components, x ∈ R

n, z ∈ Z
p,

– When ẑ is fixed, f (x) denotes g(x; ẑ).
Likewise, When x̂ is fixed, f (z) denotes g(x̂; z).

– ∇ f (x) is the gradient,

123

824 U. M. García Palomares

– f 0(x̂, d̂)
Δ= limsup

x→x̂

τ→0+

f (x + τ d̂) − f (x)

τ
is the Clarke generalized directional

derivative at x̂ along d̂,
– g(x; z) : R

n+p → R, x ∈ R
n, z ∈ Z

p.

– g0x (x̂; ẑ, d̂)
Δ= limsup

x→x̂

τ→0+

g(x + τ d̂; ẑ) − g(x; ẑ)
τ

,

– σ(·) : R+ → R+ stands for a sigma-function, which is:

forcing: (σ (τi) → 0) iff (τi → 0),

unbounded from above: (σ (τi) → ∞) iff (τi → ∞), and

little o(τ 2) : lim
τ→0

σ(τ)/τ 2 = 0,

– q represents a dummy integer, that plays different roles in the paper,
– I is the identity matrix and e j , j = 1, . . . , n are its columns,

– H is the Househlder matrix I − 2

uT u
uuT , u �= 0,

–
∞
D= {d ∈ R

n : ||d|| = 1},
– Other Capital letters are matrices or finite sets,
– If S is a finite set, #S is its cardinality,
– i will be the iteration number. It is usually implicitly assumed.
– We use the Matlab notation to invoke an algorithm.

[w1, . . . , wq] = Algname(v1, . . . , vp) invokes function Algname() with p
inputs and q outputs.

2 Preliminaries

This work addresses non-smooth functions. However, convergence theory might
require some degree of differentiability. Some algorithms assume that g(x; z) is Lip-
schitz continuous; which implies that the Clarke generalized directional derivative
exists and it is finite. The Clarke generalized directional derivative is a useful concept
in optimization theory.

In this section we define concepts and prove several lemmas needed in the general
analysis of our algorithms. The basic convergence assumptions are:
A1: The objective function g(x; z) is continuous and computable at all feasible points.
The level set L = {(x; z) ∈ F : g(x; z) ≤ ϕ0} is compact for any ϕ0.

This seems to be the weakest condition required by optimization algorithms that
solve (1).
A2: For a fixed z, the objective function g(x; z) in (1) is Fréchet differentiable and
continuously differentiable around limit points.

123

Convergence of derivative-free nonmonotone Direct Search... 825

A3: g(x; z) is Lipschitz continuous in its first argument; that is, for a fixed z, |g(y; z)−
g(x; z)| ≤ ϑ ||y − x || for some ϑ > 0.

The algorithm for solving the mixed integer problem (1) inherits most of its prop-
erties from the algorithms specifically proposed in Sects. 3 and 4 for solving the pure
versions.

Definitions 1, 2 and 3 implicitly assume that (x̂; ẑ) ∈ F .

Definition 1 The direction d̂ is a feasible direction at (x̂; ẑ) when

(x̂ + λd̂; ẑ) ∈ F for all sufficiently small λ > 0. (2)

Definition 2 The direction d̂ ∈ R
n is a quasi-descent direction (qdd) at (x̂; ẑ) when

g(x̂ + τ d̂; ẑ) − g(x̂; ẑ) ≤ −σ(τ) for all sufficiently small τ > 0. (3)

Definition 3 The direction d is a feasible qdd at (x̂; ẑ) when both (2) and (3) hold.

To facilitate the writing and the reading of this paper, we often denote f (x)
Δ=

g(x; ẑ) when ẑ remains fixed.

Lemma 1 Let A1, A2 hold and let the unit vector d be a strictly descent direction at
x, that is, dT∇ f (x) ≤ −α||∇ f (x)||, for some α > 0. Under these conditions d is a
qdd.

Proof It is obvious. f (x + τd) − f (x) = τdT∇ f (x) + o(τ)

≤ −τα||∇ f (x)|| + o(τ)

The proof is complete if we define σ(τ) = τα||∇ f (x)|| − o(τ). 	

Lemma 2 Under Assumptions A1–A3, let {x j } → x̂ ∈ R

n and f 0(x̂, d̂) < 0, then d̂
is a qdd at some x sufficiently close to x̂ .

Proof By A3, f 0(x̂, d̂) exists and it is finite. If d̂ is not a qdd for all x close to x̂ , we
can identify a sequence {τ j } j∈N ↓ 0, {x j } → x̂ for which

f (x j + τ j d̂) − f (x j)

τ j
> −σ(τ j)/τ j . (4)

By taking limits, it follows that f 0(x̂, d̂) ≥ 0, a contradiction. 	

Corollary 1 If {xi } → x̂ and f 0(x̂, d) ≤ α < 0, then d is a qdd for all x sufficiently
close to x̂ .

Lemma 3 Let d̂ ∈ ∞
D= {d ∈ R

n : ||d|| = 1} be a feasible qdd at x̂ ∈ F . Under
Assumption A1, there exist τ > 0, γ > 0 such that

x̂ + τ d̂ + γ τ d̂ /∈ F
OR

f (x̂ + τ d̂ + γ τ d̂) − f (x̂ + τ d̂) > −σ(τ).

(5)

123

826 U. M. García Palomares

Proof Since d̂ is a feasible qdd, (2–3) hold by definition for some τ̂ > 0. If (5) holds
for τ = τ̂ , and some γ̂ > 0, the lemma is valid. We now proceed by contradiction:
If the statement of the lemma is false, Algorithm 1 generates an infinite loop with a
sequence of feasible points with strictly decreasing f (·) values, which contradictsA1.

	

Given x̂ ∈ F , τ̂ > 0, d̂ ∈ D = {d1, . . . , dq }, satisfying (2-3),
this pseudo-code is an infinite loop when

f (·) is unbounded from below on a ray d ∈ D.
. .

x̂ = x̂ + τ̂ d̂
Choose any γ > 0, j = 1
while j ≤ q

if (x̂ + γ τ̂d j ∈ F) and
(
f (x̂ + γ τ̂d j) − f (x̂) ≤ −σ(γ τ̂)

)

x̂ = x̂ + γ τ̂d j
end- if

j = j + 1
end- while

Algorithm 1 Function f (·) is unbounded from below.

We would like to state that a point
∗
x is non-smooth stationary (nss) on D when

there exists no feasible qdds at
∗
x ; that is, when

λ > 0
d ∈ D

〉
⇒ (∗

x +λd /∈ F) OR
(
f (

∗
x +λd) − f (

∗
x) > −o(λ)

)
, (6)

where D ⊆ ∞
D = {d ∈ R

n : ||d|| = 1}.
Corollary 2 Under Assumption A1, any nonempty feasible set F has an nss point

satisfying (6) with D = ∞
D.

Proof If there exists no nss, then given any x ∈ F there exists λ > 0, d ∈ ∞
D and a qdd

defined by (3). The while loop in Algorithm 1 would generate an infinite sequence
of strictly descent f (·), contradicting A1. 	

The implication (6) is, in general, difficult to implement. We resort to finite sets D
and discrete λ-values. We define a Λ-set as follows:

Definition 4 A Λ-set is a set of λ-values {λ0, λ1, . . . , } with the following properties:
– it is a bounded set,
– it contains an infinite number of distinct elements in R+ that can be lexicographi-
cally ordered; that is, (j < k) ⇒ (λ j > λk).

– its elements λ0, λ1, . . . converge to 0, that is, {λ j } ↓ 0.

A typicalΛ-set that is often implicitly used by the optimization community is given
by (7). Given 0 < μs < μt < 1,

Pick μ ∈ [μs μt], λ0 > ε, Λ̂ = {λ ∈ R+ : λ = (μ)kλ0, k = 0, 1, 2, . . . , }. (7)

123

Convergence of derivative-free nonmonotone Direct Search... 827

Definition 5 The point
∗
x ∈ F is nss on (Λ, D) when

λ ∈ Λ,λ > ε

d ∈ D

〉
⇒ (∗

x +λd /∈ F) OR
(
f (

∗
x +λd) − f (

∗
x) > −o(λ)

)
. (8)

Definition 6 The point
∗
x ∈ F is totally stationary when (8) holds on

∞
D= {d ∈ R

n :
||d|| = 1}.

For practical convenience, stationarity is defined on the sets (Λ, D). Ideally, we
would like {xi } to converge to a total nss point. We will prove below that in uncon-
strainedminimization this can occur on a very large set, provided that {Di } are carefully
constructed for large enough i . On the other hand, a singleton direction is enough to
ensure stationarity of smooth functions with derivative information.

Algorithm 1 is just oneway to prove Lemma 3.Many other alternatives are possible,
but this algorithm is easy to implement, and it is close to itsmonotone counterpart algo-
rithm proposed in [18] and the related nonmonotone versions developed afterwards
[14, 16, 17].

The following lemmas will be useful for differentiable functions.

Lemma 4 Let {d1, · · · , dn} be a finite set of n orthogonal directions with ||d j || =
1, j = 1, · · · , n, and let D ⊇ {±d1, · · · ,±dn}. It follows that

∀w ∈ R
n (∃d ∈ D : dTw ≤ −(1/

√
n)||w||). (9)

Moreover, if f (·) is Fréchet differentiable,

∃d ∈ D : dT∇ f (x) ≤ −(1/
√
n)||∇ f (x)||. (10)

Proof (9) is a well known fact and its proof is omitted. (10) is an instance of (9). 	

Lemma 5 Let x̂ ∈ R

n be a fixed point, let D be a set of search directions fulfilling
the conditions required by Lemma 4 and let τ0 ∈ R+ be a positive number. If f (·) is
differentiable and

〈
d ∈ D

τ ∈ (0 τ0)

〉
⇒ (

f (x̂ + τd) − f (x̂) > −o(τ)
)

(11)

then ∇ f (x̂) = 0.

Proof We proceed by contradiction and assume that ∇ f (x̂) �= 0. Lemma 4 ensures
that dT∇ f (x̂) ≤ −(1/

√
n)||∇ f (x̂)|| for some d ∈ D. It follows by Lemma 1 that d

is a qdd; consequently, τ ∈ (0, τ0) exists satisfying (5); therefore (11) can occur only
if ∇ f (x̂) = 0. 	

If ∇ f (x̂) = 0, it is not possible to find a direction of descent satisfying dT∇ f (x̂) <

0. Next lemma shows that, under more stringent conditions, it is possible to identify
directions with negative curvature.

123

828 U. M. García Palomares

Lemma 6 If lim
λ→0

σ(λ)/λ2 = 0, and f (·) ∈ C2, the inequality (3) holds for directions

with negative curvature.

Proof If �
(
λ ∈ (0 λ0)

)
satisfying (3) and ∇ f (x) = 0, then for all λ ∈ (0, λ0), it

follows that

1

2
dT∇2 f (x)d + o(λ2)

λ2
= f (x + λd) − f (x)

λ2
≥ f (x + λd) − ϕ

λ2
> −σ(λ)

λ2
;

but this cannot hold for small enough λ when dT∇2 f (x)d < 0. 	

2.1 The search directions

In the forthcoming sections we will see that the convergence analysis of smooth func-
tions is simplified when (12) holds. So, we always force (12) to be valid when ∇ f (·)
exists.

(∀Di)(∃d ∈ Di : dT∇ f (xi) ≤ −α||∇ f (xi)||), for some α > 0. (12)

By Lemma 4, orthogonal directions implicitly enforce (12) with α = 1/
√
n. It is

also known that the cosine value α = 1/
√
n cannot be improved by any D that spans

R
n positively, with either n + 1 or 2n search directions [35]. It has been argued that

performance of a DFO algorithm may improve with n + 1 search directions [4]. We
suggest the directions ±d1, . . . ,±dn , where d1, . . . , dn are defined by Algorithm 2,
Line 4. They are the columns of the Householder matrix H = I − 2uuT generated
by a unit random vector u ∈ R

n , as suggested by [18]. A list of nice properties of
D = {d1, . . . , dn} is:

[D] = Orthogonal(s, x, t, β)

Input: s, x, t ∈ R
n , x ∈ [s t], β > 0.

Output: n orthogonal directions in R
n .

. .
for j = 1, . . . , n

2a. if

(
(x j ≤ s j + β) or (x j ≥ t j − β)

)

2b. u j = 0
2c. else

(
u j ∈ [−1 1]) random

2d. end- ifelse

end- for

3a. ζ = uT u
3b. if (ζ < 0.001) correction
3c. u = 0, ζ = 1
3d. end- if

4. d j = e j − (
2u j /ζ

)
u, j = 1, . . . , n

return {d1, . . . , dn}
Algorithm2 Orthogonal()Constructs n unit orthogonal search directions {d1, . . . , dn} using the House-
holder matrix. β = −∞ in unconstrained minimization. β > 0 in box constrained minimization.

123

Convergence of derivative-free nonmonotone Direct Search... 829

– D is a set of orthogonal search directions.
– Algorithm 2 describes an easy way to generate random orthogonal directions
obtained from the columns of the Householder matrix.

– It has been argued that some degree of randomness may benefit the performance
of a deterministic algorithm [22]. In [6] the authors claim that they did not find a
deterministic strategy to improve their algorithm.

– It is relatively simple to distribute the workload among processors [18].
– Line 4 of Algorithm 2 defines d j = He j = e j − (2u j/uT u)u, j = 1, . . . , n. It
is not necessary to construct explicitly the whole matrix H . The vector u contains
the information needed to generate the search directions. This feature allows a
significant saving in memory for medium and large problems.

– Algorithm 2 conforms the search directions to the geometry of the constraints. It
merely assigns u j = 0 in Line 2b whenever the variable x j is close to either one
of its bounds. Note that

[
u j = 0

] ⇒ [
d j = e j , and d j

k = 0, k �= j
]
. (13)

Hence, x j + d j
k = x j , for all k �= j , which prevents the j-th variable from getting

closer to its bounds.
– The published numerical results since its inception in [18] have been highly com-
petitive [14, 16, 17, 19, 20].

– u j can be randomly generated in [−1 1], j = 1, . . . , n. This is convenient when
x ∈ R

n .
– A suitable vector u ∈ Z

n can be as well randomly generated to handle integer
variables. FromLines 3a and 4 of Algorithm 2we obtain that ζd j = ζe j −(2u j)u,
where ζ = uT u and d j = He j . It follows that

u ∈ Z
n ⇒ (

τd ∈ Z
n for d ∈ D and τ = ±ζ, ±2ζ, . . .

)
. (14)

2.2 The essential algorithm

The Iteration() algorithm, identified as Algorithm 3, will be the core iteration for
those algorithms dealing with variables in R

n . It is invoked by [xi , ϕi , τi , Di] =
Iteration(xi−1, ϕi−1). Iterative calls to Iteration() are carried out until convergence
criteria are met. The formal input parameters of Iteration() are the actual estimate
xi−1 ∈ R

n and ϕi−1 ∈ R, an upper bound of f (xi−1). A new estimate xi , a new
functional upper boundϕi , a stepsize τi , and the set of search directions Di are returned
by Iteration().

The Iteration()’s task is to find a feasible qdd. Lines 2a-2c check if the input
estimate xi−1 is a feasible qdd; in which case, λ ≤ ε at Line 2d and Iteration()

returns. Strictly speaking, xi−1 has no feasible qdd when for any λ > 0 and any

d ∈ ∞
D, it follows that

xi−1 + λd /∈ F or f (xi−1 + λd) > ϕi−1 − σ(λ). (15)

123

830 U. M. García Palomares

[
x ′, ϕ′, τ ′, D′] = Iteration(x,ϕ)

Input: x ∈ F , ϕ ≥ f (x)
Output: x ′ ∈ F , ϕ′ ≥ f (x ′), τ ′ ∈ R+, and

D′ = {d1, . . . , dq }, q directions in R
n

. .
1a Define Λ (and μ) satisfying (7)
1b Choose λ ∈ Λ

1c Construct Q′ by Algorithm 2 and D′ ⊇ Q′
while (λ > ε)

2a y j = x + λd j , d j ∈ D′ = {d1, . . . , d j , . . . }
2b if

(
y j ∈ F and f (y j) ≤ ϕ − σ(λ)

)
break

2c λ = μλ

end- while

2d if (λ ≤ ε)

2e return[x, ϕ, ε, D′]
end- if

Find x ′ ∈ R
n , ϕ′ ∈ R, τ ′ ∈ R+ such that

3a τ ′ ≥ λ, x ′ ∈ F
3b f (x ′) ≤ ϕ′ ≤ ϕ − σ(τ ′)
3c f (x ′ + τ ′d) > ϕ′ − σ(τ ′) for all d ∈ D′
4a Keep the best iterate in the global variable (xb, f (xb))

return[x ′, ϕ′, τ ′, D′]
Algorithm 3 Iteration() is the core algorithm used in optimization problems with continuous variables
in R

n . For unconstrained problems F = R
n .

In a practical implementation we admit that there is is no qdd at xi−1 when (15) holds
for λ > ε, λ ∈ Λ and a finite Di . When Iteration() finds a feasible qdd, it returns
[xi , ϕi , τi , Di] satisfying

xi ∈ F (16a)

f (xi) ≤ ϕi ≤ ϕi−1 − σ(τi) (16b)

f (xi + τi d) > ϕi − σ(τi) for all d ∈ Di . (16c)

Lemma 3 ensures that (16) can be fulfilled. Iteration() also keeps the best estimate
xb at its Line 4a.

Remark 1 ϕi may be the observed value of a random variable uniformly distributed in[
f (xi), ϕi−1 − σ(τi)

]
.

3 Nonmonotone DSMs for optimization with variables in R
n

This section applies the theory developed in Sect. 2 to our problems of interest. Sec-
tion3.1 deals with the unconstrained optimization problem

minimize
x∈F

f (x), F = R
n . (17)

This section describes algorithms to find non-smooth stationary points on a finite
set of directions. Section3.2 goes one step forward. It is concerned with convergence

123

Convergence of derivative-free nonmonotone Direct Search... 831

[∗
x,

∗
D
] = Continuous(x0, ϕ0, ε)
minimize f (x), x ∈ F

Given x0 ∈ F , ϕ0 ≥ f (x0), ε ≥ 0
.. .

i = 0, notdone
while notdone

Choose τi > ε

while (τi > ε)

i = i + 1 (next iteration)
1

[
xi , ϕi , τi , Di

]
= Iteration (xi−1, ϕi−1)

end- while

2a if (f (xb) < f (xi)) (xb, f (xb)) is global
2c

[
xi−1, ϕi−1

] = [
xb, f (xb)

]

else done
end- if

end- while

3 return [xi , Di]
Algorithm 4 Continuous() is a non-monotone DSM that returns a stationary point of an optimization
problem with variables in R

n . The best iterate (xb, f (xb)) can be retrieved.

to total stationary points characterized by Definition (6). Previous works have dealt
with this issue. To ensure convergence, the authors in [6] need to proceed iteratively
with an asymptotically dense matrix.We describe an algorithmwhich does not require
to explicitly deal with an asymptotically dense matrix. Section3.3 deals with the box-
constrained optimization problem

minimize
x∈F

fC (x), F ={x ∈ R
n : sk ≤ xk ≤ tk, k = 1, . . . , n}. (18)

3.1 Unconstrained optimization

In this sectionwe prove several convergence results for unconstrained problems.Under
AssumptionsA1,A2 convergence to a point fulfilling the classical first order necessary
conditions is proved. If A1, A3 hold, a sequence of estimates {xi }i∈N converges to a

stationary point fulfilling Definition 5 for D = ∗
D, a limit point of {Di }. By including

some more laborious algorithmic implementation in the limit we prove stationarity on

the set
∞
D= {d : ||d|| = 1}.

Our first task is to impose conditions on the searching sets {Di } that ensure con-
vergence to stationary points of smooth functions.

Theorem 1 Let {di } be the sequence of search directions that satisfies (12), that is:
dTi ∇ f (xi) ≤ −α||∇ f (xi)||), for some α > 0.
If A1 and A2 hold, Algorithm 4 generates {∇ f (xi)} → 0.

123

832 U. M. García Palomares

Proof From (16c) and (12) it follows that

−α||∇ f (xi)|| ≥ dTi ∇ f (xi) = f (xi + τi di) − f (xi)

τi
− o(τi)/τi

≥ f (xi + τi di) − ϕi

τi
− o(τi)/τi

> −σ(τi)/τi − o(τi)/τi .

(19)

Since τi → 0, we conclude that {∇ f (xi)} → 0. 	

We claim that the following proposition is valid.

Proposition 1 Let {Di } be a sequence of search direction sets, each containing a
direction of descent satisfying (12). Under Assumptions A1 and A2, Algorithm 4
applied to (17) generates {∇ f (xi)} → 0. 	

Corollary 3 If f (·) is continuously differentiable, any accumulation point

∗
x of {xi } is

stationary; more specifically, ∇ f (
∗
x) = 0.

Proof It is obvious. 	

In general, there is not a simple way to explicitly find a qdd at x ; however, a qdd

might appear in D when:

– f (·) ∈ C2 and there are directions of negative curvature at x , that is,dT∇2 f (x)d <

0.
– There are directions with a negative directional derivative at x .

We should recall that even if f (·) is differentiable, its first order derivatives might
not be computable; and there is noway to explicitly verify (12). Nonetheless, Lemma 4
shows that (12) holds when Di is a set of orthogonal directions. Computability of the
gradient simplifies the algorithm significantly. Convergence prevails for any strictly
positive definite matrix P and Di = {−P∇ f (xi)}, a singleton.

Algorithm Continuous(), identified as Algorithm 4, is a non-monotone DSM that
returns a stationary point to problem (17) regardless of the presence -or absence- of
derivative information. It is invoked by

[∗
x,

∗
D] = Continuous(x, ϕ, ε).

Continuous() calls Algorithm 3while τi > ε. It has 3 input arguments: the starting
point x0 ∈ F , the upper function value ϕ0 ≥ f (x0) and the accuracy ε.Continuous()
finds an nss point when τi < ε at its Line 1; but it returns xi only if f (xi) < f (xb)
at its Line 21. Otherwise, the algorithm invokes Iteration(xb, f (xb)). The input
parameters (xb, f (xb)) make sure that all subsequent estimates have a function value
below f (xb). The convergence theory will require {xi } ⊂ F , which is obvious in
unconstrained minimization.

Theorem 2 Let A1, A3 hold. When ε = 0, Algorithm 4 generates {τi } → 0, and

we can identify a subsequence {xi , Di , τi }i∈K⊆N converging to (
∗
x,

∗
D, 0), where

∗
x

satisfies (8) on
∗
D. In addition, f 0(

∗
x, d) ≥ 0 for all d ∈ ∗

D.

123

Convergence of derivative-free nonmonotone Direct Search... 833

Proof Line 1 of Algorithm 4 invokes Iteration(). If xi has no qdds, the if clause
in Line 2b of Iteration() never holds and {λ} ↓ 0 within the while loop 2a-2c, but
keeping fixed the solution estimate; that is, x j+1 = x j for all j ≥ i . By compactness

we can identify a subsequence {xi , Di , τi }i∈K⊆N → (xi ,
∗
D, 0).

If the whole sequence {xi }i∈N possess qdds, it follows by (16b) and A1 that

min
x∈F

f (x) ≤ f (xk+1) ≤ ϕk+1 ≤ ϕi −
∑

k≥ j≥i

σ(τ j); (20)

which implies {σ(τi)} → 0. A fortiori, {τi } → 0. Since f (xi) ≤ ϕi , it follows
from (16c) that

f (xi + τi d) − f (xi)

τi
≥ f (xi + τi d) − ϕi

τi
> −σ(τi)/τi , for all d ∈ Di . (21)

By compactness we can identify a sequence {xi , Di , τi } → (
∗
x,

∗
D, 0).Moreover, when

A3 holds, it follows that f (xi + τi
∗
d) ≥ f (xi + τi d) − ϑτ ||d− ∗

d ||, and

f (xi + τi
∗
d) − f (xi)

τi
≥ f (xi + τi d) − ϕi

τi
− ϑ ||d− ∗

d || (22a)

> − σ(τi)/τi − ϑ ||d− ∗
d || for all ∗

d∈ ∗
D . (22b)

We conclude that
∗
x is stationary on the limit set

∗
D. Clearly

limsup
x→∗

x,τ→0

f (x + τd) − f (x)

τ
≥ 0. (22c)

	

We just proved thatAlgorithm4generates a sequence {xi } converging to a stationary

point
∗
x satisfyingDefinition 5 on a limit set

∗
D.We now includematerial that will guide

us to sketch a method to find stationarity on some D ⊃ ∗
D. We will show stationarity

on finite sets {Di } → ∞
D.

3.2 Non-smooth stationarity on
∞
D

Remark 2 If (6) holds for the sets D1 ⊂ ∞
D and D2 ⊂ ∞

D, then it also holds for the set
(D1 ∪ D2).

As stated earlier, it is more plausible to implement the algorithm with discrete
values for λ.

Remark 3 Let Λ̂ be given complying with Definition 4, and let xi be a non-smooth

stationary point satisfying (8) on the sets D1 ⊂ ∞
D and D2 ⊂ ∞

D. The point xi is

123

834 U. M. García Palomares

[
λ, d, #S

] = Total(y, D, Λ)

y satisfies (8) on D, Λ = {λ0, λ1, . . . , }, j < k ⇒ λ j > λk , {λ j } ↓ 0

Find a qdd d ∈ S, a set of random directions unif. dist. in
∞
D

. .
S = {d1, . . . , dq } randomly taken from

∞
D

for λ ∈ Λ

for d ∈ S
2a. if

(
y + λd ∈ F and f (y + λd) − f (y) ≤ −σ(λ)

)

3a. return [λ, d, 0]
end- if

end- for

end- for

3b. return [0 ∈ R, 0 ∈ R
n , #S]

Algorithm 5 The input parameter y ∈ R
n is non-smooth stationary satisfying (8) on the set of directions D.

Total() determines if y is also non-smooth stationary on a random set of directions S uniformly distributed

on
∞
D.

also non-smooth stationary satisfying (8) on the set (D1 ∪ D2). In particular; if xi is

non-smooth stationary on a set D ⊂ ∞
D and on a set S of random directions uniformly

distributed in
∞
D, then xi is also non-smooth stationary on (D ∪ S). For the remainder

of this sub-section {Si } denotes finite sets of random directions uniformly distributed

in
∞
D= {d ∈ R

n : ||d|| = 1}.
Lemma 7 Let Algorithm 5 be invoked by

[
λ, d, #S

] = Total(y, D,Λ); where y ∈ R
n

satisfies (8) on (D,Λ). The input y satisfies (8) on the set D ∪ S if and only if
λ = 0, d = 0.

Proof It is elementary. Line 3a of Algorithm 5 returns non-zero values to
[
λ, d

]
if

-and only if- Line 2a holds true, that is, d is a qdd. 	

We close this section with a brief description of the Algorithm 6, which improves

the nss point found by Algorithm 5. Theoretically, {xi } converges with probability 1
to an nss point complying with Definition 6.

Remark 4 A uniformly random set of q directions in
∞
D can be efficiently obtained as

follows:
rand(0,1) is a random variable with standard normal distribution

for j = 1, . . . , q
for k = 1, . . . , n
dkj = rand(0, 1)
end- for

norm = √
(d1)2 . . . (dn)2

if (norm > ε) d ← d/norm
end- for

In [32] the author suggested that

Pr
(∃i, j,i< j |dki − dkj | < ε

)
< δ ≈ 1 − (1 − ε)p(p−1), (23)

123

Convergence of derivative-free nonmonotone Direct Search... 835

[
x, noqdd

] = Non- smooth(x, ε, Λ, budget)
Given the starting point y ∈ F , accuracies ε, a Λ-set, a positive budget

Λ = {λ0, λ1, . . . , }, j < k ⇒ λ j > λk , {λ j } ↓ 0
Find x , a non-smooth stationary point

. .
1. while (budget > 0)
2. [x, D] = Continuous(x, ϕ, ε)

noqdd = #D
repeat

3. [λ, d, #S] = Total(x, D, Λ)

if (λ = 0) noqdd = noqdd + #S
until (λ > 0) or (budget = 0)

4. x ← x + λd
end- while

5. return [x, noqdd]
Algorithm 6 Starting point x ∈ F . The algorithm finds an nss within an estimated budget. The return

value is also an nss point on a random set S of directions uniformly distributed on
∞
D . #S depends on the

initial budget.
SYNOPSIS:

Line 1: The variable budget expresses the effort needed to identify a large
number of no qdds.

Line 2: x is an nss point satisfying (8). It is the first trial solution to the problem.
Line 3:When λ > 0 a meliorated solution has been generated on a random set S.
Line 4: Update the solution estimate.
Line 5: Return the best estimate.

where Pr (E) is the probability of the event E and p is the number of generated
directions.

3.3 Box-constrained optimization

In this subsection we deal with the box-constrained optimization problem (18), which
is repeated here for easy reference:

minimize
x∈F

fC (x), F ={x ∈ R
n : sk ≤ xk ≤ tk, k = 1, . . . , n},

where sk, tk are, respectively, the lower and the upper bound of the variable xk . We
assume sk < tk ; otherwise, when sk = tk , the variable xk has a constant value and it
is no longer considered as a variable. An approach for solving (18) is to consider the
barrier function

f (x) =
{

fC (x), if x ∈ F ,

ϕ0 + 1, otherwise,
(24)

and try to use the same tools used for solving the unconstrained problem (17). The
algorithm starts at x0 ∈ F and applies Algorithm 4 to the function defined by (24). The
algorithm also needs that search directions conform to the geometry of the constrained
set. Algorithm 2 takes care of this circumstance. To formalize the proof of convergence
we need to introduce the following notation and definitions.

123

836 U. M. García Palomares

– Define the index set Bi of binding variables at the i-th iteration as:

Bi = {1 ≤ k ≤ n : min(xki − sk, tk − xki) ≤ β}, for some β > 0. (25)

– Denote by Si the subspace spanned by {x ∈ R
n : xk = 0, k ∈ Bi }, and let vi ∈ R

n

be the projected gradient on Si given by vki =
{∇ f (xi)k, k /∈ Bi ,

0 otherwise.
– Let Ei = {d1, · · · , dq} be a finite set of q vectors in Si satisfying (12), that is,

(∀v ∈ R
n)(∃d ∈ Ei) : dT v ≤ −α||v||, for some α > 0. (26)

– Let the set Di of search directions be

Di = Ei ∪ {±e j , j ∈ Bi }. (27)

Essentially, we apply Algorithm 4 slightly modified to deal with the binding variables
appointed to by Bi . We now proceed to prove convergence.

Let B ′ be a set that appears infinitely often in the sequence {Bi }i∈N.
Let K ′ = {i : Bi = B ′} and let

∗
x be a limit point, that is, {xi }i∈K →∗

x , for some
K ⊆ K ′.
Theorem 3 Let {Di } be the sequence of search directions satisfying (27). Under
assumptions A1, A2, Algorithm 4 generates a sequence {xi }i∈K converging to a sta-
tionary point

∗
x satisfying:

(
sk = ∗

x
k) ⇒ ∇ f (

∗
x)k ≥ 0,

(∗
x
k = tk

) ⇒ ∇ f (
∗
x)k ≤ 0, and

(28a)

(
sk <

∗
x
k
< tk

) ⇒ ∇ f (
∗
x)k = 0. (28b)

Proof Let Bi , K ,
∗
x be defined as above. To prove (28a) we merely prove

(
sk = ∗

x
k

) ⇒ ∇ f (
∗
x)k ≥ 0. The case

(∗
x
k= tk

) ⇒ ∇ f (
∗
x)k ≤ 0 is quite similar and it is

omitted. As xki → ∗
x
k
, it follows that xki − sk ≤ β for all large enough i ; ergo k ∈ Bi

and f (xi + λi ek) − f (xi) ≥ −λiσ(λi); ek satisfies (6). By taking limits we obtain
∇ f (

∗
x)k ≥ 0.

To prove (28b) we need to consider 2 cases:

a. k ∈ Bi .
By construction f (xi + λi ek) − f (xi) ≥ −λiσ(λi) and f (xi − λi ek) − f (xi) ≥
−λiσ(λi). Together these 2 inequalities imply that ∇ f (

∗
x)k = 0. Besides, both

ek,−ek satisfy (6).
b. k /∈ Bi .

By construction Ei is a finite set that contains a direction that satisfies (12). If
A1 and A2 hold, we mimic the convergence of Theorem 1 replacing D by E and
∇ f (·) by v and deduce that Algorithm 4 generates
{vi }i∈K → 0; which means that ∇ f (

∗
x)k = 0, k /∈ Bi . 	

123

Convergence of derivative-free nonmonotone Direct Search... 837

4 The integer optimization problem

This section is concerned with the integer optimization problem

minimize
z∈F

f (z), F = {z ∈ Z
p : s ≤ z ≤ t}, (29)

where f (·) : R
p → R. Problem (29) is an optimization problemwith integer variables

subjected to bounds. It is combinatorial. An exhaustive enumeration of the feasible
points might be computationally expensive. Besides, (29) is generally a nonconvex
problem and normally no algorithm ensures convergence to the optimizer. To try to
find a global solution several strategies based on relaxations, cutting planes, branch
and bound, surrogate models and heuristics have been devised. It seems out of the
question to elaborate a common approach for getting the global solution to any instance
of (29). However, some attempts have solved specific instances. In [7], the authors
adapt MADS for solving a problem with grid variables regularly distributed along
the coordinate axis. In [19], the authors applied a discretized version of Algorithms 3
and 4 for solving the same problem. We recall that this paper assumes that constraints
other than bounds can be handled via penalization [12, 33], Lagrangian [30], infinite
barriers [1] or any other appropriate technique.

Our algorithm is monotone with no σ -function involved. From the onset, we admit
that we have at hand a feasible starting point z0 ∈ F and only feasible points are con-
sidered as solution estimates. We also assume that A1 holds, which essentially means
that the level set L = {z ∈ F : f (z) ≤ f (z0)} is finite. We consider convergence to
local minimizers. A local neighborhood N (zi , �) can be defined as

N (zi , �) = {v ∈ F : ||v − zi || ≤ �}, (30)

where || · || stands for any norm and � > 0. Usually the iterate zi is considered
stationary to (29) if

v ∈ N (zi , �) ⇒ f (v) ≥ f (zi). (31a)

A naive artifice to verify (31a) constructsN (zi , �) and then evaluates all v ∈ N (zi , �).
This is often an expensive procedure that precludes the use of � > 2. The algorithm
Greedy(), identified as Algorithm 7, is described above. It tries to find better estimates
that do not belong to the set N (zi , �); zi will be accepted as stationary if

v ∈ V(zi) ⇒ f (v) ≥ f (zi), (31b)

where V(zi) ⊇ N (zi , �). The aim is to build V(zi) − N (zi , �) �= ∅. This can be
regarded as a strategy to try to escape from the local stationary point defined by (31a).

We now briefly illustrate the way Greedy() constructs V(zi).
Given q ∈ {1, . . . , p} we want

Vq(zi) ⊆ {
v ∈ F : ||v − zi ||0 = q

}
. (32a)

123

838 U. M. García Palomares

[y] = Greedy(z, η)

Given z ∈ F , η ∈ {1, 2, . . . , p}, finds y satisfying (33)
minimize f (z), z ∈ F = {z ∈ Z

p : s ≤ z ≤ t}
. .

1. q = η, y = z
2. while q > 0

3a. if (q > 1)
3b. u = 0, Pick q random indices, j = i1, . . . , iq
3c. u j ∈ {−2, −1, 1, 2} j = i1, . . . , iq
3d. τ = uT u
3e. d j = e j − (2u j /τ)u, j = i1, . . . , iq
3f. else

3g. τ = 1, d j ∈ {d : d = v − y, v ∈ N (y, �)}, j = 1, . . . , #N (y, �)

3h. end- ifelse

4a. V = {v ∈ F : v = y ± τd j }
4b. if

(∃ (v′ ∈ V) : f (v′) < f (y)
)

4c. y = v′, q = η

4d. else (q = q − 1)
4e. end- ifelse

5. end- while

6. return [y]
Algorithm 7 Greedy() algorithm for solving (29), an optimization problem with integer variables. The
output y is a stationary point satisfying (33).

SYNOPSIS:

Line 1: Assigns q = η. Saves z as a possible stationary point,
Greedy() looks for a better estimate in Vq ⊆ {z ∈ Z

p : ||z − y||0 ≤ q}.
Line 3b: Picks randomly q components i1, . . . , iq.
Lines 3b-3f: Randomly generates orthogonal search directions di1, . . . , diq

with q components each.
Line 3g: This line is only executed when q = 1. Its purpose is to ensure

that all points in N (y, �) are evaluated.
Line 4a: Defines the set Vq with 2q members.
Lines 4b-4e: If (y does not satisfy (33)) the algorithm repeats the while loop

with y = v′, q = h. This means that v′ is now the candidate
for being the stationary point.

Line 4d: Otherwise, q is reduced.

With no loss of generality we assume vk = zki , for k > q and rewrite (32a) as:

Vq(zi) ⊆ {
v ∈ F : vk = zki , k > q

}
. (32b)

In the actual implementation vk1 = zk1i , · · · , vkq = z
kq
i , with k1, . . . , kq randomly

chosen. The generality of (32b) is preserved, but the explanation that follows is more
fluid. We make use of search directions and rewrite (32b) as

Vq(zi) ⊆ {
v ∈ F : v = zi + τd, dk = 0, k > q

}
. (32c)

We have not yet defined the set Vq(zi), but a promising candidate is:

Vq(zi) = {
v ∈ F : v = zi + (uT u)Hek, k ≤ q

}
, (32d)

123

Convergence of derivative-free nonmonotone Direct Search... 839

where H = I − (2/uT u)uuT is the p× p Householder matrix, uk ∈ {−2,−1, 1, 2}
for k ≤ q, and uk = 0, k > q.

The set Vq(zi) is the set E generated by Algorithm 2 specialized to discrete vari-
ables. Given h ≤ p, y is accepted as stationary if

f (y) ≤ f (v), v ∈ V(y) =
h⋃

q=1

Vq(y). (33)

Remark 5 In our implementation we define V(y) = ⋃h
q=1 Vq(y) ∪ N (y, �).

Greedy() is invoked by y = Greedy (zi , η), where y is stationary satisfying (33),
zi is the variable under scrutiny, and ||y − zi ||0 ≤ η.

This algorithmic implementation was effective on the numerical tests performed
in Sect. 6. A global solution was often returned. A detailed algorithmic description of
Greedy() is given just after its pseudocode is displayed in Algorithm 7.

Remark 6 With our implementation ||zi − zi−1||0 = p is possible.

Lemma 8 If A1 holds, Greedy() returns a stationary point satisfying (33) in a finite
number of iterations.

Proof IfGreedy() remains in thewhile loop, the if clause in Line 4b is valid infinitely
often and Line 4c generates an infinite strictly decreasing sequence { f (y)}. By A1
this cannot occur; hence, Greedy() returns with q = 0. When q = 1, Greedy()’s
Line 3g constructs the search directions d1, . . . , d#N and reset V to N (z, �). Hence,
q = 0 only happens if f (v) ≥ f (z), for all v ∈ ⋃h

q=1 Vq(z) ∪ N (z, �). 	

5 Mixed integer optimization

In this section we analyze convergence of the Variable Separation (VS) scheme for
solving problem (1), which is repeated here for easy reference.

minimize
(x;z)∈F

g(x; z) : R
n+p → R,

F = {x ∈ R
n, z ∈ Z

p : s ≤ (x; z) ≤ t}.
The difficulties, the standard methodology and the software that has been used for

solvingmixed integer optimization problems is abridged in [8, 28]. The authors in [19]
suggested a uniform discretization of the continuous variables on a grid and solve (29).
To improve the solution, the problem is again solved on a finer grid until convergence
criteria are met. Details can be found in [19].

5.1 Neighborhood

The neighborhood definition is crucial to detect good optimizers. An algorithm that
returns

∗
z as a solution to a discrete problem must ensure that no better point is found

123

840 U. M. García Palomares

in its neighborhood. A recent discussion on this issue was given in [36] in the context
of DFO. We extract 2 definitions of local stationarity depending on a specified neigh-
borhood. (

∗
x; ∗

z) ∈ F is a local minimizer of a nonlinearly constrained problem with
mixed variables if either A or B hold.

A : g(
∗
x; ∗

z) ≤ g(x; z) for all x ∈ B(
∗
x,

∗
z, ρ) and all z ∈ N (

∗
x,

∗
z, �), (34a)

where B(
∗
x,

∗
z, ρ) = {x : (x; ∗

z) ∈ F , ||x− ∗
x || ≤ ρ}, (34b)

and N (
∗
x,

∗
z, �) = {z : (

∗
x; z) ∈ F , ||z− ∗

z || ≤ �}. (34c)

B : g(
∗
x; ∗

z) ≤ g(x; z) for all x ∈ B′(∗
x, ρ) and all z ∈ N ′(∗

z, �), (35a)

where B′(∗
x, ρ) = {x : (x; z) ∈ F for some z, ||x− ∗

x || ≤ ρ}, (35b)

and N ′(∗
z, �) = {z : (x; z) ∈ F for some x, ||z− ∗

z || ≤ �}. (35c)

It is easy to see thatB(
∗
x,

∗
z, ρ) ⊆ B′(∗

x, ρ), andN (
∗
x,

∗
z, �) ⊆ N ′(∗

z, �). The authors
in [36] claim some benefits from the use of B.

Definition 7 The point (
∗
x; ∗

z) is locally stationary for problem (1) if

min
z∈V(

∗
z)
g(

∗
x; z) = g(

∗
x; ∗

z) = min
x∈B(

∗
x,

∗
z,ρ)

g(x; ∗
z), (36)

where we are employing the neighborhood V(zi) given by (32) in the previous section.
Notationally V(zi) ⊆ {z : (xi , z) ∈ F}.

5.2 Variable separation for solving (1)

The standard approach for solving (1) is based on the VS scheme. VS is a powerful
technique that has been used in optimization problems in a multi-processing environ-
ment. It is specially suitable for solving large systems [1, 31]. Convergence for DFO
with VS and continuous variables was first established in [3] for monotone algorithms
and later for nonmonotone DSMs [16].

A typical VS scheme splits a problem into two or more subproblems. In mixed
integer problems, it seems natural to divide the problem (1) in the subproblems (37a,
37b). Each can be worked out with specific tools. In the rest of the paper, we commit
a minor abuse of notation and B(xi−1, ρ) substitutes for B(xi−1, zi−1, ρ).

Given (xi−1; zi−1) ∈ F
find xi such that g(xi ; zi−1) ≤ g(x; zi−1) for x ∈ B(xi−1, ρ) (37a)

and

find zi such that g(xi ; zi) ≤ g(xi ; z) for z ∈ V(zi−1). (37b)

123

Convergence of derivative-free nonmonotone Direct Search... 841

Given (xi−1; zi−1) ∈ F , (37a) gives xi , the best local solution for x provided
that zi−1 ∈ Z

p stays fixed, then (37b) selects the best discrete variable in V(zi−1),
a finite set of feasible points that includes zi−1. This iterative process is repeated
until convergence conditions are met. In [36] the authors suggest to look for a global
solution to (37b) and claim some benefits [36, Section 2]. However, their choice may
be computationally expensive, since it looks for the global optimum of a problem with
discrete variables. A local solution will hopefully require the evaluation of g(xi ; z) at
points in a small discrete set. In some applications the subproblem (37a) reduces to a
linearmodel and zi is chosenwith heuristics linked to the structure of the problem [39].
It is advisable to use known efficient techniques whenever possible.

[∗
x; ∗

z] = standardVS(x0, z0, ε)
. .

Input: (x0; z0) ∈ F , ε > 0
Output: A stationary point to Problem (1)

. .
i = 0
do

i = i + 1
Find xi such that:
g(xi ; zi−1) = min

x∈B(xi−1,ρ)
g(x; zi−1) (38a)

Compute zi such that:
g(xi ; zi) = min

z∈V(zi−1)
g(xi ; z) (38b)

while

(
g(xi−1; zi−1) − g(xi ; zi) > ε

)
(38c)

return (xi ; zi)
Algorithm 8 standardVS() uses V(zi−1) for solving problem (1)

standardVS(), identified as Algorithm 8, describes a straightforward implemen-
tation of (37). It is invoked with [∗

x; ∗
z] = standardVS(x0, z0, ε), where (x0; z0) is

the actual estimate, ε is the accuracy, and (
∗
x; ∗

z) is the stationary point satisfying (36).
We now prove convergence under Assumptions A1, A4. We assume that we have at
hand algorithms that solve problems (38a, b)
A1 The function g(·; ·) is computable at all feasible points and the set

L = {(x; z) ∈ F : g(x; z) ≤ ϕ0} is compact for any given ϕ0.
A4The function g(·; ·) : R

n+p → R satisfies the conditions required by the algorithms
employed for solving (38a, b).

Lemma 9 Under assumptions A1, A4 the sequence {g(xi ; zi)} generated by stan-

dardVS() is decreasing.

Proof By optimality in (38a) and (38b) it follows that:

min
z∈V(zi−1)

g(xi ; z) = g(xi ; zi) ≤ g(xi ; zi−1), (39a)

and

g(xi−1; zi−1) ≥ g(xi ; zi−1) = min
x∈B(xi−1,ρ)

g(x; zi−1). (39b)

123

842 U. M. García Palomares

Hence,

g(xi−1; zi−1) ≥ g(xi ; zi−1) ≥ g(xi ; zi) (40)

	

Corollary 4 If g(xi ; zi) = g(xi−1; zi−1), then g(xi ; zi) satisfies (36).
Proof If g(xi ; zi) = g(xi−1; zi−1), then from (40) we deduce that
g(xi−1; zi−1) = g(xi ; zi−1) and (39a-b) becomes a chain of equalities. It follows that
g(xi−1; zi−1) satisfies (36) and Algorithm 8 stops. 	

Lemma 10 Let ρ be large enough and let z j = zi−1 for some j > i . Under Assump-
tions A1, A4 Algorithm 8 stops at a stationary point.

Proof At iterations i, j , with j > i we obtain by construction that

g(xi−1; zi−1) ≥ g(xi ; zi−1) ≥ g(xi ; zi)
and

g(x j ; z j) ≥ g(x j+1; z j) ≥ g(x j+1; z j+1).

(41)

We now assume z j = zi−1 and reach a contradiction. It follows that

g(x j+1; z j) = min
x∈B(x j ,ρ)

g(x; z j) (42a)

= min
x∈B(x j ,ρ)

g(x; zi−1) = min
x∈B(xi−1,ρ)

g(x; zi−1) (42b)

= g(xi ; zi−1), (42c)

where equality (42b) holds because B(x j , ρ) = B(xi−1, ρ) for large enough ρ. It also
follows that

g(xi ; zi−1) ≥ g(xi ; zi) by (41)
> g(x j ; z j) by Corollary 4
≥ g(x j+1; z j) by (42a)
≥ g(xi ; zi−1) by (42c);

(43)

which is a clear contradiction. 	

From the above discussion we conclude that

Proposition 2 UnderAssumptionsA1,A4 and large enoughρ, Algorithm8 terminates
in a finite number of iterations. 	

Proof It is an immediate consequence of Lemma 10 and Corollary 4. On the one
hand, if z j = zi−1 for some j > i , Lemma 10 ensures termination in a finite number
of iterations. On the other hand, since the feasible set is bounded by A1, all integer
variables are exhausted in a finite number of iterations. 	

123

Convergence of derivative-free nonmonotone Direct Search... 843

This is a desirable conclusion. However, it requires the global solution of optimiza-
tion problems at each iteration. Theoretically, this is an infinite process. When either
optimization problem, (38a) or (38b), is rather complex, we offer another alternative
that avoids global optimization subproblems.

5.3 VS with incomplete optimization

If we denote w =
(
x
z

)
∈ R

n+p, problem (1) can be considered as an optimization

problem with n+ p variables. To prove convergence along the lines laid out in Sect. 2,
we should construct a set of search directions D = {d1, . . . , dq}, q > (n + p), d j ∈
R
n+p, with some d ∈ D satisfying (12). A lot of information is needed. The new

estimate is

wi = wi−1 + τi d j , that is,

(
xi
zi

)
=
(
xi−1
zi−1

)
+ τi

(
dxj
dzj

)
(44)

for some d j ∈ D; dxj are the first n components of d j , and d
z
j stand for the last p com-

ponents of d j . This updating might not look convincing. To keep {zi } ∈ Z
p, we must

impose {τi dzj } ∈ Z
p. This restriction on {τi } is not desirable for the continuous vari-

ables and updating (44) is discarded. The VS scheme used by Algorithm 8 overcomes
this shortcoming. However, the solution of the global optimization problems (38a,
b) are required to prove convergence. In this section we propose a VS scheme that
does not require global optimization. It strongly rests upon the theory developed in
the previous sections. We need to define stationarity for Problem (1)

Definition 8 (
∗
x; ∗

z) ∈ F is nonsmooth stationary on D for Problem (1) if ∃({xi } →∗
x

, {τi } ↓ 0) such that

xi + τi d /∈ For
(
g(xi + τi d; ∗

z) − g(xi ; ∗
z) > −σ(τi)

)
for d ∈ D, (45a)

and for some � > 0

g(
∗
x; ∗

z) ≤ g(
∗
x, z) for z ∈ V(

∗
z, �). (45b)

Algorithm 9 is theMain() algorithm. It uses a VS scheme for solving Problem (1).
Given (xi−1; zi−1), the Main() algorithm

1. invokes MixedDiscrete(), identified as Algorithm 11, to obtain the next iterate
(xi−1; zi). Its output zi satisfies

(xi−1; zi) ∈ F , g(xi−1; zi) ≤ g(xi−1; z)} for z ∈ V(zi−1), and
g(xi−1; zi) ≤ g(xi−1; zi−1).

(46)

The last inequality trivially holds if zi−1 ∈ V(zi−1).

123

844 U. M. García Palomares

[∗
x; ∗

z] = Main(x0, z0, η, ε)

. .
minimize
(x;z)∈F g(x; z) : R

n+p → R

F = {(x; z) : x ∈ R
n , z ∈ Z

p, s ≤ (x; z) ≤ t}
Input: (x0; z0) ∈ F , η ∈ {1, . . . , p}, ε > 0

Output: (
∗
x; ∗

z) satisfying (45)
. .

i = 0
1. do

i = i + 1 next iteration
2. zi = MixedDiscrete

(
xi−1, zi−1, η

)

3a. v = xi−1 auxiliary variable
3b. repeat

3c.
[
v, ϕi , τi , Di

]
= MixedContinuous (v, zi , ϕi−1)

3d. until (||v − xi−1|| ≤ ε) or

(
g(v; zi) < g(xi−1; zi)

)

4a. xi = v

while ||xi − xi−1|| > ε) or ||zi − zi−1||0 > 0
return (xi ; zi)

Algorithm 9 Main() algorithm for solving the mixed integer optimization problem (1) by Variable Sepa-
ration in continuous and discrete variables.

[xi , ϕi , τi , Di] = MixedContinuous(xi−1, zi , ϕi−1)

. .
Input: (xi−1; zi) ∈ F , ϕi−1 ≥ g(xi−1; zi)

Output: (xi ; zi) ∈ F , ϕi ≥ g(xi ; zi), τi ∈ R+, and

Di = {d1, . . . , dq }, q directions in R
n

. .
1. Generate a set E with Algorithm 2, and construct Di ⊇ E
2a. if

(∃{λ j } → 0
)
such that (47) holds

2b. return [xi−1, ϕi−1, 0, Di]
else Find xi ∈ R

n , ϕi ∈ R, τi ∈ R satisfying
3a. (xi ; zi) ∈ F
3b. g(xi ; zi) ≤ ϕi−1 − σ(τi)

3c. g(xi ; zi) ≤ ϕi ≤ ϕi−1 − σ(τi)

3d. g(xi + τi d; zi) > ϕi − σ(τi) for all d ∈ Di
3e. return [xi , ϕi , τi , Di]
4. end- ifelse

Algorithm 10 (AlgorithmMixedContinuous). Section of theMain() algorithm to handle the continuous
variables x in the mixed integer problem (1).

.

2. invokesMixedContinuous(), identified asAlgorithm10,within arepeat- until
loop. The algorithm leaves the loop when g(xi ; zi) < g(xi−1; zi). This strategy
makes sure the algorithm generates a decreasing sequence; g(xi ; zi) > g(x j ; z j)
for i < j . This feature is shared with Algorithm 8 and it was very convenient for
proving finite termination. Besides, if the decreasing condition does nold hold,
the algorithm might not be converging to the optimum solution (

∗
x; ∗

z) returned by
standardVS().

123

Convergence of derivative-free nonmonotone Direct Search... 845

Remark 7 Algorithms 10 and 11 are, respectively, Algorithms 3 and 7 adapted to the
VS scheme for solving Problem (1). They are explicitly shown to facilitate the writing
and reading of this section.

[zi] = MixedDiscrete(xi−1, zi−1, η)

minimize
x=xi−1,(x;z)∈F

g(x; z)
Input: (xi−1; zi−1) ∈ F , h ∈ {1, . . . , p}. Output: (xi−1 : zi) ∈ F

1. q = η, zi = zi−1
2. while q > 0
3a. Pick q random indices, j = i1, . . . , iq
3b. if (q > 1)
3c. u j ∈ {−2, −1, 1, 2} j = i1, . . . , iq
3d. τ = uT u
3e. d j = e j − (2u j /τ)u, j = i1, . . . , iq
3f. else

3g. τ = 1, d j : zi + d j ∈ N (zi , �)

3h. end- ifelse

4a. V = {(xi−1; v) ∈ F : v = zi ± τd j }
4b. if

(∃ (xi−1; v′) ∈ V : g(xi−1; v′) < g(xi−1; zi)
)

4c. zi = v′, q = η

4d. else (q = q − 1)
4e. end- ifelse

5. end- while

6. return zi

Algorithm 11 (Algorithm MixedDiscrete()). Section of the Main() algorithm to handle the discrete
variables z in the mixed integer problem (1).

Lemma 11 Given (xi−1; zi−1) ∈ F , let zi = MixedDiscrete(xi−1, zi−1, η). It fol-
lows that g(xi−1; zi) ≤ g(xi−1; z) for all z ∈ V(zi−1).

Proof This is a replica of Lemma 8, replacing f (z) by g(x; z). We reach a similar
result, namely, g(xi−1; zi) ≤ g(xi−1; v), v ∈ ⋃h

q=1 Vq(y). 	

Let xi+1 be returned byMixedContinuous(xi , zi+1, ϕi). If a qdd is not found by

MixedContinuous(), then ∃{λ j } ↓ 0 such that

(xi + λd, zi) /∈ F , or (47a)

g(xi + λd; zi) − g(xi ; zi) > −o(λ) for λ ∈ {λ j }, d ∈ Di+1. (47b)

Main() returns (xi ; zi) as stationary. In a practical implementation we admit that a qdd
at xi does not exist when λ < ε in (47). In short,Main() returns (xi , zi) satisfying (47)
or it generates an infinite sequence {xi , zi , τi , ϕi , gi , Di }with the following properties:

(xi−1; zi) ∈ F , (48a)

g(xi−1; zi) < g(xi−1; z), for all z ∈ V(zi−1). (48b)

123

846 U. M. García Palomares

g(xi−1; zi) ≤ g(xi−1; zi−1), (48c)

(xi ; zi) ∈ F , (48d)

g(xi ; zi) < g(x; zi) for all x ∈ B(xi−1, ρ) (48e)

g(xi ; zi) ≤ ϕi ≤ ϕi−1 − σ(τi), (48f)

g(xi + τi d; zi) > ϕi − σ(τi) for all d ∈ D. (48g)

The following facts are inherited from thematerial analyzed in the previous sections

of this paper. We should bear in mind that f (x)
Δ= g(x; ∗

z), whenever
∗
z is fixed.

Lemma 12 Under Assumption A1, {τi } → 0.

Proof By (48e) and A1 it follows that

g(xk; zk) ≤ ϕk ≤ ϕi −
∑

k> j≥i

σ(τ j). (49)

This implies that {σ(τi)} → 0. A fortiori, {τi } → 0. 	

Theorem 4 Under Assumptions A1, A4, {xi }i∈K →∗

x satisfying (45).

Proof Let S = {xi , zi , τi , gi , ϕi , Di }∞1 be the infinite sequence generated by Main()

and let
∗
x,

∗
D be an accumulation point of {xi , Di }. As the number of discrete variables

is finite by A1, there exists a variable, say zk , that appears infinitely often in S. Let us
denote this variable as

∗
z and extract from S the subsequence

∗
S= {xi , ∗

z, τi , gi , ϕi , Di }i∈K , K = {i : {xi , Di } → (
∗
x,

∗
D), zi =∗

z}.

From (48f) it follows for i ∈ K that

g(xi + τi d; ∗
z) − g(xi ; ∗

z)

τi
≥ g(xi + τi d,

∗
z) − ϕi

τi
> −σ(τi)/τi , for all d ∈ Di ,

(50)

which shows that (47) holds. Furthermore, from Lemma 11 we obtain that g(xi ; ∗
z) ≤

g(xi , z), z ∈ V(
∗
z, �). We conclude that (45) holds. The proof is complete. 	

6 Numerical experiments

This section reports some results obtained with a code written in C and compiled with
DEV-cpp version 5–11 on a computer equipped with an Intel Core CPU @ 3.3 GHz.
These preliminary results emphasize four relevant goals:
1. Continuous vs Discrete Performance.All problems tested have global integer opti-

mizers. We ran two algorithms for each problem: Continuous()with x ∈ R
n and

Greedy() with x ∈ Z
n . We would like to show numerically that both algorithms

converge adequately to the global solution. We point out that it is common to
include the constraint x ∈ Z

n to test integer optimization algorithms [37, 38, 43].

123

Convergence of derivative-free nonmonotone Direct Search... 847

2. Global solution (glob). We carried out 100 runs for each problem and report the
number of cases where the known global optimum was attained.

3. Search directions. The experiments were performed with the randomly generated
directions described by Algorithm 2 and with a coordinate search.

4. Functional evaluations (eval). This figure is often considered a performance index.

The choice of parameters may significantly influence any algorithm’s behavior. The
best selection is probably problem dependent. Nonetheless we run all examples with
a common set of parameters,
– ε = 1.e-07 is the required accuracy. The smaller its value, the larger the value of
eval. We use ε mainly to stop the algorithms.

– η = min(n, 6), where n is the number of variables. The η value suggests the size of
the local neighborhood where a better stationary point may be located. The larger
its value, the larger the value of eval.

– ϕ0 = f (x0; z0)+0.8| f (x0; z0)|. This parameter affects the non-monotone behav-
ior of the algorithm.

– δ = 1.e-05. To inhibit stagnation we accept xi+1 as a new estimate when:

f (xi+1) ≤ φi − σi ,

and
| f (xi+1) − f (xi)| ≥ δ(δ + | f (xi)|).

(51)

The test problems have a small number of variables; however, they seem to represent
a collection of hard problems. The starting point was a random feasible z ∈ Z

n .
Whenever possible, we state some comparison related issues with other algorithms
that solve the same problem. The results are summarized in Tables 1, 2, 3, 4, 5, 6, 7
and 8. Each table shows the reference to the problem studied; its number and kind of
variables; the set of search direction; the minimum, maximum and average number of
function evaluations, and the number of times the known global solution is attained.

The algorithm also solved a small nonlinear real problem described in [10, Section
3.3]. The idea is to show an artifice to deal with discrete variables, which are not
integer variables. It is worth mentioning that our algorithm unveiled a better solution
than that reported in [10]. This section ends with some remarks about the numerical
results obtained.

6.1 Branin function [9]. Optimizer: y= (−3, 13)

a = 1, b = 5.1/(4π2), c = 5.0/π,

r = 6.0, s = 10.0, t = 1.0/(8π),

x1 = y1 − 0.689, x2 = y2 + 0.629.

f (x) = a ∗ (x2 − b(x1)2 + cx1 − r
)2 + s(1 − t) cos(x1) + s + 5x1.

−5 ≤ x1 ≤ 10; 0 ≤ x2 ≤ 15.
(52)

The Branin function is a classical test problem in global optimization.

123

848 U. M. García Palomares

Table 1 Performance for function (52), n = 2

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

213–569 265–468 4686–9609 41–83

382.6 345.4 7238.4 62.8

glob 77% 100% 100% 100%

Table 2 Performance for function (53), n = 50

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

483,349–1,435,054 62,566–998,547 5345–10,597 5206–9850

944,546.8 727,719.2 7031.9 7793.3

glob 93% 86% 100% 100%

The version shown above has an integer global solution. The results are given in
Table 1.

6.2 Rosenbrock function [9]. Optimizer: xk = 1, k = 1, . . . , 50

f (x) =
k=n−1∑

k=1
100(xk+1 − (xk)2)2 + (1 − xk)2,

−5 ≤ xk ≤ 5, k = 1, . . . , n.

(53)

The function (53) has been extensively used as a benchmark. It has long narrow
valleys and local minimizers for n > 4 [27]. The global solution is all integer x =
(1, 1, . . . , 1, . . .) regardless the number of variables. The results shown in Table 2
with x ∈ Z

50 are remarkable when compared with [38]. It never gets trapped by any
of the numerous local function minimizers [27].

6.3 Lukšan function [34]. Optimizer: y = (1, 1)

x1 = y1 + 0.14, x2 = y2 − 0.1,
w1 = (x1)2 + (x2)4,

w2 = (x1 − 2)2 + (x2 − 2)2,
w3 = 2 exp(x2 − x1).

f (w) = max(w1, w2, w3). (54)

123

Convergence of derivative-free nonmonotone Direct Search... 849

Table 3 Performance for function (54), n = 2

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

288–616 267–714 27–66 22–57

397.6 384.2 46.1 30.8

glob 10% 80% 64% 80%

Minimax are non-smooth problems that appear often in testing algorithms.

6.4 Pintér function [40]. Optimizer: x = y

f (x) = 0.025n
k=n∑

k=1
(xk − yk)2 + sin2(xk − yk)

+ sin2
(
k=n∑

k=1

[
(xk − yk) + (xk − yk)2

]
)

,

−5 ≤ xk ≤ 5, k = 1, . . . , n.

(55)

The Pintér problem was a difficult test for our algorithms. The author in [40, Sec-
tion 4.4] justifies the need of using global search strategies. Problem (55) possesses
many local minimizers with close function values. The dimension and solution can
be arbitrarily selected. We chose yk = 1, k = 1, . . . , n with n = 5 and n = 10. The
results are shown on Table 4.

6.5 Ackley function [9]. Optimizer: xk = 0, k = 1, . . . , 30

f (x) = 20 + exp(1) − 20 exp

⎛

⎝−0.2

√√√√1

n

k=n∑

k=1

(xk)2

⎞

⎠− exp

(
1

n

k=n∑

k=1

cos(2πxk)

)

,

−10 ≤ xk ≤ 10, k = 1, . . . , n.

(56)

The authors in [29] could not solve (56) with any of the heuristic algorithms they
tried. In [15] the author reports that his algorithm returns the global solution in 70 out
of 100 runs, with 20,000 function evaluations in average. Our algorithms always found
the global solution. The number of evaluations for the discrete version was remarkably
low in comparison with [38].

123

850 U. M. García Palomares

Table 4 Performance for function (55), n = 5

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

467–1889 431–1456 52–111 41–120

841.2 560 69.1 70.3

glob 15% 6% 4% 7%

Performance for function (55), n=10
var Variables in R

n Variables in Z
n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

1041–1773 873–2088 135–153 212–232

1304.2 1165.3 151.6 222

glob 1% 5% 1% 2%

Table 5 Performance for function (56), n = 30

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

125,230–157,430 11,744–148,939 964–1468 1210–2157

143,188 128,545.5 1263.2 1459.1

glob 100% 100% 100% 100%

6.6 Shekel function [9]. Optimizer: xk = 4, k = 1, . . . , 4

b = (0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5),

C =

⎡

⎢⎢
⎣

4, 1, 8, 6, 3, 2, 5, 8, 6, 7
4, 1, 8, 6, 7, 9, 3, 1, 2, 3
4, 1, 8, 6, 3, 2, 5, 8, 6, 7
4, 1, 8, 6, 7, 9, 3, 1, 2, 3

⎤

⎥⎥
⎦ .

f (x) = −
j=10∑

j=1

(
k=4∑

k=1

(xk − Ckj)2 + b j

)−1

,

0 ≤ xk ≤ 10, k = 1, . . . , 4.

(57)

The Shekel function (57) has 10 local discrete minimizers, which is a challenge
for the Greedy() algorithm. Again, in regards to function evaluations, the discrete
version outperformed both the continuous version and the results reported in [15, 38].

123

Convergence of derivative-free nonmonotone Direct Search... 851

Table 6 Performance for function (57), n = 4

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

400–1102 398–1291 47–61 40–109

484.2 614.6 51.9 69.6

glob 0% 21% 10% 15%

Table 7 Performance for function (58), n = 25

var Variables in R
n Variables in Z

n

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max Min–max Min–max

Average Average Average Average

50,121–1,133,314 25,527–439,413 4202–7025 3731–7217

650563.3 51395.1 5694.3 5757.1

glob 60% 92% 36% 46%

6.7 NgZhang function [38]. Optimizer: xk = 1, k = 1, . . . , 25

f (x) = (x1 − 1)2 + (x2 − 1)2 + n
∑n−1

k=1(n − k)(xk+1 − (xk)2),
−5 ≤ xk ≤ 5, k = 1, . . . , n.

(58)

6.8 Beam function [10]. Known solution: x = (7, 0.1, 9.4848, 0.1), f(x) = 97.7

a = 36, b = 1000, c = 107,

h = x2(x1 − 2x4)3/12 + 2
[
x3(x4)3 + x4x3(x1 − x4)2/4

]
,

f (x1, x2, x3, x4) = a
[
2x4x3 + (x1 − 2x4)x2

]
.

minimize
x∈G f (x) : R

4 → R

G = {x ∈ R
4 : g1(x) = abx1/(2h) − 5000 ≤ 0,

g2(x) = 363b/(3ch) − 0.1 ≤ 0,
3.0 ≤ x1 ≤ 7.0,
0.1 ≤ x2 ≤ 2.0,
2.0 ≤ x3 ≤ 12.0,
0.1 ≤ x4 ≤ 1.0}.

(59)

The problem (59) is a real problem. The goal is to design a minimum volume
solution of a beam satisfying physical constraints. A detailed description is given

123

852 U. M. García Palomares

in [10]. To solve (59) we use the exact penalty function

500
[
(max(g1(x), 0) + max(g2(x), 0)

]
.

The algorithm’s rate of success was 72% with the search directions given by Algo-
rithm 2. Besides, the algorithm unveiled a better solution:

x= (6.9999198, 0.1000450, 9.4756010, 0.1000151),
f (x) = 92.72525, g1(x) = −0.00351, g2(x) = −0.09383

6.9 Mixed beam

We now mention the mixed variable problem suggested in [10]; x4 becomes discrete
with the additional constraint

x4 ∈ V = {0.1, 0.25, 0.35, 0.5, 0.65, 0.75, 0.9, 1.0}. (60)

To handle (60) as a mixed variable problem we employ an integer variable z whose
values are linked to x4 as follows:

Problem (59) is now a non-linearly constrained problemwith 3 continuous variables
(x1, x2, x3) and the integer variable z. This kind of problem was not an aim of this
paper. Nonetheless, Main() solved it with less than 600 function evaluations.

6.10 Comments on the numerical results

Problems 6.1−6.7 were taken from the open literature. They were originally proposed
in benchmarks for continuous optimization. Nowadays many researches have added
the constraint x ∈ Z

n for testing integer optimization algorithms. With this sample
we hope to identify features to be improved.

Problem 6.1 The version of the Branin function exposed here has one global mini-
mizer and two more local minimizers. This is the only problem in the

Table 8 Performance for function (59), n = 4

var Continuous variables Discrete variables

D {e1, ..., en} {He1, ..., Hen} {e1, ..., en} {He1, ..., Hen}
eval Min–max Min–max

Average Average

279–582 421–2378 NOT APPLICABLE

326.6 675.1

glob 0% 72%

123

Convergence of derivative-free nonmonotone Direct Search... 853

z = 1 2 3 4 5 6 7 8
x4 = 0.1 0.25 0.35 0.5 0.65 0.75 0.9 1.0

sample that solved the discrete version in fewer function evaluations
than those needed to solve the continuous version.

Problem 6.2 The authors in [38] report that they successfully solved the discrete
versionof theRosenbrock function in≈1.6million function evaluations.
Our result is remarkable.

Problem 6.3 For the Lukšan function the results in R
n and coordinate search were

not appealing. This is probably linked to the geometry of the problem.
Problem 6.4 The Pintér problemwas themost difficult to solve. Often, the algorithms

converge to a local minimizer. Global strategies are needed to improve
the algorithm’s performance.

Problem 6.5 In 400 runs our algorithms always returned the global minimizer of
the Ackley function, This is an impressive result because few function
evaluations were needed for solving the discrete version.

Problem 6.6 We had tested the Shekel function in [15]. The results have improved.
Problem 6.7 This problem was efficiently solved; however we should pay attention

to the dispersion in function evaluations showed in R
n with random

directions.

Overall, our algorithms, especially the discrete version, look promising. Better
results should be expected by introducing globalization strategies.

7 Conclusion and final remarks

We have formalized and described a common framework for a class of nonmonotone
Direct Search Methods. Convergence of non-smooth functions is proved with no dif-
ferentiability assumptions. A new concept of quasi descent direction is included to
show nonsmooth convergence. These methods converge under weak assumptions to
classical first-order stationary points of unconstrained problems with continuous vari-
ables. Convergence prevails for box constrained optimization with mixed variables.
Derivative information is not required. For unconstrained problems with continuous
variables we prove convergence to a point that does not have a quasi descent direc-
tion. The role of a finite set of n orthogonal search directions randomly generated
was crucial to ensure this result. Orthogonality was also an asset for the design of
a variable separation algorithm for solving mixed-integer optimization problem. All
convergence properties imply convergence to a Clarke stationary point, provided the
function is Lipschitz continuous.

For the sake of clarity, we have exposed the theory complemented with a basic but
unspecified implementation of the algorithms.Our framework is open tomany variants
that deserve further research. Nonetheless, wewrote a preliminary code and carried out
numerical experiments on several academic problems and a 5-variable real application.

123

854 U. M. García Palomares

The results are encouraging. The next apparent line of research is the convergence
analysis of DSMs to a nonlinearly constrained mixed-integer optimization problem.

We have left out for future study some important issues that are beyond the aims
of this paper, like strategies for accelerating convergence, global minimization, par-
allelism, and hybrid methods. A clear research topic is the analysis and impact of
non-monotone features in other successful approaches to DFO, like MADS [7], sur-
rogate functions [25, 26, 41], and others.

In this paper, and also in [15], feasibility of the sequence of the solution estimates
was forced at all iterations. If this condition can be removed, we would probably
broaden the class of nonmonotone DSMs converging under the same conditions stated
herein.

Acknowledgements Remark 1 and Corollary 3 were suggested by my colleagues at the Universidade de
Vigo, Dr. José Ramón Fernández and Dr. Ramón González. Dr. Fernández advise was crucial for proving
Lemma 7. Dr. Ildemaro García, from Universidad Simón Bolívar, helped to develop the pseudocodes.
Warmest thanks to the Journal reviewers, who were enthusiastic in their reading and gave advice that
enhanced the quality of this paper. The data generated and analysed during the current study constitute an
excerpt of research in progress but are available from the author.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. The
Universidade de Vigo and the Consorcio Interuniversitario de Galicia (CISUG) financed this research. Both
institutions covered the open access charge.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abramson, M.A., Audet, C., Chrissis, J.W., Walston, J.G.: Mesh adaptive direct search algorithms for
mixed variable optimization. Optim. Lett. 3, 35–47 (2009)

2. Abramson, M.A., Audet, C., Le Digabel, S.: Orthomads: a deterministic MADS instance with orthog-
onal directions. SIAM J. Optim. 22(2), 948–966 (2009)

3. Audet, C., Dennis Jr, J.E., Le Digabel, S.: Parallel space decomposition of the mesh adaptive direct
search algorithm. SIAM J. Optim. 19(3), 1150–1170 (2008)

4. Audet, C., Ianni, A., Le Digabel, S., Tribes, C.: Reducing the number of function evaluations in mesh
adaptive direct search algorithms. SIAM J. Optim. 24(2), 621–642 (2014)

5. Audet, C., Ianni, A., Le Digabel, S., Tribes, C.: Robust optimization of noisy blackbox problems using
the mesh adaptive direct search algorithm. Optim. Lett. 12(4), 675–689 (2018)

6. Audet, C., Dennis Jr, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM
J. Optim. 17(1), 188–217 (2006)

7. Audet, C., Le Digabel, S., Tribes, C.: The mesh adaptive direct search algorithm for granular and
discrete variables. SIAM J. Optim. 29(2), 1164–1189 (2018)

8. Belotti, P., Kirches, C., Leyffer, S.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131
(2013)

9. Bingham, D.: Virtual library of simulation experiments: test functions and datasets. sfu.ca/ ssur-
jano/index.html (2017)

123

http://creativecommons.org/licenses/by/4.0/

Convergence of derivative-free nonmonotone Direct Search... 855

10. Chase, N., Redemacher, M., Goodman, E., Averill, R., Sidhu, R.: A Benchmark Study of Optimization
Search Algorithms, pp. 1–15. Red Cedar Technology, East Lansing (2010)

11. Dai, Y.-H.: On the nonmonotone line search. J. Optim. Theory Appl. 112(2), 315–330 (2002)
12. Fasano, G., Liuzzi, G., Lucidi, S., Rinaldi, F.: A linesearch-based derivative-free approach for nons-

mooth constrained optimization. SIAM J. Optim. 24(3), 959–992 (2014)
13. Friedlander, A.: Elementos de programacão não-linear (1994). https://www.ime.unicamp.br/friedlan/

~livro.htm
14. Garcia-Palomares, U.M.: Non monotone algorithms for unconstrained minimization: upper bounds on

function values. In: Ceragioli, F. (ed.) Proceedings of the 22nd IFIP TC7 Conference, Torino, Italy, pp.
91–100. Springer. ISBN 0-387-32774-6 (2006)

15. García-Palomares, U.M.: Non-monotone derivative-free algorithm for solving optimization models
with linear constraints: extensions for solving nonlinearly constrained models via exact penalty meth-
ods. TOP (2020). https://doi.org/10.1007/s11750-020-00549-y

16. García-Palomares, U.M., García-Urrea, I.J., Rodríguez-Hernández, P.S.: On sequential and parallel
non-monotone derivative-free algorithms for box constrained optimization. Optim. Methods Softw.
28(6), 1233–1261 (2013)

17. García-Palomares, U.M., González-Castaño, F.J., Burguillo-Rial, J.C.: A combined global and local
search (CGLS) approach to global optimization. J. Glob. Optim. 34(3), 409–426 (2006)

18. García-Palomares, U.M., Rodríguez, J.F.: New sequential and parallel derivative-free algorithms for
unconstrained minimization. SIAM J. Optim. 13(1), 79–96 (2002)

19. García-Palomares, U.M., Rodríguez-Hernández, P.S.: Unified approach for solving box-constrained
models with continuous or discrete variables by non monotone direct search methods. Optim. Lett.
13(1), 95–111 (2019)

20. González-Castaño, F.J., Costa-Montenegro, E., Burguillo-Rial, J.C., García-Palomares, U.M.: Outdoor
wlan planning via non-monotone derivative-free optimization: algorithm adaptation and case study.
Comput. Optim. Appl. 40(3), 405–419 (2008)

21. Gould, N., Orban, D., Toint, P.: GALAHAD a library of thread-safe Fortran 90 packages for large scale
nonlinear optimization. Trans. ACM Math. Softw. 29(4), 353–372 (2003)

22. Gratton, S., Royer, C.W., Vicente, L.N., Zhang, Z.: Direct search based on probabilistic feasible descent
for bound and linearly constrained problems. Comput. Optim. Appl. 72(3), 525–559 (2019)

23. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method.
SIAM J. Numer. Anal. 23(4), 707–716 (1986)

24. Gu, N., Mo, J.: Incorporating nonmonotone strategies into the trust region method for unconstrained
optimization. Comput. Math. Appl. 55(9), 2158–2172 (2008)

25. Gumma, E., Ali,M.M., Hashim,M.: A derivative-free algorithm for non-linear optimizationwith linear
equalities constraints. Optimization 69, 1361–1387 (2019)

26. Gumma, E., Hashim, M., Ali, M.M.: A derivative-free algorithm for linearly constrained optimization
problems. Comput. Optim. Appl. 57(3), 599–621 (2014)

27. Kok, S., Sandrock, C.: Locating and characterizing the stationary points of the extended Rosenbrock
function. Evol. Comput. 17(3), 437–453 (2009)

28. Kronqvist, J., Bernal, D.E., Lundell, A., Grossmann, I.E.: A review and comparison of solvers for
convex MINLP. Optim. Eng. 20, 397–455 (2019)

29. Laguna, M., Martí, R.: Experimental testing of advanced scatter search designs for global optimization
of multimodal functions. Technical report, 2002

30. Lewis, R.M., Torczon, V.: A globally convergent augmented Lagrangian pattern search algorithm for
optimization with general constraints and simple bounds. SIAM J. Optim. 12(4), 1075–1089 (2002)

31. Leyffer, S.: Integrating SQP and branch-and-bound formixed integer nonlinear programming. Comput.
Optim. Appl. 18(3), 295–309 (2001)

32. Liu, B.: Probability of pairwise difference of samples from distribution with finite support (2013).
https://stats.stackexchange.com/users/31162/brandonliu

33. Liuzzi, G., Lucidi, S., Rinaldi, F.: Derivative-free methods for mixed-integer constrained optimization
problems. J. Optim. Theory Appl. 164(3), 933–965 (2015)

34. Lukšan, L., Vlček, J.: Test problems for nonsmooth unconstrained and linearly constrained optimiza-
tion. Report 798, Academy of Sciences, Czech Republic (2020)

35. Naevdal, G.: Positive bases with maximal cosine measure. Optim. Lett. 13(6), 1381–1388 (2019)
36. Newby, E., Ali, M.M.: A trust-region-based derivative free algorithm for mixed integer programming.

Comput. Optim. Appl. 60(1), 199–229 (2015)

123

https://www.ime.unicamp.br/friedlan/~livro.htm
https://www.ime.unicamp.br/friedlan/~livro.htm
https://doi.org/10.1007/s11750-020-00549-y
https://stats.stackexchange.com/users/31162/brandonliu

856 U. M. García Palomares

37. Ng, C.K., Li, D., Zhang, L.S.: Discrete global descent method for discrete global optimization and
nonlinear integer programming. J. Glob. Optim. 37(3), 357–379 (2007)

38. Ng, C.K., Zhang, L.S., Li, D., Tian, W.W.: Discrete filled function method for discrete global opti-
mization. Comput. Optim. Appl. 31(1), 87–115 (2005)

39. Pachón, Á., García-Palomares, U.M.: Mid-term frequency domain scheduler for resource allocation
in wireless mobile communications systems. Comput. Commun. 97, 96–110 (2017)

40. Pintér, J.D.:Global optimization: software, test problems, and applications. In: Pardalos, P.M.,Romeijn,
E.H. (eds.) Handbook of Global Optimization, vol. 2, Chap. 15, pp. 515–569. Springer, New York
(2013)

41. Powell, M.J.D.: The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives.
Technical report DAMTP2009/NA06, Department of Applied Mathematics and Theoretical Physics,
University of Cambridge (2009)

42. Torczon, V.: On the convergence of pattern search algorithms. SIAM J. Optim. 7(1), 1–25 (1997)
43. Woon, S.F., Rehbock, V.: A critical review of discrete filled function methods in solving nonlinear

discrete optimization problems. Appl. Math. Comput. 217, 25–41 (2010)
44. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained

optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)
45. Zhou, J.L., Tits, A.L.: Nonmonotone line search for minimax problems. J. Optim. Theory Appl 3,

455–476 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Convergence of derivative-free nonmonotone Direct Search Methods for unconstrained and box-constrained mixed-integer optimization
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The search directions
	2.2 The essential algorithm

	3 Nonmonotone DSMs for optimization with variables in mathbbRn
	3.1 Unconstrained optimization
	3.2 Non-smooth stationarity onDinfty
	3.3 Box-constrained optimization

	4 The integer optimization problem
	5 Mixed integer optimization
	5.1 Neighborhood
	5.2 Variable separation for solving (1)
	5.3 VS with incomplete optimization

	6 Numerical experiments
	6.1 Branin function Bingham17. Optimizer: y= (-3, 13)
	6.2 Rosenbrock function Bingham17. Optimizer: xk = 1, k=1,…,50
	6.3 Lukšan function Luksan20. Optimizer: y=(1, 1)
	6.4 Pintér function Pinter13. Optimizer: x= y
	6.5 Ackley function Bingham17. Optimizer: xk= 0, k=1,…,30
	6.6 Shekel function Bingham17. Optimizer: xk= 4, k=1,…,4
	6.7 NgZhang function NgZhang05. Optimizer: xk= 1, k=1,…,25
	6.8 Beam function ChaseEtal10. Known solution: x=(7, 0.1, 9.4848, 0.1), f(x)= 97.7
	6.9 Mixed beam
	6.10 Comments on the numerical results

	7 Conclusion and final remarks
	Acknowledgements
	References

