1,528 research outputs found

    Design Guidelines for Agent Based Model Visualization

    Get PDF
    In the field of agent-based modeling (ABM), visualizations play an important role in identifying, communicating and understanding important behavior of the modeled phenomenon. However, many modelers tend to create ineffective visualizations of Agent Based Models (ABM) due to lack of experience with visual design. This paper provides ABM visualization design guidelines in order to improve visual design with ABM toolkits. These guidelines will assist the modeler in creating clear and understandable ABM visualizations. We begin by introducing a non-hierarchical categorization of ABM visualizations. This categorization serves as a starting point in the creation of an ABM visualization. We go on to present well-known design techniques in the context of ABM visualization. These techniques are based on Gestalt psychology, semiology of graphics, and scientific visualization. They improve the visualization design by facilitating specific tasks, and providing a common language to critique visualizations through the use of visual variables. Subsequently, we discuss the application of these design techniques to simplify, emphasize and explain an ABM visualization. Finally, we illustrate these guidelines using a simple redesign of a NetLogo ABM visualization. These guidelines can be used to inform the development of design tools that assist users in the creation of ABM visualizations.Visualization, Design, Graphics, Guidelines, Communication, Agent-Based Modeling

    Reviving Static Charts into Live Charts

    Full text link
    Data charts are prevalent across various fields due to their efficacy in conveying complex data relationships. However, static charts may sometimes struggle to engage readers and efficiently present intricate information, potentially resulting in limited understanding. We introduce "Live Charts," a new format of presentation that decomposes complex information within a chart and explains the information pieces sequentially through rich animations and accompanying audio narration. We propose an automated approach to revive static charts into Live Charts. Our method integrates GNN-based techniques to analyze the chart components and extract data from charts. Then we adopt large natural language models to generate appropriate animated visuals along with a voice-over to produce Live Charts from static ones. We conducted a thorough evaluation of our approach, which involved the model performance, use cases, a crowd-sourced user study, and expert interviews. The results demonstrate Live Charts offer a multi-sensory experience where readers can follow the information and understand the data insights better. We analyze the benefits and drawbacks of Live Charts over static charts as a new information consumption experience

    Data Feel: Exploring Visual Effects in Video Games to Support Sensemaking Tasks

    Full text link
    This paper explores the use of visual effects common in video games that support a range of tasks that are similar in many ways to analysis tasks supported in visual analytics tools. While some visual effects are meant to increase engagement or to support a game's overall visual design, we find that in many games visual effects are used throughout gameplay in order to assist a player in reasoning about the game world. In this work, we survey popular games across a range of categories (from casual games to "Triple A" games), focusing specifically on visual effects that support a player's sensemaking within the game world. Based on our analysis of these games, we identify a range of tasks that could benefit from the use of "data feel," and advocate for the continued investigation of visual effects and their application in data visualization software tools.Comment: 7 pages, 5 figures, VIS4DH 202

    Successful learning with whiteboard animations – a question of their procedural character or narrative embedding?

    Get PDF
    Although whiteboard animations are increasingly used for educational purposes, there is little empirical evidence as to why such animations can enhance learning. To specify essential elements, their dynamic visual presentation, as well as their narrative embedding, were found to be theortically important. In a first Experiment (N = 133) with a 2 (presentation mode: static pictures vs. progressive drawing) x 2 (narrative context: with vs. without a narrative) between-subject factorial design, motivational, cognitive, affective variables, as well as learning outcomes, of secondary school students were measured. Results revealed that progressive drawing, as well as a narrative context, are mostly associated with an increase in learning-relevant variables. In a second experiment with the same sample and the same experimental design but a different whiteboard animation, results from Experiment 1 generalize to another learning content. Again, a progressive drawing, as well as a narrative context within whiteboard animation, fostered learning relevant variables as well as learning outcomes. Results are discussed considering the cognitive theory of multimedia learning, the contiguity effect as well as the instructional design theory of anchored instruction

    Facilitating Understanding of Movements in Dynamic Visualizations: An Embodied Perspective

    Get PDF
    Learners studying mechanical or technical processes via dynamic visualizations often fail to build an accurate mental representation of the system's movements. Based on embodied theories of cognition assuming that action, perception, and cognition are closely intertwined, this paper proposes that the learning effectiveness of dynamic visualizations could be enhanced by grounding the movements of the presentation in people's own bodily experiences during learning. We discuss recent research on embodied cognition and provide specific strategies for how the body can be used to ground movements during the learning process: (1) making or observing gestures, (2) manipulating and interacting with objects, (3) using body metaphors, and (4) using eye movements as retrieval cues. Implications for the design of dynamic visualizations as well as directions for future research are presented

    Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    Get PDF
    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners and aid with long-term memory retention. The World Wide Web Instructional Committee at North Dakota State University has used these research results as an inspiration to develop a suite of high-quality animations of molecular and cellular processes. Currently, these animations represent transcription, translation, bacterial gene expression, messenger RNA (mRNA) processing, mRNA splicing, protein transport into an organelle, the electron transport chain, and the use of a biological gradient to drive adenosine triphosphate synthesis. These animations are integrated with an educational module that consists of First Look and Advanced Look components that feature captioned stills from the animation representing the key steps in the processes at varying levels of complexity. These animation-based educational modules are available via the World Wide Web at http://vcell.ndsu.edu/animations. An in-class research experiment demonstrated that student retention of content material was significantly better when students received a lecture coupled with the animations and then used the animation as an individual study activity

    Proceedings of the Second Program Visualization Workshop, 2002

    Get PDF
    The Program Visualization Workshops aim to bring together researchers who design and construct program visualizations and, above all, educators who use and evaluate visualizations in their teaching. The first workshop took place in July 2000 at Porvoo, Finland. The second workshop was held in cooperation with ACM SIGCSE and took place at HornstrupCentret, Denmark in June 2002, immediately following the ITiCSE 2002 Conference in Aarhus, Denmark

    Rethinking Map Legends with Visualization

    Get PDF
    This design paper presents new guidance for creating map legends in a dynamic environment. Our contribution is a set of guidelines for legend design in a visualization context and a series of illustrative themes through which they may be expressed. These are demonstrated in an applications context through interactive software prototypes. The guidelines are derived from cartographic literature and in liaison with EDINA who provide digital mapping services for UK tertiary education. They enhance approaches to legend design that have evolved for static media with visualization by considering: selection, layout, symbols, position, dynamism and design and process. Broad visualization legend themes include: The Ground Truth Legend, The Legend as Statistical Graphic and The Map is the Legend. Together, these concepts enable us to augment legends with dynamic properties that address specific needs, rethink their nature and role and contribute to a wider re-evaluation of maps as artifacts of usage rather than statements of fact. EDINA has acquired funding to enhance their clients with visualization legends that use these concepts as a consequence of this work. The guidance applies to the design of a wide range of legends and keys used in cartography and information visualization

    Animation of a process for identifying and merging raster polygon areas

    Get PDF
    • …
    corecore