1,079 research outputs found

    Long-tail Relation Extraction via Knowledge Graph Embeddings and Graph Convolution Networks

    Full text link
    We propose a distance supervised relation extraction approach for long-tailed, imbalanced data which is prevalent in real-world settings. Here, the challenge is to learn accurate "few-shot" models for classes existing at the tail of the class distribution, for which little data is available. Inspired by the rich semantic correlations between classes at the long tail and those at the head, we take advantage of the knowledge from data-rich classes at the head of the distribution to boost the performance of the data-poor classes at the tail. First, we propose to leverage implicit relational knowledge among class labels from knowledge graph embeddings and learn explicit relational knowledge using graph convolution networks. Second, we integrate that relational knowledge into relation extraction model by coarse-to-fine knowledge-aware attention mechanism. We demonstrate our results for a large-scale benchmark dataset which show that our approach significantly outperforms other baselines, especially for long-tail relations.Comment: To be published in NAACL 201

    Distantly Supervised Web Relation Extraction for Knowledge Base Population

    Get PDF
    Extracting information from Web pages for populating large, cross-domain knowledge bases requires methods which are suitable across domains, do not require manual effort to adapt to new domains, are able to deal with noise, and integrate information extracted from different Web pages. Recent approaches have used existing knowledge bases to learn to extract information with promising results, one of those approaches being distant supervision. Distant supervision is an unsupervised method which uses background information from the Linking Open Data cloud to automatically label sentences with relations to create training data for relation classifiers. In this paper we propose the use of distant supervision for relation extraction from the Web. Although the method is promising, existing approaches are still not suitable for Web extraction as they suffer from three main issues: data sparsity, noise and lexical ambiguity. Our approach reduces the impact of data sparsity by making entity recognition tools more robust across domains and extracting relations across sentence boundaries using unsupervised co- reference resolution methods. We reduce the noise caused by lexical ambiguity by employing statistical methods to strategically select training data. To combine information extracted from multiple sources for populating knowledge bases we present and evaluate several information integration strategies and show that those benefit immensely from additional relation mentions extracted using co-reference resolution, increasing precision by 8%. We further show that strategically selecting training data can increase precision by a further 3%

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%

    EnCore: Fine-Grained Entity Typing by Pre-Training Entity Encoders on Coreference Chains

    Full text link
    Entity typing is the task of assigning semantic types to the entities that are mentioned in a text. In the case of fine-grained entity typing (FET), a large set of candidate type labels is considered. Since obtaining sufficient amounts of manual annotations is then prohibitively expensive, FET models are typically trained using distant supervision. In this paper, we propose to improve on this process by pre-training an entity encoder such that embeddings of coreferring entities are more similar to each other than to the embeddings of other entities. The main problem with this strategy, which helps to explain why it has not previously been considered, is that predicted coreference links are often too noisy. We show that this problem can be addressed by using a simple trick: we only consider coreference links that are predicted by two different off-the-shelf systems. With this prudent use of coreference links, our pre-training strategy allows us to improve the state-of-the-art in benchmarks on fine-grained entity typing, as well as traditional entity extraction.Comment: To appear at EACL 202

    Relation Classification with Limited Supervision

    Get PDF
    Large reams of unstructured data, for instance in form textual document collections containing entities and relations, exist in many domains. The process of deriving valuable domain insights and intelligence from such documents collections usually involves the extraction of information such as the relations between the entities in such collections. Relation classification is the task of detecting relations between entities. Supervised machine learning models, which have become the tool of choice for relation classification, require substantial quantities of annotated data for each relation in order to perform optimally. For many domains, such quantities of annotated data for relations may not be readily available, and manually curating such annotations may not be practical due to time and cost constraints. In this work, we develop both model-specific and model-agnostic approaches for relation classification with limited supervision. We start by proposing an approach for learning embeddings for contextual surface patterns, which are the set of surface patterns associated with entity pairs across a text corpus, to provide additional supervision signals for relation classification with limited supervision. We find that this approach improves classification performance on relations with limited supervision instances. However, this initial approach assumes the availability of at least one annotated instance per relation during training. In order to address this limitation, we propose an approach which formulates the task of relation classification as that of textual entailment. This reformulation allows us to use the textual descriptions of relations to classify their instances. It also allows us to utilize existing textual entailment datasets and models to classify relations with zero supervision instances. The two methods proposed previously rely on the use of specific model architectures for relation classification. Since a wide variety of models have been proposed for relation classification in the literature, a more general approach is thus desirable. We subsequently propose our first model-agnostic meta-learning algorithm for relation classification with limited supervision. This algorithm is applicable to any gradient-optimized relation classification model. We show that the proposed approach improves the predictive performance of two existing relation classification models when supervision for relations is limited. Next, because all the approaches we have proposed so far assume the availability of all supervision needed for classifying relations prior to model training, they are unable to handle the case when new supervision for relations becomes available after training. Such new supervision may need to be incorporated into the model to enable it classify new relations or to improve its performance on existing relations. Our last approach addresses this short-coming. We propose a model-agnostic algorithm which enables relation classification models to learn continually from new supervision as it becomes available, while doing so in a data-efficient manner and without forgetting knowledge of previous relations
    corecore