433 research outputs found

    Deep Learning Approaches for Seizure Video Analysis: A Review

    Full text link
    Seizure events can manifest as transient disruptions in the control of movements which may be organized in distinct behavioral sequences, accompanied or not by other observable features such as altered facial expressions. The analysis of these clinical signs, referred to as semiology, is subject to observer variations when specialists evaluate video-recorded events in the clinical setting. To enhance the accuracy and consistency of evaluations, computer-aided video analysis of seizures has emerged as a natural avenue. In the field of medical applications, deep learning and computer vision approaches have driven substantial advancements. Historically, these approaches have been used for disease detection, classification, and prediction using diagnostic data; however, there has been limited exploration of their application in evaluating video-based motion detection in the clinical epileptology setting. While vision-based technologies do not aim to replace clinical expertise, they can significantly contribute to medical decision-making and patient care by providing quantitative evidence and decision support. Behavior monitoring tools offer several advantages such as providing objective information, detecting challenging-to-observe events, reducing documentation efforts, and extending assessment capabilities to areas with limited expertise. The main applications of these could be (1) improved seizure detection methods; (2) refined semiology analysis for predicting seizure type and cerebral localization. In this paper, we detail the foundation technologies used in vision-based systems in the analysis of seizure videos, highlighting their success in semiology detection and analysis, focusing on work published in the last 7 years. Additionally, we illustrate how existing technologies can be interconnected through an integrated system for video-based semiology analysis.Comment: Accepted in Epilepsy & Behavio

    A systematic comparison of deep learning methods for EEG time series analysis

    Get PDF
    Analyzing time series data like EEG or MEG is challenging due to noisy, high-dimensional, and patient-specific signals. Deep learning methods have been demonstrated to be superior in analyzing time series data compared to shallow learning methods which utilize handcrafted and often subjective features. Especially, recurrent deep neural networks (RNN) are considered suitable to analyze such continuous data. However, previous studies show that they are computationally expensive and difficult to train. In contrast, feed-forward networks (FFN) have previously mostly been considered in combination with hand-crafted and problem-specific feature extractions, such as short time Fourier and discrete wavelet transform. A sought-after are easily applicable methods that efficiently analyze raw data to remove the need for problem-specific adaptations. In this work, we systematically compare RNN and FFN topologies as well as advanced architectural concepts on multiple datasets with the same data preprocessing pipeline. We examine the behavior of those approaches to provide an update and guideline for researchers who deal with automated analysis of EEG time series data. To ensure that the results are meaningful, it is important to compare the presented approaches while keeping the same experimental setup, which to our knowledge was never done before. This paper is a first step toward a fairer comparison of different methodologies with EEG time series data. Our results indicate that a recurrent LSTM architecture with attention performs best on less complex tasks, while the temporal convolutional network (TCN) outperforms all the recurrent architectures on the most complex dataset yielding a 8.61% accuracy improvement. In general, we found the attention mechanism to substantially improve classification results of RNNs. Toward a light-weight and online learning-ready approach, we found extreme learning machines (ELM) to yield comparable results for the less complex tasks

    Collaborative Learning in Computer Vision

    Get PDF
    The science of designing machines to extract meaningful information from digital images, videos, and other visual inputs is known as Computer Vision (CV). Deep learning algorithms cope CV problems by automatically learning task-specific features. Especially, Deep Neural Networks (DNNs) have become an essential component in CV solutions due to their ability to encode large amounts of data and capacity to manipulate billions of model parameters. Unlike machines, humans learn by rapidly constructing abstract models. This is undoubtedly due to the fact that good teachers supply their students with much more than just the correct answer; they also provide intuitive comments, comparisons, and explanations. In deep learning, the availability of such auxiliary information at training time (but not at test time) is referred to as learning by Privileged Information (PI). Typically, predictions (e.g., soft labels) produced by a bigger and better network teacher are used as structured knowledge to supervise the training of a smaller network student, helping the student network to generalize better than that trained from scratch. This dissertation focuses on the category of deep learning systems known as Collaborative Learning, where one DNN model helps other models or several models help each other during training to achieve strong generalization and thus high performance. The question we address here is thus the following: how can we take advantage of PI for training a deep learning model, knowing that, at test time, such PI might be missing? In this context, we introduce new methods to tackle several challenging real-world computer vision problems. First, we propose a method for model compression that leverages PI in a teacher-student framework along with customizable block-wise optimization for learning a target-specific lightweight structure of the neural network. In particular, the proposed resource-aware optimization is employed on suitable parts of the student network while respecting the expected resource budget (e.g., floating-point operations per inference and model parameters). In addition, soft predictions produced by the teacher network are leveraged as a source of PI, forcing the student to preserve baseline performance during network structure optimization. Second, we propose a multiple-model learning method for action recognition, specifically devised for challenging video footages in which actions are not explicitly visualized, but rather, only implicitly referred. We use such videos as stimuli and involve a large sample of subjects to collect a high-definition EEG and video dataset. Next, we employ collaborative learning in a multi-modal setting i.e., the EEG (teacher) model helps the video (student) model by distilling the knowledge (implicit meaning of visual stimuli) to it, sharply boosting the recognition performance. The goal of Unsupervised Domain Adaptation (UDA) methods is to use the labeled source together with the unlabeled target domain data to train a model that generalizes well on the target domain. In contrast, we cast UDA as a pseudo-label refinery problem in the challenging source-free scenario i.e., in cases where the source domain data is inaccessible during training. We propose Negative Ensemble Learning (NEL) technique, a unified method for adaptive noise filtering and progressive pseudo-label refinement. In particular, the ensemble members collaboratively learn with a Disjoint Set of Residual Labels, an outcome of the output prediction consensus, to refine the challenging noise associated with the inferred pseudo-labels. A single model trained with the refined pseudo-labels leads to superior performance on the target domain, without using source data samples at all. We conclude this dissertation with a method extending our previous study by incorporating Continual Learning in the Source-Free UDA. Our new method comprises of two stages: a Source-Free UDA pipeline based on pseudo-label refinement, and a procedure for extracting class-conditioned source-style images by leveraging the pre-trained source model. While stage 1 holds the same collaborative peculiarities, in stage 2, the collaboration exists in an indirect manner i.e., it is the source model that provides the only possibility to generate source-style synthetic images which eventually helps the final model in preserving good performance on both source and target domains. In each study, we consider heterogeneous CV tasks. Nevertheless, with an extensive pool of experiments on various benchmarks carrying diverse complexities and challenges, we show that the collaborative learning framework outperforms the related state-of-the-art methods by a considerable margin

    Performance Analysis of Deep-Learning and Explainable AI Techniques for Detecting and Predicting Epileptic Seizures

    Get PDF
    Epilepsy is one of the most common neurological diseases globally. Notably, people in low to middle-income nations could not get proper epilepsy treatment due to the cost and availability of medical infrastructure. The risk of sudden unpredicted death in Epilepsy is considerably high. Medical statistics reveal that people with Epilepsy die more prematurely than those without the disease. Early and accurately diagnosing diseases in the medical field is challenging due to the complex disease patterns and the need for time-sensitive medical responses to the patients. Even though numerous machine learning and advanced deep learning techniques have been employed for the seizure stages classification and prediction, understanding the causes behind the decision is difficult, termed a black box problem. Hence, doctors and patients are confronted with the black box decision-making to initiate the appropriate treatment and understand the disease patterns respectively. Owing to the scarcity of epileptic Electroencephalography (EEG) data, training the deep learning model with diversified epilepsy knowledge is still critical. Explainable Artificial intelligence has become a potential solution to provide the explanation and result interpretation of the learning models. By applying the explainable AI, there is a higher possibility of examining the features that influence the decision-making that either the patient recorded from epileptic or non-epileptic EEG signals. This paper reviews the various deep learning and Explainable AI techniques used for detecting and predicting epileptic seizures  using EEG data. It provides a comparative analysis of the different techniques based on their performance

    Automatic detection of concrete cracks from images using Adam-SqueezeNet deep learning model

    Get PDF
    Cracks on concrete surface are typically clear warning signs of a potential threat to the integrity and serviceability of structure. The techniques based on image processing can effectively detect the cracks from images. These techniques, however, are generally susceptible to user-driven heuristic thresholds and extraneous distractors. Inspired by recent success of artificial intelligence, a deep learning based automated crack detection system called CrackSN was developed. An image dataset of concrete surface is collected by smartphone and carefully prepared in order to develop and train the CrackSN system. This proposed deep learning model, built on the Adam-SqueezeNet architecture, automatically learns the discriminative feature directly from the labeled and augmented patches. Hyperparameters of SqueezeNet are tuned with Adam optimization additive through the training and validation procedures. The fine-tuned CrackSN model outperforms state-of-the-art models in recent literature by correctly classifying 97.3% of the cracked patches in the image dataset. The success of CrackSN model demonstrated with light network design and outstanding performance provides a key step toward automated damage inspection and health evaluation for infrastructure. &nbsp

    Residual and bidirectional LSTM for epileptic seizure detection

    Get PDF
    Electroencephalogram (EEG) plays a pivotal role in the detection and analysis of epileptic seizures, which affects over 70 million people in the world. Nonetheless, the visual interpretation of EEG signals for epilepsy detection is laborious and time-consuming. To tackle this open challenge, we introduce a straightforward yet efficient hybrid deep learning approach, named ResBiLSTM, for detecting epileptic seizures using EEG signals. Firstly, a one-dimensional residual neural network (ResNet) is tailored to adeptly extract the local spatial features of EEG signals. Subsequently, the acquired features are input into a bidirectional long short-term memory (BiLSTM) layer to model temporal dependencies. These output features are further processed through two fully connected layers to achieve the final epileptic seizure detection. The performance of ResBiLSTM is assessed on the epileptic seizure datasets provided by the University of Bonn and Temple University Hospital (TUH). The ResBiLSTM model achieves epileptic seizure detection accuracy rates of 98.88–100% in binary and ternary classifications on the Bonn dataset. Experimental outcomes for seizure recognition across seven epilepsy seizure types on the TUH seizure corpus (TUSZ) dataset indicate that the ResBiLSTM model attains a classification accuracy of 95.03% and a weighted F1 score of 95.03% with 10-fold cross-validation. These findings illustrate that ResBiLSTM outperforms several recent deep learning state-of-the-art approaches

    Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data

    Get PDF
    The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the structural brain connectome. Specifically, the brain connectome is reconstructed using white matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage connectome-based prediction framework is developed that gradually selects a small number of abnormal network connections that contribute to the surgical treatment outcome, and in each stage a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 10-fold cross validation strategy, the first stage in the connectome-based framework is able to separate patients with TLE from normal controls with 80% accuracy, and second stage in the connectome-based framework is able to correctly predict the surgical treatment outcome of patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use VBM data, the proposed two-stage connectome-based prediction framework is a suitable alternative with comparable prediction performance. Our results additionally show that machine learning algorithms that exclusively use structural connectome data can predict treatment outcomes in epilepsy with similar accuracy compared with "expert-based" clinical decision. In summary, using the unprecedented information provided in the brain connectome, machine learning algorithms may uncover pathological changes in brain network organization and improve outcome forecasting in the context of epilepsy
    • …
    corecore