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Analyzing time series data like EEG or MEG is challenging due to noisy,

high-dimensional, and patient-specific signals. Deep learning methods have

been demonstrated to be superior in analyzing time series data compared

to shallow learning methods which utilize handcrafted and often subjective

features. Especially, recurrent deep neural networks (RNN) are considered suitable

to analyze such continuous data. However, previous studies show that they

are computationally expensive and di�cult to train. In contrast, feed-forward

networks (FFN) have previously mostly been considered in combination with

hand-crafted and problem-specific feature extractions, such as short time Fourier

and discrete wavelet transform. A sought-after are easily applicable methods that

e�ciently analyze raw data to remove the need for problem-specific adaptations.

In this work, we systematically compare RNN and FFN topologies as well

as advanced architectural concepts on multiple datasets with the same data

preprocessing pipeline. We examine the behavior of those approaches to provide

an update and guideline for researchers who deal with automated analysis of

EEG time series data. To ensure that the results are meaningful, it is important

to compare the presented approaches while keeping the same experimental

setup, which to our knowledge was never done before. This paper is a first step

toward a fairer comparison of di�erent methodologies with EEG time series data.

Our results indicate that a recurrent LSTM architecture with attention performs

best on less complex tasks, while the temporal convolutional network (TCN)

outperforms all the recurrent architectures on the most complex dataset yielding

a 8.61% accuracy improvement. In general, we found the attention mechanism

to substantially improve classification results of RNNs. Toward a light-weight and

online learning-ready approach, we found extreme learning machines (ELM) to

yield comparable results for the less complex tasks.

KEYWORDS

recurrent neural networks, feed forward neural networks, time series analysis, attention,

transformer networks

1. Introduction

Electroencephalography (EEG) is a non-invasive method for recording and analyzing

brain activity. Given the low amplitude of the recorded signal, even an eye blink

or unintentional muscle contractions create noise in the recordings, complicating the

identification of a patient’s mental condition. To overcome this problem, researchers

traditionally focused on handcrafted feature extraction based on e.g., short-time

Fourier transform (STFT) (Griffin and Lim, 1984), discrete wavelet transform (DWT)
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(Shensa, 1992), or tensor decomposition (Naskovska et al., 2020)

to remove noise and focus on the relevant signals. Typically,

the generated spectrograms are represented as images and then

classified by, e.g., feed-forward networks (FFNs) (Montana and

Davis, 1989). Automation of such analyses not only requires

high accuracy but their embedding into usage scenarios, such as

neurofeedback applications (Hammond, 2007) or brain-computer

interfaces (BCI) (Schalk et al., 2004) to classify mental states

also require efficient processing. However, these methods have to

be calibrated manually for the image generation when specific

parameters, e.g., the sampling frequency, have changed. This

step requires extensive expert knowledge as otherwise important

features might be neglected during preprocessing. Furthermore,

these methods can be time-consuming, if the number of EEG

channels increases since some of the methods propose a window

and channel-wise time-frequency analysis (Tabar and Halici, 2016).

Hence, previous studies often merely evaluate their methods on

low channel EEG data, i.e., fewer than the clinical routine of 21

channels (Tabar and Halici, 2016; Ni et al., 2017; Mert and Celik,

2021; Yilmaz and Kose, 2021).

In the last decade, gated recurrent neural networks (RNN) like

long short term memory (LSTM) (Hochreiter and Schmidhuber,

1997) and gated recurrent unit (GRU) (Chung et al., 2014)

have been demonstrated to yield superior results when analyzing

and classifying time series without the need for complex

preprocessing and hand-crafted feature extraction. Thereby,

manual configuration effort and the need for expert knowledge

in signal analysis can be drastically reduced, while achieving state

of the art results. In order to increase the predictive power of

these approaches, they face a constant evolution with notable

improvements. Such improvements include bidirectional RNN

topologies and the attention mechanism that has stimulated many

new network topologies beyond RNNs. More recent studies,

propose time-convolving neural networks and demonstrate that

they can yield high predictive performance on time series like

audio signals (Oord et al., 2016; Bai et al., 2018). More specifically,

Bai et al. (2018) propose a network topology based on temporal

convolutions, which achieves remarkable results on popular

datasets thereby outperforming LSTM and GRU topologies. In

contrast to these more complex approaches, also methods based

on simplified RNNs like echo state networks (ESN) achieved

good (Bozhkov et al., 2016), respectively even superior results

(Sun et al., 2019). As a FFN based counterpart of ESNs we

reference to extreme learning machines (ELM), which were utilized

for EEG classification tasks by Tan et al. (2016) and Liang

et al. (2006), reaching superior results while further reducing the

computational complexity.

In this paper, we systematically compare a large variety of RNN

and FFN topologies as well as the influence of topological variants,

e.g., bidirectional networks and attention mechanisms for EEG

analysis. We do not focus on a specific medical application, but

rather aim to compare the performance of each network topology

based on benchmark EEG recordings. To the best of our knowledge

recurrent and feed-forward topologies have never been compared

on the same EEG dataset and with the same preprocessing pipeline

before. We evaluate all approaches on three different EEG datasets:

the well-known benchmark DEAP, a seizure detection task, and an

in-house frequency entrainment dataset. Thus, we aim to answer

the following research questions:

(RQ 1) Recurrent topologies: Which recurrent topology shows

advantages for EEG time series classification in

comparison between non-gated, gated, and random

high dimensional mapping approaches?

(RQ 2) Feed-Forward topologies: Are feed-forward topologies

based on convolution and self-attention suitable for EEG

time series classification without further preprocessing

methods?

(RQ 3) Advanced architectural concepts: Can extensions for

LSTMs, like attention and bidirectionality, improve the

performance for these networks for EEG time series

classification?

Our results indicate that feed-forward networks yield

advantages compared to RNNs without additional concepts.

Nonetheless, applying attention to RNNs yielded notable

performance increases and even surpasses feed-forward topologies

for some of the investigated datasets.

The rest of the paper is organized as follows, Section 2 provides

a brief summary of use cases and problems related to automated

EEG analysis and introduces the step-by-step explanation of the

typical workflow from the recording of the raw EEG signal to the

final analysis result. Furthermore, the studied network topologies

are discussed in detail. In addition, the different topological

variations, like bidirectional networks and attention are explained.

In this section, we will also explain the used datasets, input

representation, and chosen parameters for each of the trained

network architectures. In Section 3, we show different classification

strategies and approaches mentioned by various publications based

on the preprocessingmethods and architectures used. Additionally,

we discuss the different results for each of the presented topologies.

Last, we discuss some limitations of our work, introduce potential

future research directions and conclude on the different methods

compared in this paper.

2. Methods

2.1. Applications and problems of EEG
analysis

In general, analyzing EEG data is a challenging task with

many difficulties (Vallabhaneni et al., 2021). Due to typically

low amplitude signals in the µV range (cp. Figure 1A), small

interferences can distort a signal making it unusable (cp. Figure 1B

red section compared to ordinary EEG recordings). We denote an

interference as any part of a signal that is not directly generated by

brain activity or brain activity that is not directly produced as result

of an experimental stimulus. It is hard to remove interferences from

a signal since these often show similar characteristics as the actual

signal. To remove transient interferences before analyzing an EEG

signal, various methods have been proposed, e.g., linear regression

or blind source separation (Urigüen and Garcia-Zapirain, 2015).

Nevertheless, none of them is supposed to work perfectly and

remaining interferences may cause erroneous analysis results

(Hagmann et al., 2006).

Another problem can be the placement and number of

electrodes that capture brain activity. Not all regions of the

brain are equally active during experiments and some regions
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A B

FIGURE 1

Comparison of two EEG examples: (A) Ordinary EEG recordings from two di�erent electrodes and (B) a red marked channel with transient

interferences compared to ordinary EEG recordings.

are more dominant than others. When less electrodes are used,

activation could be missed during the recording which results in

no features.

To avoid such errors it is advisable to use a higher number of

electrodes and to cover all areas of the head. When the number of

electrodes used increases, the time and effort required to preprocess

the data increases as well. This can be critical for time-frequency

transforms which typically process signals channel- or window-

wise (Li et al., 2016; Tabar and Halici, 2016).

In recent years, deep learning neural network approaches have

been applied to a wide range of neuroscientific problems like

feedback on motor imagery tasks (MI) (Tabar and Halici, 2016),

emotion recognition (Ng et al., 2015), seizure detection (Thodoroff

et al., 2016) and many other tasks (Gong et al., 2021) (see Table 4).

These studies typically apply standard convolutional and recurrent

neural networks (Craik et al., 2019). Many studies use handcrafted

features as input for deep neural networks. However, extracting

features can be time-consuming and often requires expert domain

knowledge to extract features which represent the signal correctly.

To avoid loss of information during the preprocessing phase,

the aim of neurobiological analysis should be an analysis of raw

data. If more information is provided to the neural network,

better results can be expected. To the best of our knowledge,

no study exists that systematically compares feed-forward and

recurrent neural networks in all their flavors for raw signal EEG

data analysis.

2.2. Automated EEG analysis workflow

In this subsection, we discuss the workflow for automated

EEG data analysis from the recording of data to the eventual

prediction (cp. Figure 2).

2.2.1. Signal acquisition
We focus on EEG recordings as a non-invasive and cost efficient

method to measure brain activity with electrodes placed directly on

the scalp (Craik et al., 2019) (cp. Figure 2).

2.2.2. Preprocessing
Preprocessing of data, such as filtering the signal and removing

interferences, is an important part of training neural networks in

general. Poorly preprocessed data ultimately yield poor network

inference performance which can hardly be compensated by

training methodology and network topology (Hagmann et al.,

2006). This processing is particularly important for EEG signals

which, due to their low amplitude, can be strongly altered by

only small influences such as unintended muscle contractions. For

this reason, almost all EEG data are bandpass filtered directly

after recording to remove noise distorting the signal. An often

used frequency range for EEG data analysis is 1–40Hz. The

filter range might also depend on the experimental setup during

the EEG recording. Transient interference removal is another

important part of preprocessing. Interferences influence a signal in

a significant way and often even distort a signal such that it is nearly

impossible to recognize its actual waveform (cp. Figure 1). Different

methods such as linear regression or blind source separation were

proposed to remove interferences. For heavily distorted signals,

like shown in Figure 1 a threshold detection can track and remove

the interference. After removing interferences and noise, the

preprocessed data can be used as input for deep neural networks.

2.2.3. Window slicing
EEG signals may contain many data points, depending

on the sampling rate and duration of a recording. Often,
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FIGURE 2

Overview of the workflow for processing EEG data: (1) signal acquisition—EEG data are recorded, (2) preprocessing—recorded data are preprocessed

and noise is removed by filters, (3) window slicing—the resulting waveforms are divided into windows of equal size, which may overlap, and (4) model

training—on the windowed and preprocessed wave forms.

it is not feasible to analyze a complete recording due to

prohibitive compute and memory requirements which result from

an excessive input length. It is, therefore, common to apply

window slicing to generate data frames and to incrementally

analyze these smaller snippets of a signal rather than a

whole recording at once (Tabar and Halici, 2016; Gao et al.,

2019). Thereby, the size of a window and a potential overlap

of successive windows are hyper-parameters of the respective

analysis and depend on its goal (cp. middle of Figure 2).

For example, the detection of slow theta brain waves requires

larger windows to capture a full wave within the window

while alpha and beta brain waves can be captured in a

smaller window.

2.2.4. Model training
The goal here is to select, parameterize, and train a suitable

model architecture. Below, we discuss model topologies applicable

for analyzing and specifically classifying EEG time series data

(cp. Figure 3), which we then systematically evaluate on different

EEG datasets in Section 2.5. Once the initial architectural

choice is made, hyper-parameters are varied and optimized

to improve prediction performance results. In this work we

study a variety of different topolgies. These include the basic

RNN as well as the most prominent recurrent networks GRU

and LSTM to investigate the advantages of gated cells. As

representatives for feed-forward networks we use the TCN and

Transformer-Encoder topology since both of these models have

shown superior results for raw time series prediction (Ingolfsson

et al., 2020). Lastly, we include ESN and ELM as reservoir

computing models since these are often overlooked in the

literature but have shown promising results in high-dimensional

time series prediction (Pandey et al., 2022; Viehweg et al.,

2022).

2.3. Recurrent neural networks

Recurrent neural networks (RNN) (Rumelhart et al., 1988)

are especially suitable to process sequential data as their topology

contains feedback loops that enable the network to build up and

maintain a state, sometimes referred to as memory. In contrast, a

feed-forward topology (FFN) does not offer this capability and is

stateless in between different inputs.

2.3.1. Basic RNN
The key concept of a RNN is the cell state c(t) that is connected

via weight matrices in a network topology. For the basic RNN cell,

the cell state c(t) is calculated as:

c(t) = tanh(Wccc
(t−1) +Wcxx

(t) + b) (1)

where x(t) is the current input, Wcc and Wcx are weight matrices,

and b is a bias term. By incorporating state c(t−1) in this calculation,

the current state is influenced by the previously shown sequence.

In theory, a basic RNN cell (cp. Figure 4A) should be capable

of classifying long input sequences. However, in practice these

cells suffer from vanishing and exploding gradient problems when

longer sequences are processed and long-term relationships within

EEG input data are relevant for signal analysis. To mitigate these

problems, gated recurrent neural networks, most prominently long

short-term memory (LSTM) and gated recurrent unit (GRU), have

been proposed. These networks are considered among the most

effective sequence modeling techniques today. While the basic

RNN cell consists of a single layer with tanh activation, LSTM and

GRU cells are more complex. Their key concept is different gates

added to each of the states (cp. Figures 4B, C). These gates can learn

what information is more or less relevant for further processing and

regulate the flow of information through the network. A different
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A B C D

FIGURE 3

Neural network architectures applicable for analyzing time series: (A) traditional recurrent neural network (RNN) consisting of an input layer (blue), a

forward layer (green), and a fully interconnected layer, (B) recurrent echo state network, (C) feed-forward transformer architecture utilizing attention

for time series analysis, and (D) temporal convolutional neural network (TCN) using dilated convolutions.

A B C

FIGURE 4

Schematic representation of non-gated and gated RNN cells: (A) basic RNN cell without any gates that is also representative for the reservoir of an

ESN, (B) gated LSTM cell, and (C) gated GRU cell.

approach that aims to overcome the problems of gradient descent-

based learning are echo state networks (ESN) that use randomly

initialized reservoir weights and merely a non-iterative learning of

the output weights.

2.3.2. Long short term memory
The LSTM cell (Hochreiter and Schmidhuber, 1997) consists of

three gates that shall help to overcome the problem of vanishing and

exploding gradients (cp. Figure 4B). The first gate within an LSTM

cell is a forget gate f (t) computing what information is required in

the current cell state:

f (t) = σ (Wfhh
(t−1) +Wfxx

(t) + bf ), (2)

where Wfh and Wfx are weight matrices, bf is the bias, h(t−1) is

the previous hidden state, and x(t) is the current input value. The

output passes a sigmoid activation function σ bounded between

1, i.e., information is fully required, and 0, i.e., information is

unnecessary. The second gate is the update gate i(t). It controls how

much of the current input is considered when computing the new

cell state:

ĉ(t) = tanh(Wchh
(t−1) +Wcxx

(t) + bc)

i(t) = σ (Wihh
(t−1) +Wixx

(t) + bi) (3)

c(t) = (f (t) ∗ c(t−1))+ (i(t) ∗ ĉ(t)),

where ĉ(t) refers to the tanh activated input at time step t.

Analogous to the forget gate, the gate uses a sigmoid function which

determines the importance of the respective information as i(t). The

new cell state c(t) then becomes the combination of the information

passing through the forget and the input gate, respectively. Finally,

the output gate o(t) controls which information of the cell state
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is incorporated into the cell’s current output y(t) and hidden state

ht , respectively:

o(t) = σ (Wohh
(t−1) +Woxx

(t) + bo) (4)

y(t) = o(t) ∗ tanh(c(t)).

2.3.3. Gated recurrent units
The GRU cell (Chung et al., 2014) was introduced in 2014 and is

a simplification of the LSTM cell. The idea is to combine forget gate

and input gate into a single relevance gate r(t) (cp. Figure 4C). By

combining them, one weight matrix can be neglected, the cell state

and hidden state are merged together, and the GRU cell is therefore

supposed to be faster to train. Analogous to the LSTM cell described

above, the state of the relevance gate r(t), the state of the updated

gate z(t), and the hidden state h(t) are computed as follows:

r(t) = σ (Wrhh
(t−1) +Wrxx

(t) + br)

h̄(t) = tanh(Whr(r
(t) ∗ h(t−1))+Whxx

(t))

z(t) = σ (Wzhh
(t−1) +Wzxx

(t) + bz)

h(t) = ((1− z(t)) · h(t−1))+ (z(t) · h̄(t)).

(5)

With the help of gates, GRU and LSTM (cp. Figure 5A) are

supposed to be able to analyze longer sequences without being

affected by vanishing gradients. Both variations are very popular for

analyzing sequential data. While GRUs are more cost efficient due

to fewer parameters, the LSTM contains more training capacity but

requires more computational power and longer training time.

2.3.4. Echo state networks
An alternative approach to potentially overcome the problems

of gradient descent-based training is the non-iteratively trained

echo state networks (ESN) (Jaeger, 2001). ESNs are a prominent

RNN architecture that realize the reservoir computing paradigm

(Verstraeten et al., 2007). An ESN consists of three core layers:

the input layer, the reservoir layer, and the output layer. Only

the weights of the output layer are trained. All other weights are

typically randomly initialized from a uniform distribution, i.e.,

those of the input layerWhx ∈ R
Nres×Nin

and those of the reservoir

layer Whh ∈ R
Nres×Nres

. A reservoir layer can be considered as a

simplified RNN cell without most of the trainable parameters (cp.

Figure 4A) and is denoted as:

h(t) = γ · h(t−1) + (1− γ )f (Whxx
(t) +Whhh

(t−1)), (6)

where x(t) ∈ R
Nin

is the input, h(t−1) ∈ R
Nres

is the previous

cell state, f (·) is an activation function, typically tanh, and γ is

the leakage rate that determines how much of the ESN’s previous

hidden states is added to compute the new hidden state h(t). During

the learning phase, a single training sequence ST with length T is

utilized to compute the respective hidden states {h(i), . . . , h(i+T)}.

The learning phase of an ESN is separated in two steps. First an

initialization phase is done whereby the states {h(0), . . . , h(i−1)}

are discarded, but the activation for each respective neuron is

initialized (Jaeger, 2001). This process is often referred to as the

washout phase (Malik et al., 2016). Second is the training phase,

where the previous hidden states are added to the current hidden

states, in relation to the leakage rate γ . The resulting matrix H ∈

R
Nres×T , which is based on the hidden states, is then mapped to

the expected outputs Y ∈ R
Nout×T via a linear regression with

y(t) = Wyh · h
(t) according to:

Wyh = YH(HHT + βINr )−1, (7)

with β as regularization coefficient and INr as unity matrix. For

classification tasks, we train a reservoir for each class c within

the dataset. We call this an ensemble of predictors, where each

predictor processes the input file, and the class is chosen based on

the predictor with the smallest error. For evaluation, each sample

is processed by each predictor and is assigned to the class with the

lowest prediction error (Forney et al., 2015).

2.3.5. Bidirectional architecture
In some applications, it can be helpful to process a sequence’s

previous as well as future information simultaneously. That is the

concept of a bidirectional RNN combining two RNN layers, one for

processing input data in a forward manner and one for processing

input data in a reverse manner (Schuster and Paliwal, 1997)

(cp. Figure 5B). The outputs of both layers are concatenated and

eventually processed by a fully connected layer. This architectural

approach is applicable for any RNN cell and has often been

demonstrated to improve network performance when processing

complex sequences in general (Huang et al., 2015; Yin et al., 2017)

and to analyze EEG data (Ni et al., 2017; Chen et al., 2019).

Ogawa et al. (2018) found that a bidirectional architecture improves

accuracy in comparison to a basic RNN model by 1.1% for video

classification based on the user’s favors.

2.3.6. Attention
The attention mechanism is an imitation of human behavior.

Rather than considering the entire previous input when computing

the next output, a network learns which previously computed

hidden states are beneficial to compute an output for a given new

input. This approach is also applicable to any RNN cell and even

to feed-forward networks as we will discuss in the next subsection.

Attention computes the relation between the current input x(t)

and previous inputs {x(1), . . . , x(t−1)} represented as hidden states

{h(1), . . . , h(t−1)} with the help of an attention layer (Bahdanau

et al., 2014; Cheng et al., 2016) (cp. Figure 5C):

a
(t)
i = vT tanh(Whhi +Wxx

(t) +Wh̃̃h
(t−1))

s
(t)
i =

exp(ati )∑n
i′=1 exp(a

t
i′ )
.

The attention calculation results in a distribution of

probabilities of the previous values. With the probability

distribution sti , an adaptive summary vector can be calculated.

Cheng et al. (2016) proposes to replace the previous hidden state
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A

B

C

FIGURE 5

RNN architectures with di�erent mechanisms. (A) Basic RNN architecture consisting of the input layer (blue) the RNN forward layer (green), and a

fully connected layer (gray). The sequence is only calculated forward in time. (B) Bidirectional RNN architecture. In addition to the forward RNN layer

a backward RNN (orange) layer is added. Information from the future and the past is calculated simultaneously and concatenated, summed,

multiplied or averaged afterwards. (C) Attention Bidirectional RNN architecture. After the forward and backward calculations have been

concatenated, an attention layer (blue) is used to pay attention to important sections of the sequence. For di�erent RNN topologies like LSTM and

GRU the cells within the forward and backward layer di�er (see Figure 4).

h(t−1) used in Equations (2)–(4) by a cell and hidden memory tape

c̃(t) and h̃(t):

h̃(t) =

t−1∑

i=1

sti · hi

c̃(t) =

t−1∑

i=1

sti · ci.

The cell and hidden memory tape contain all the previous

cell and hidden states {c(1), . . . , c(t−1)} and {h(1), . . . , h(t−1)},

respectively. Attention allows the network to give certain previous

hidden states more weight in generating the current output than

others. Thereby, rather than utilizing a single hidden state h(t−1)

the network gains access to all previously processed hidden states

and can weigh their importance.

2.4. Feed-forward networks

In contrast to recurrent neural networks, feed-forward

networks like multilayer perceptrons (MLPs) and convolutional

neural networks (CNNs) do not have any feedback connections

between the output of a neuron and its input, i.e., input information

x passes a series of operations and only influences the network’s

current output y. Traditional feed-forward networks were therefore

not well suited to analyze time series data. Due to their non-

recurrent nature, temporal dependencies could not be modeled

well and extending the input size toward longer sequences became

prohibitively expansive due to an exponentially growing number of

parameters. However, there are more recent architectural concepts

to overcome these limitations of FFNs in sequence processing,

while preserving their benefits over RNNs, i.e., parallelizable

training and being less prone to vanishing and exploding gradients.

Below, we discuss three fundamental approaches for applying

feed-forward architectures to time series data classification.

2.4.1. Transformer
The feed-forward Transformer architecture makes extensive

use of the attention concept. It has been demonstrated to achieve

superior results especially in the field of natural language processing

(NLP) in recent years (Vaswani et al., 2017). Each block of the

Transformer consists of an attention layer, a fully connected layer,

and a final classification layer. Residual connections are added

around the attention and fully connected layer followed by a

layer normalization (cp. Figure 6). The attention mechanism is

implemented as a multiplication of the input with three different

weight matricesWQx,WKx,WVx and computed as:

α(Q,K,V) = s(
Q · KT

√
dk

)V , (8)

with Q, K, and V as Query, Key, and Value, respectively. The scaling

factor is denoted as dk and the Softmax function as s(·). For solving

NLP problems, such as machine translation, the Transformer

typically follows an encoder-decoder structure (Vaswani et al.,

2017). For classification problems only the encoder without the

decoder part is used since only a single output conveying the

classification result is required. Therefore, the model will be

referred to as Transformer-Encoder in the rest of the paper.
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FIGURE 6

Conceptual view of a Transformer block that shows a single

attention layer that is typically realized as multiple attention heads.

This Transformer block may be stacked multiple times and may be

arranged in an encoder-decoder architecture with attention layers

spanning across encoder and decoder. Figure replicated from

Vaswani et al. (2017).

2.4.2. Temporal convolutional network
An alternative feed-forward architecture for the analysis of

sequential data is the temporal 1D convolutional network (TCN)

that is based on two key concepts (Bai et al., 2018). First,

causal convolutions keep the temporal relationship between inputs,

i.e., the input at time xt can only be convolved with an input

of xt−n. Second, since a fully convolutional architecture would

exponentially grow in depth with an increasing input length, dilated

convolutions (Oord et al., 2016; Bai et al., 2018) are proposed and

filter over larger input windows with a defined number of input are

being skipped. Figure 7 illustrates the dilated convolutions concept

where the first hidden layer convolves each two successive input

values while the second hidden layer convolves two inputs but skips

the intermediate one. The dilation rate δi increases exponentially

with each hidden layer added to the network, starting with a

dilation rate of 1. The number of TCN layers can therefore be

derived by calculating the logarithm of the maximum dilation rate

log2(dimax ). Due to the dilation concept, TCNs are theoretically able

to process sequences of any length without facing the problem

of vanishing or exploding gradients. The amount of dilation per

convolutional layer influences the receptive field P of a network

calculated as:

P = 1+ (λ − 1) · χ ·
∑

i

δi, (9)

where χ is the number of TCN blocks, λ is the filter length, and

δi is the dilation rate of the respective hidden layer. The example

in Figure 7 consists of one TCN block, the last dilation is denoted

as 4 and the filter size was set to 2. Using Equation (9) for dilated

convolutions results in a receptive field of length 8. Without the use

of dilated convolutions, the length of the receptive field would be 5

FIGURE 7

Visualization of a single TCN block χ for time series classification.

Each time step of the time series is taken as input (for better visibility

some points are removed from the example). With a filter size λ = 2,

two samples are convolved, respectively. In the following hidden

layers, the dilation ∈ [1,2,4] with a maximum dilation δ = 4 skips

several samples and increases the length of the receptive field.

with the same amount of parameters. The TCN has been evaluated

against LSTM and GRU on common sequence modeling datasets

and demonstrated comparable and often better performance across

the various tasks (Bai et al., 2018).

2.4.3. Extreme learning machines
Huang et al. (2004) proposed the extreme learning machine

(ELM) in which an input of lower dimensionality is mapped

into a high dimensional state space via a random mapping. The

random mapping is defined as Whx ∈ R
Nres×Nin+1 and Whx ∼

U(−0.5, 0.5) with U as uniform distribution and Nin,Nres ∈

N being the dimensionality of the input and the reservoir,

respectively. With these mappings, the hidden state h(t) at time t is

calculated as:

h(t) = f (Whxx
(t)), (10)

with x(t) as the input at time step t and f (·) as the activation

function. These mappings are collected for T ∈ N time steps and

then mapped to the correct output by calculating the weights of

the outputs Wyh. Within the scope of this work, we view the data

as a time-series to predict. We use the approach of Forney et al.

(2015), to learn Wc
yh

for each class c and predict the time series of

the validation dataset to classify by the lowest predictive error.
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2.5. Experimental setup

We studied the four RNN topologies introduced above, i.e., the

basic RNN, the GRU, the LSTM, and the ESN. Additionally, we

studied them in a bidirectional architecture and added the attention

concept. We also studied the three FFN topologies introduced

above, i.e., the Transformer-Encoder, the TCN, and the ELM.

Each of the network topologies are evaluated for intra-subject

classification tasks.

2.5.1. Datasets
We utilize three datasets to comparatively evaluate the

introduced methods. Two of those are known benchmarks in

the field of EEG analysis: the seizure and the DEAP dataset.

Furthermore, we added the much larger frequency entrainment

dataset since the feature learning effectiveness of deep neural

networks heavily depends on large training sets. We describe the

datasets as used in this study and based on the raw data, generated

from the mentioned measurements. In cases of frequency cut

offs done during the measurement, we report them but do not

use any additional statistics to imprint specific features into the

dataset that were not found by the neural networks themselves.

All datasets are available within the reported frequency ranges

and are not preprocessed any further. The filtering is oftentimes

done during the measurement procedure and can be part of the

recording process.

2.5.1.1. Seizure dataset

The seizure dataset includes five different classes (Tzallas et al.,

2009). Each class contains 100 single-channel EEG recordings.

Classes Z and O have been recorded from five healthy participants

with eyes opened and closed, respectively. Classes F and N are

measured at different brain regions, with F being recorded at

the epileptogenic zone and N being recorded at the hippocampal

formation, both without any seizures. Class S contains recordings

of actual seizures. We define three classification tasks of increasing

complexity for the seizure dataset, i.e., Task 1: S-Z, Task 2: S-N-Z,

and Task 3: S-N-O-F-Z, that have been studied before and therefore

allow for comparison with previous work (Tzallas et al., 2009).

2.5.1.2. DEAP dataset

The DEAP dataset is a public emotion recognition dataset

where 32 participants watched 40 1-min-long music videos while

their neural activity was recorded with a 32-channel EEG cap

(Koelstra et al., 2011). The electrodes were placed according to the

10–20 system. After watching the video, each participant was asked

to rate the strength of their emotions on a Likert scale from 1 to 9

according to four classes: arousal, dominance, liking, and valence.

Analogous to earlier studies, we derive four binary classification

problems, one per emotion, distinguishing between a low < 5 and

a high ≥ 5 emotion rating.

2.5.1.3. Frequency entrainment dataset

Salchow et al. (2016) published a study with 12 participants

stimulated by 20 different flickering light frequencies. The

flickering light was intended to investigate the individual resonance

and entrainment effects of the participants. Given the different

TABLE 1 Overview of the utilized datasets.

Frequency

Seizure DEAP entrainment

Sampling frequency [Hz] 173.61 128.00 1,000.00

Recorded EEG channels 1 32 122*

Number of classes 2, 3, 5 2 20

Bandpass filtering range [Hz] 0.53–40 4–45 2–30

Train:test split [%] 80:20*** 80:20** 70:30**

Participants – 32 9

Total training samples [tsd.]**** 4.0, 5.9, 9.8 1.7 110.0

Chance level [%] 50, 33, 20 58, 64 11

*We removed two channels of the originally 124 recorded due to an electrode problem. **We

used the recordings from a single participant for an initial hyper-parameter search with a

70:20:10 train, test, validation split. ***The best fitting hyper-parameter set was estimated

for Task 2 with a 70:20:10 train, test, validation split. ****Training samples are measured per

participant, the seizure dataset does not provide a participant wise splitting.

intrinsic brain oscillations of the participants leading to different

resonance and entrainment effects when using fixed stimulation

frequency for all participants, the actual stimulation frequency per

participant was chosen relatively to her or his individual alpha

frequency (α). The alpha frequency was measured before the actual

experiment. Each stimulation frequency was shown to a participant

a total of 30 times with 40 light flashes. Brain activity was recorded

using a 124-channel EEG. The data were recorded at a sampling rate

of 1 kHz and then filtered between 2 and 30Hz using a zerophase

Butterworth filter (Salchow et al., 2016) since the resonance and

entrainment phenomena are expected in this frequency range and

anything else is considered noise. The task for this dataset is to

classify the respective light frequency a participant was exposed to

based on the recorded EEG data. The task is especially challenging

since a trained classifier needs to distinguish between almost

identical frequencies, e.g., 0.50 × α and 0.55 × α. Moreover, the

different frequencies stimulate almost the same brain regions. For

higher frequencies above 1.30 × α, Salchow et al. (2016) describe

that participants notice the flash as a continuous light instead of a

flickering light, which makes it hard to distinguish between.

2.5.2. Preprocessing
Our evaluation differs from previous studies that often used

customized and dataset-specific features for classification, such as

Chen et al. (2019) and Du et al. (2020). However, in this study

we mainly focus on papers that also evaluate their method on

windowed signals. We argue that this approach, albeit possibly

yielding worse accuracy, reflects a more realistic scenario of

analyzing raw time series signals as model input. Therefore, we

trained all networks on raw EEG recordings that were solely

bandpass filtered to the frequency ranges reported in Table 1 to

remove frequencies unrelated to neural activity of interest (cp.

Section 2.2). We removed the distorted channels 42 and 63 from

the frequency entrainment dataset by comparing maximum signals

across all channels and selecting those that strongly deviated from

the average maximum. We assume that the problem arose from an

electrode failure and was present for all participants.
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TABLE 2 Hyper-parameter boundaries for Talos grid-search.

Parameter Lower boundary Upper
boundary

Window length 32 1,024

Window step size 1 512

Batch size 8 256

Learning rate 0.001 0.1

Momentum Disabled Enabled

Learning rate decay Disabled Enabled

Dropout ratio 0 0.7

Network depth 1 3

Hidden size 1 1,024

Dilation rate 8 64

Scaling factor 0.1 10

Number of heads 1 4

Leakage rate 0 1

Regularization coefficient 10−13 102

Density of the weight matrix 0 1

Spectral radius 0 1.5

2.5.3. Hyper-parameter tuning and training
We used the Kotila (2019) grid-search package to identify the

most suitable hyper-parameters per dataset. More specifically, we

used the recordings of one participant in a 70:20:10 train, test,

validation split to perform this search for the RNNs, the TCN,

and the Transformer-Encoder. We do not expect that the hyper-

parameters differ substantially when tuning them for another

participant, because of a similar data distribution. The standard

deviation, mean, maximum, and minimum values across all the

participants are in similar ranges and the recording procedure as

well as the task does not change across participants. Since the

seizure dataset provides only one dataset and is not divided per

participant, the hyper-parameter search was done for the 3 class

classification problem with the same split mentioned above. We

searched for an optimal setting of window length, window step

size, batch size, learning rate, momentum, learning rate decay,

dropout ratio, network depth, hidden size, dilation rate (TCN only),

scaling factor, and number of heads (Transformer-Encoder only).

We utilized grid search as hyper-parameter optimization strategy.

The upper and lower boundaries for each hyper-parameter are

shown in Table 2. Additionally, we optimized the hyper-parameters

for the ELM and the ESN based on a set of up to 100 randomly

seeded weight matrices. Thereby, we searched for the most suitable

parameterization of hidden size Nr , leakage rate γ , regularization

coefficient β , density of the weight matrix d(Whh) (ESN only),

and spectral radius ρ (ESN only). Table 3 shows the discovered

hyper-parameters per dataset.

The TCN and all recurrent networks except ESN were

trained using the Keras framework on Tesla V100 GPUs with

the SGD or Adam as optimizers. The Transformer-Encoder was

TABLE 3 Hyper-parameter selection for the utilized datasets.

Hyper-
parameter

Seizure DEAP Frequency
entrainment

Window length 1,024 1,024 256

Window step size 128 128 32

(Gated) RNN, TCN, and Transformer-Encoder

Batch size 64 16 64

Learning rate 0.1 0.001 0.001

Momentum – 0.9 0.8

Learning rate

decay

Yes No Yes

Optimizer* SGD/AdamW Adam/AdamW SGD/AdamW

Dropout ratio 0.4 0.5 0.4

Network depth 1 1 1

Hidden size**** 64 32 128

Number of

heads*****

1 1 1

Loss function Cross-entropy Cross-entropy Cross-entropy

δ** 16 32 16

dk*** 1.0 1.0 1.0

ESN and ELM

Nr 10 50/250 1000

γ 0/1 1 0

β****** 9.60 · 10−13 , 3.89 1 · 10−4 , 100 1 · 10−4

d(Whh) 0.5 0.5 0.5

ρ 0.995 0.995 0.995

*AdamW is applicable to the Transformer-Encoder. **Dilation rate is applicable to the

TCN. ***Scaling factor is applicable to the Transformer-Encoder. ****Hidden size for the

Transformer-Encoder corresponds to the feed-forward network. *****Number of heads only

applicable for the Transformer-Encoder. ******Different optima for Arousal, Valence as well

as Seizure 2, 3 and 5 and between ESN and ELM given as maximum and minimum found

optimal value.

implemented with PyTorch. For the Transformer-Encoder, we

used the AdamW optimizer, as this kind of network requires a

different learning strategy than the other presented networks (Popel

and Bojar, 2018). We noticed that the recurrent architectures

suffered from bad network initialization multiple times and did

not improve during training. This was especially the case for

the DEAP dataset and, thus, the training had to be restarted.

We did not observe this behavior during the training for

the Transformer-Encoder and the TCN. This phenomenon is

mentioned by other studies that describe a similar behavior

as a characteristic of training RNNs (Sutskever, 2013). That is

why we explain the poor training behavior by the nature of

RNNs rather than the chosen hyper-parameters based on one

specific participant.

To compare the classification capabilities of each of the

presented architectures, we used the accuracy metric. We applied

early stopping during each training with a patience of 50 epochs to

stop the training if the model does not improve anymore.
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TABLE 4 Previously studied deep learning EEG analysis methods grouped by dataset.

References EEG Ch. Preprocessing Signal representation Model topology Classes Accuracy (%)

DEAP (Koelstra et al., 2011)

Chen et al. (2019) 32 FFT PSD features Attention BiGRU 2 67.2

Yang and Liu (2019) 32 DE PSD features TCN 2 72.9

BCI competition IV (BCIIV, 2008)

Amin et al. (2020) 22 Raw Time series 1D-CNN 4 74.8

Physionet MI dataset (PhysMi, 2009)

Dose et al. (2018) 64 Raw Time series 1D-CNN 2/3/4 86.49/79.25/68.51

Zhang et al. (2019) 27 TFF Frequency bands + info Attention LSTM 2 83.2

SEED (SeedBci, 2013)

Yang et al. (2020) 62 Raw Time series BiLSTM 4 84.2

Du et al. (2020) 62 DE Frequency bands Attention LSTM 3 91.1

CMEED

Du et al. (2020) 30 DE Frequency bands Attention LSTM 2 91.5

– Proprietary –

Cai et al. (2018) 16 Raw Time series 1D-CNN + GRU 2 93.5

Keelawat et al. (2019) 12 Raw Time series CNN 2 73

Gao et al. (2019) 30 Raw Time series 1D-CNN 2 90.0

Shamwell et al. (2016) 64 Raw Time series 1D-CNN 2 AUC 0.72

Jeong et al. (2019) 30 Raw Time series 1D-CNN + LSTM 5 69.5

Kaushik et al. (2018) 14 DWT Frequency bands BiLSTM 6, 2 93.7, 97.5

Isuru Niroshana et al. (2019) 6 Raw Time series 1D-CNN + GRU 4 87.7

Bozhkov et al. (2016) 21 Raw Time series ESN+SVM 2 98.1

Sun et al. (2019) 5 Raw Time series FE-ESN 5 98.33

Model topologies aggregated by “+” indicate an approach combining both topologies. DE, differential entropy; DWT, discrete wavelet transform; TFF, time-frequency feature extraction; FFT,

fast fourier transform; PSD, power spectral density.

3. Evaluation

3.1. Status Quo in EEG classification with
deep learning

Automatic EEG time series analysis has gained an increasing

interest in recent years due to the success of deep learning in a wide

range of tasks (Gong et al., 2021). Various studies focused on EEG

classification and have proposed interesting approaches to tackle

the problem (cp. Table 4). Before transforming the recorded signals,

all considered primary studies applied filtering methods to remove

noise and restrict the analysis to relevant frequency ranges. The

most commonly used filter technique is bandpass filters. Various

different preprocessing methods like discrete wavelet transform

(DWT) and differential entropy (DE) have been proposed to

extract representations like different frequency bands from raw

EEG signals. However, the most common signal representations

are time series followed by selected frequency bands. Table 4

shows CNNs and LSTMs as the most prominently studied model

topologies. Yang et al. (2020) proposed a bidirectional LSTM for

EEG classification tasks. They found that bidirectional architectures

perform better for EEG analysis than LSTMs without this design.

The attention mechanism has also been studied in combination

with the LSTM topology to solve such tasks (Zhang et al., 2019;

Du et al., 2020). Both publications report that the attention

mechanism improves results by about 6–7% compared to LSTM

architectures without attention. A popular approach is to combine

two topologies, like CNN and LSTM. In this combination, the CNN

is used as a feature extractor that delivers the input to the LSTM

which classifies based on these features. Cai et al. (2018), Isuru

Niroshana et al. (2019), and Jeong et al. (2019) found that RNNs can

benefit when a CNN is applied as features extractor. But Cai et al.’s

results also indicate that the combined architecture reduces the

accuracy for some subjects. The most prominent datasets used by

the authors include DEAP (Koelstra et al., 2011), BCI competition

IV (BCIIV, 2008), PhysioNet (PhysMi, 2009), and SEED (SeedBci,

2013). Other publications evaluate their approaches on proprietary

datasets representing, e.g., MI tasks (Lu et al., 2017; Tang et al.,

2017; Cai et al., 2018) and emotion recognition (Choi and Kim,

2018; Keelawat et al., 2019). However, it is hard to compare the

performance of the proposed methods even for the same dataset

due to often varying experimental protocols like choosing specific
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EEG channels or reducing the number of classes to distinguish

between (Dose et al., 2018; Zhang et al., 2019). This often leads to

better performing models due to the removed channels and classes

which are hard to distinguish. The best accuracy on the DEAP

dataset was achieved by a TCN architecture with 72.9% (Yang and

Liu, 2019) for classificationwith windowed signals.Many reviews of

deep learning methods for EEG time series classification have been

published (Craik et al., 2019; Gong et al., 2021; Vallabhaneni et al.,

2021). However, none of them compare the reviewed methods with

respect to the same experimental setup. We argue that a systematic

comparison of the proposed as well as other deep learning methods

is required to evaluate their potential for EEG analysis and yield

guidelines for data scientists and researchers in this area.

3.2. Comparative evaluation

Table 5 shows our measured classification performance on the

test set of the three studied datasets (rows) for the seven network

topologies introduced in Section 2 (columns). We ordered datasets

and their tasks with increasing complexity from top to bottom in

Table 5. Since the frequency entertainment dataset is unbalanced

due to the different stimulation frequencies (cp. Section 2.5), we

included the F1-score for each model. The following paragraphs

discuss our results and observations with regards to the research

questions stated in Section 2.5.

We observe widely varying classification accuracies across the

different network topologies per dataset and task. In general, we

observe a better performance of feed-forward topologies compared

to recurrent topologies across most of the studied classification

tasks (cp. Table 5). Recurrent as well as feed-forward topologies

benefit from more advanced architectural concepts like gates in

the LSTM and GRU topologies, attention in the Transformer-

Encoder topology, or convolution in the TCN topology. These

more advanced topologies achieve superior performance compared

to less complex topologies, i.e., the basic RNN, the ESN, and the

ELM. Furthermore, the more advanced topologies suffer less from

a decreasing performance with growing input dimensionality, i.e.,

the number of analyzed channels, and problem complexity, i.e.,

the number of predicted classes. However, the advanced topologies

performed better during the training and oftentimes achieved 95%

and higher training accuracy values, but could not generalize well

on the test set. This behavior indicates that these models overfitted.

Nonetheless, reducing the model size and depth reduced the

overfitting problem, but also led to lower validation performance.

When comparing the model parameters as shown in Table 6, we

notice that larger models performed overall better in comparison to

smaller ones. Nonetheless, when searching for the best possible set

of hyper-parameters (cp. Table 2), even models larger than the ones

reported in this work did not yield better results. Thus, we argue

that the number of trainable parameters is not directly related to

the overall performance of the model.

3.2.1. RQ1: Recurrent topologies
A direct comparison of all recurrent networks shows that the

basic RNN and the ESN yield the lowest accuracy across the

different datasets and tasks. The basic RNN cell does not achieve

results comparable to the other presented methods on seizure

Task 1. Furthermore, the basic RNN shows a notable performance

reduction with an increasing number of classes for the seizure tasks

as well as worse performance on the other, higher dimensional

datasets. Similar to LSTM and GRU, the ESN achieves 100%

accuracy on the least complex seizure Task 1. However, we observe

substantial performance deficits for all the other tasks, with an

overall lower accuracy than the basic RNN. We expected the ESN

to perform better than the basic RNN since Chattopadhyay et al.

(2019) and Vlachas et al. (2020) have shown that the ESN is

comparable with the LSTM and GRU on time series prediction.

This was not the case for any of the evaluated datasets. We argue

that the ESN’s non-iterative learning approach is not sufficient

to learn important features to distinguish between more similar

classes. For the gated recurrent networks, we observe that the

GRU and LSTM consistently outperform the basic RNN as well

as the ESN across all classification tasks demonstrating that their

advanced control of information flow allows them to better adapt

to high dimensional EEG time series. When comparing GRU and

LSTM, we observe a better performance for the GRU across all

datasets. For the DEAP as well as the frequency entrainment

datatset we tested whether the differences between both cells are

significant by applying a statistical t-test. However, the results are

not significantly different when comparing both cells directly. As

already stated by some studies, GRU and LSTM perform similar

and it is more important to find the best working parameter set

than choosing the architecture (Chung et al., 2014). Nevertheless,

we consider GRU superior compared to LSTM due to the lower

number of model parameters (cp. Table 6).

3.2.2. RQ2: Feed-forward topologies
Overall, feed-forward topologies yield better performance than

recurrent topologies. We observe similar performance trends for

the ELM comparable to the basic RNN and the ESN. The ELM

cannot compete with self-attention and convolutional approaches

and performs substantially worse on the other investigated tasks.

Surprisingly the ELM achieved the best performance for the

DEAP arousal task. However, since the ELM follows a comparable

training process as the ESN, we argue that the full batch

learning approach is not suitable for high-dimensional hard to

distinguish EEG recordings as the results show for our frequency

entrainment dataset.

The recently proposed Transformer-Encoder is designed to

take advantage of large amounts of data with the dataset used

in Vaswani et al. (2017) being distinctly larger than the training

datasets used in our study. While for the Task 1 and 2 of the

seizure dataset the Transformer-Encoder performed well compared

to other approaches, its accuracy notably drops for Task 3 with five

classes to differentiate. We argue that the complexity of the third

task, paired with the relatively low amount of training data resulted

in the low accuracy. We observe a similar behavior for the DEAP

dataset. However, the results from our frequency entertainment

dataset demonstrate the true potential of Transformer-Encoder

networks. Though having a higher input dimensionality in terms

of analyzed EEG channels, the Transformer-Encoder is capable to
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TABLE 5 Accuracy (%) of di�erent neural network topologies for multiple EEG datasets.

Recurrent networks Feed-forward networks

Dataset Basic RNN LSTM GRU ESN Transformer TCN ELM

Seizure

Task 1: S-Z 93.16 100.00 100.00 100.00 100.00 100.00 81.58

Task 2: S-N-Z 72.28 97.56 97.72 34.48 80.17 98.27 44.83

Task 3: S-N-O-F-Z 58.20 63.52 68.88 44.90 58.41 90.37 45.92

DEAP

Emotion class: arousal 65.23 67.78 68.97 68.75 66.12 65.36 70.31

Emotion class: valence 61.42 68.06 68.40 53.12 63.09 62.01 64.06

Frequency entrainment

Accuracy 56.65 68.32 73.72 14.44 77.90 82.33 17.72

F1-Score 59.05 68.67 73.90 12.60 73.53 82.46 15.98

The best performing architectures for a specific task are marked in bold.

TABLE 6 Model parameters for each architecture and dataset in [tsd.].

Network
topology

Seizure DEAP Frequency
entrainment

Basic RNN 4.3, 4.4, 4.5 2.2 35.2

LSTM 17.2, 17.3, 17.4 8.6 132

GRU 12.9, 13, 13.1 6.5 99

ESN 0.01 1.4 137

Transformer-

Encoder

152, 217, 346 74 738

TCN 672 105 1,396

ELM 0.01 2.7/9.2 22.3

Attention LSTM 152, 217, 349 76 793

Bidirectional LSTM 34.4, 34.6, 34.9 17.2 263

Attention +

bidirectional LSTM

304, 435, 697 152 1,585

outperform the previously discussed topologies yielding a 4.18%

higher accuracy than the GRU architecture and achieving the

second-best result across all topologies. We hypothesize that the

results of the Transformer-Encoder can be further improved when

having sufficient and rich training samples. The TCN, as another

feed-forward approach, yields a rather constant performance across

all investigated datasets. It achieves the highest accuracy across all

studied topologies for most of the tasks. As observed for the other

architectures, the accuracy of the TCN decreases with increasing

problem complexity. This behavior is demonstrated by the achieved

accuracies for the different seizure tasks. Based on the results for

the seizure dataset, we argue that the TCN is capable of extracting

features even on a small number of training samples and can

overcome the limitations of the Transformer-Encoder topology

which requires a large number of training samples. For the DEAP

dataset, we observe that the TCN and Transformer-Encoder had

problems to distinguish between high and low emotion classes

and stayed almost at guessing for the DEAP emotion task. We

hypothesize, that the information about the emotion is present in

frequency ranges the TCN may cannot recognize well. In contrast,

one specific property of recurrent architectures is, that they usually

forget important information laying far in the past. This property

makes RNNs sensible to higher frequency ranges and one can argue

that emotions are recognizable in higher frequency ranges. Zheng

and Lu (2015) confirms this finding.

3.2.3. RQ3: Advanced architectural concepts
We extended the previously trained LSTM with an attention

mechanism, used it in a bidirectional setup, and studied

both extensions simultaneously. Table 7 reports results of these

experiments. For all tested datasets, attention yielded an increase

in accuracy with the largest being an 24.75% increase for seizure

Task 3. This is comparable to the TCN for this task and achieves

the best results for the seizure Task 2. For the DEAP and

the frequency entrainment datasets, we also observe significant

accuracy improvements compared to the LSTM without attention.

Some previous studies report a slight performance improvement

when the LSTM cell is used in a bidirectional setup (Ni et al., 2017).

In contrast, we observed a 0.01–2.81% degraded performance

across all datasets except seizure Task 2 when applying this

architecture. The benefit of the bidirectional setup heavily depends

on the task and we argue that a ’look-ahead’ may be highly

beneficial for sequence to sequence tasks like machine translation

but is of less help when predicting a class based on a full

sequence. The combination of attention and bidirectional setup

yields an improved performance across most of the investigated

datasets. However, for all seizure tasks as well as the frequency

entrainment datatset, the performance is lower than that observed

for the attention mechanism alone. Surprisingly, for the DEAP

task, the combination of attention and bidirectional setup yielded

an increased performance. We hypothesize that the combination

of both, attention and bidirectionality can be beneficial for some

EEG classification tasks. However, the doubled number of weights

due to the bidirectional LSTM (cp. Table 6) can negatively impact
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TABLE 7 Accuracy (%) for di�erent LSTM variations compared to the TCN.

LSTM variations

Dataset – Attention Bidirectional Attent.+ bidirect. TCN

Seizure

Task 1: S-Z 100.00 100.00 100.00 100.00 100.00

Task 2: S-N-Z 97.56 98.57 (+1.01) 98.14 (+0.58) 95.55 (-2.01) 98.27

Task 3: S-N-O-F-Z 63.52 88.27 (+24.75) 60.71 (-2.81) 86.22 (+22.70) 90.37

DEAP

Emotion class: arousal 67.78 76.64a (+8.86) 68.77 (-0.01) 77.26
a (+9.48) 65.36

Emotion class: valence 68.06 77.07a (+9.01) 67.97 (-0.09) 77.43
a (+9.37) 62.01

Frequency entrainment

Accuracy 68.32 69.84 (+1.52) 68.09 (–0.23) 69.78 (+1.44) 82.33

F1-Score 68.67 69.97 (+1.30) 68.85 (+0.18) 69.98 (+1.31) 82.46

The colored numbers indicate the difference in comparison to an LSTM cell without the different applied mechanisms. Lower case letter (a) next to the reported value indicates significant

differences between LSTM without mechanisms and the different variations. The best performing architectures for a specific task are marked in bold.

the model performance and shows only minor improvements

compared to the model only utilizing attention.

3.3. Limitations

Determining the best-performing model configuration

via hyper-parameter tuning is typically an expensive and

time-consuming activity. We tuned the hyper-parameters for

the RNNs, TCN, and Transformer-Encoder as described in

Section 2.5, but did not perform an additional optimization for

the RNNs with attention and the bidirectional setup. Therefore,

it is possible that some of the parameters still could be optimized

and improved. However, we do not expect a substantial change

in the results and argue that we only compared for differences

among the topologies rather than absolute accuracy. Other studies

mentioned handcrafted feature extraction methods for EEG time

series analysis. We did not further investigate time-consuming and

subjective methods to extract the best possible features. Therefore,

it might be possible to achieve better absolute performance with

such specifically tailored feature extraction methods.

Based on Transformers, a multitude of extensions of the

approach were proposed in recent years, e.g., Dai et al. (2019)

and Zhou et al. (2021), which circumvent problems regarding

the memory usage and the length of the input. With both of

these approaches being designed for time-series prediction and in

comparison small training size we do not expect an improvement

in using these advancements of Transformers. We reiterate our

assumption that the Transformer could achieve better results with

more training data.

Given the low amplitude of the EEG signal, the recordings are

prone to noise. Depending on the strength of the noise it is possible

that it could have a negative impact on the topologies. We did not

insert additional noise or remove parts of the signals to test the

robustness of each model. Lim et al. (2021) shows that the accuracy

of RNN topologies can drop when a strong noise is added to the

dataset. Zanghieri et al. (2019) and Zhang and Wu (2019) indicate

that FFNs are not that much influenced when noise is added to

the signal. However, we do not expect that other EEG recordings

differ much from the ones presented in our study. All investigated

datasets are not further preprocessed to remove the noise recorded

during the experiments.

3.4. Future research

The proposed methods are still among the best performing

topologies for deep learning tasks. However, there are other

interesting architectural concepts which are not investigated in this

work. These are especially brain-inspired intelligence approaches

such as spiking neural networks (Tavanaei et al., 2019). Lately

published studies such as SAM (Yang et al., 2022a), Spike-

Based Continual Meta-Learning (Yang et al., 2022c), or ensemble

models (Yang et al., 2022b) are promising methods to solve

neuroscientific problems.

As previously mentioned, EEG time series prediction has many

difficulties (Vallabhaneni et al., 2021). Recently published learning

and regularization strategies have shown to improve the learning

process of the neural networks presented in this work. Such

strategies can be Hamilton-Jacobi-Bellman equations (Reddy et al.,

2018), Curiculum Learning (Teutsch andMäder, 2022), or Synaptic

Scaling (Hofmann and Mäder, 2021). These learning approaches

could help to reduce the overfitting which was observable during

our experiments and could be further investigated.

Lastly, these models could be compared with respect

to other metrics such as robustness with erroneous EEG

signal recordings which are sometimes overlooked during

the preprocessing.

4. Conclusions

In this paper, we trained ten different state-of-the-art neural

network model topologies and methods and compared their

results on the popular seizure dataset, the emotion dataset

DEAP as well as the larger frequency entrainment dataset. More

specifically, we compared models’ classification performance on
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deep recurrent architectures for time series classification including

GRUs, LSTMs, and ESNs as well as on feed-forward architectures

like Transformer-Encoders, TCN, and ELMs. The experimental

results indicate that the TCN yields better performance for EEG

time series data compared to RNNs and is less dependent on a

high number of training examples, which are required for the

Transformer-Encoder. In general, all feed-forward architectures

were easier to train. As described in Section 3, networks with

recurrence suffered from bad initialization which led to no

learning progress. This behavior was not observed for feed-forward

networks. We argue, that our results justify the use of feed-forward

topologies like TCN and the Transformer-Encoder in contrast

to previous standard topologies which utilize recurrence or high

dimensional random mappings (RQ1 and RQ2). Furthermore,

we investigated the influence of bidirectional and attention

mechanisms as these were previously proposed by individual

studies. We found that the attention mechanism increases the

LSTM’s performance for all studied datasets and achieved even

better results than the TCN in some experiments. In contrast,

the bidirectional mechanism had a negative impact on our

results and the LSTM cell did not benefit from calculating the

sequence forward and backwards in time. We also noticed that

the combination of both mechanisms does not always improve the

model performance but requires more memory since the model

parameters are doubled due to the bidirectionality. Thus, we do

not recommend applying bidirectional mechanism to RNNs for

EEG time series classification (RQ3). We evaluated all architectures

on raw signals without handcrafted feature extraction for all the

datasets. Our results show that it is possible to solve different

tasks without major adjustments to the training pipeline. However,

for all presented datasets we had to deal with the overfitting

problem and could not reach the best performance on the DEAP

dataset, compared to other methods that use hand-crafted features

for classification.
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