144,858 research outputs found

    A 5D Building Information Model (BIM) for Potential Cost-Benefit Housing: A Case of Kingdom of Saudi Arabia (KSA)

    Get PDF
    The Saudi construction industry is going through a process of acclimatizing to a shifting fiscal environment. Due to recent fluctuations in oil prices, the Saudi construction sector decided to adjust to current trade-market demands and rigorous constitutional regulations because of competitive pressures. This quantitative study assesses and compares existing flat design vs. mid-terrace housing through cost estimation and design criteria that takes family privacy into consideration and meets the needs of Saudi Arabian families (on average consisting of seven members). Five pilot surveys were undertaken to evaluate the property preference type of Saudi families. However, Existing models did not satisfy the medium range family needs and accordingly a 5D (3D + Time + Cost) Building Information Modelling (BIM) is proposed for cost benefiting houses. Research results revealed that mid-terrace housing was the best option, as it reduced land usage and construction costs. While, 5D BIM led to estimate accurate Bill of Quantities (BOQ) and the appraisal of construction cost

    A systematic approach for monitoring and evaluating the construction project progress

    Get PDF
    A persistent problem in construction is to document changes which occur in the field and to prepare the as-built schedule. In current practice, deviations from planned performance can only be reported after significant time has elapsed and manual monitoring of the construction activities are costly and error prone. Availability of advanced portable computing, multimedia and wireless communication allows, even encourages fundamental changes in many jobsite processes. However a recent investigation indicated that there is a lack of systematic and automated evaluation and monitoring in construction projects. The aim of this study is to identifytechniques that can be used in the construction industry for monitoring and evaluating the physical progress, and also to establish how current computer technology can be utilised for monitoring the actual physical progress at the construction site. This study discusses the results of questionnaire survey conducted within Malaysian Construction Industry and suggests a prototype system, namely Digitalising Construction Monitoring (DCM). DCM prototype system integrates the information from construction drawings, digital images of construction site progress and planned schedule of work. Using emerging technologies and information system the DCM re-engineer the traditional practice for monitoring the project progress. This system can automatically interpret CAD drawings of buildings and extract data on its structural components and store in database. It can also extract the engineering information from digital images and when these two databases are simulated the percentage of progress can be calculated and viewed in Microsoft Project automatically. The application of DCM system for monitoring the project progress enables project management teams to better track and controls the productivity and quality of construction projects. The use of the DCM can help resident engineer, construction manager and site engineer in monitoring and evaluating project performance. This model will improve decision-making process and provides better mechanism for advanced project management

    Material Thermal Inputs of Iowa Materials for MEPDG, 2011

    Get PDF
    The thermal properties of concrete materials, such as coeffi cient of thermal expansion (CTE), thermal conductivity, and heat capacity, are required by the MEPDG program as the material inputs for pavement design. However, a limited amount of test data is available on the thermal properties of concrete in Iowa. The default values provided by the MEPDG program may not be suitable for Iowa concrete, since aggregate characteristics have signifi cant infl uence on concrete thermal properties

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    Dynamic Energy Management

    Full text link
    We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar

    A New Efficient Stochastic Energy Management Technique for Interconnected AC Microgrids

    Full text link
    Cooperating interconnected microgrids with the Distribution System Operation (DSO) can lead to an improvement in terms of operation and reliability. This paper investigates the optimal operation and scheduling of interconnected microgrids highly penetrated by renewable energy resources (DERs). Moreover, an efficient stochastic framework based on the Unscented Transform (UT) method is proposed to model uncertainties associated with the hourly market price, hourly load demand and DERs output power. Prior to the energy management, a newly developed linearization technique is employed to linearize nodal equations extracted from the AC power flow. The proposed stochastic problem is formulated as a single-objective optimization problem minimizing the interconnected AC MGs cost function. In order to validate the proposed technique, a modified IEEE 69 bus network is studied as the test case

    Management by Trajectory: Improving Predictability for Airspace Operations

    Get PDF
    In the present-day National Airspace System, the air traffic management system attempts to predict the trajectory for each flight based on the flight plan and scheduled or controlled departure time. However, gaps in trajectory data and models, coupled with tactical control actions that are not communicated to automation systems or other stakeholders, lead to trajectory predictions that are less accurate than they could be. This affects traffic flow management performance. Management by Trajectory (MBT) is a NASA concept for air traffic management in which every flight operates in accordance with a 4D trajectory that is negotiated between the airspace user and the FAA to account for the airspace users goals while complying with NAS constraints. The primary benefit of MBT is an improvement in system performance due to increased trajectory predictability and stability, which result from managing traffic in all four dimensions (2D route, vertical, and time), ensuring that changes to the flights trajectory are incorporated into the assigned trajectory, and utilizing improved time or arrival control standards. Importantly, the performance improvements support increasing efficiency without increasing collision risk. This paper provides an overview of MBT and describes fast-time simulation results evaluating the safety, performance, and efficiency effects of MBT
    • …
    corecore