466 research outputs found

    Loss-resilient Coding of Texture and Depth for Free-viewpoint Video Conferencing

    Full text link
    Free-viewpoint video conferencing allows a participant to observe the remote 3D scene from any freely chosen viewpoint. An intermediate virtual viewpoint image is commonly synthesized using two pairs of transmitted texture and depth maps from two neighboring captured viewpoints via depth-image-based rendering (DIBR). To maintain high quality of synthesized images, it is imperative to contain the adverse effects of network packet losses that may arise during texture and depth video transmission. Towards this end, we develop an integrated approach that exploits the representation redundancy inherent in the multiple streamed videos a voxel in the 3D scene visible to two captured views is sampled and coded twice in the two views. In particular, at the receiver we first develop an error concealment strategy that adaptively blends corresponding pixels in the two captured views during DIBR, so that pixels from the more reliable transmitted view are weighted more heavily. We then couple it with a sender-side optimization of reference picture selection (RPS) during real-time video coding, so that blocks containing samples of voxels that are visible in both views are more error-resiliently coded in one view only, given adaptive blending will erase errors in the other view. Further, synthesized view distortion sensitivities to texture versus depth errors are analyzed, so that relative importance of texture and depth code blocks can be computed for system-wide RPS optimization. Experimental results show that the proposed scheme can outperform the use of a traditional feedback channel by up to 0.82 dB on average at 8% packet loss rate, and by as much as 3 dB for particular frames

    Object-based coding for plenoptic videos

    Get PDF
    A new object-based coding system for a class of dynamic image-based representations called plenoptic videos (PVs) is proposed. PVs are simplified dynamic light fields, where the videos are taken at regularly spaced locations along line segments instead of a 2-D plane. In the proposed object-based approach, objects at different depth values are segmented to improve the rendering quality. By encoding PVs at the object level, desirable functionalities such as scalability of contents, error resilience, and interactivity with an individual image-based rendering (IBR) object can be achieved. Besides supporting the coding of texture and binary shape maps for IBR objects with arbitrary shapes, the proposed system also supports the coding of grayscale alpha maps as well as depth maps (geometry information) to respectively facilitate the matting and rendering of the IBR objects. Both temporal and spatial redundancies among the streams in the PV are exploited to improve the coding performance, while avoiding excessive complexity in selective decoding of PVs to support fast rendering speed. Advanced spatial/temporal prediction methods such as global disparity-compensated prediction, as well as direct prediction and its extensions are developed. The bit allocation and rate control scheme employing a new convex optimization-based approach are also introduced. Experimental results show that considerable improvements in coding performance are obtained for both synthetic and real scenes, while supporting the stated object-based functionalities. © 2006 IEEE.published_or_final_versio

    Improved inter-layer prediction for Light field content coding with display scalability

    Get PDF
    Light field imaging based on microlens arrays - also known as plenoptic, holoscopic and integral imaging - has recently risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable coding solution is essential. In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the authors' previous scalable codec.info:eu-repo/semantics/acceptedVersio

    Adaptive delivery of immersive 3D multi-view video over the Internet

    Get PDF
    The increase in Internet bandwidth and the developments in 3D video technology have paved the way for the delivery of 3D Multi-View Video (MVV) over the Internet. However, large amounts of data and dynamic network conditions result in frequent network congestion, which may prevent video packets from being delivered on time. As a consequence, the 3D video experience may well be degraded unless content-aware precautionary mechanisms and adaptation methods are deployed. In this work, a novel adaptive MVV streaming method is introduced which addresses the future generation 3D immersive MVV experiences with multi-view displays. When the user experiences network congestion, making it necessary to perform adaptation, the rate-distortion optimum set of views that are pre-determined by the server, are truncated from the delivered MVV streams. In order to maintain high Quality of Experience (QoE) service during the frequent network congestion, the proposed method involves the calculation of low-overhead additional metadata that is delivered to the client. The proposed adaptive 3D MVV streaming solution is tested using the MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) standard. Both extensive objective and subjective evaluations are presented, showing that the proposed method provides significant quality enhancement under the adverse network conditions

    System architecture for free-viewpoint video and 3D-TV

    Full text link

    A Novel Macroblock Level Rate Control Method for Stereo Video Coding

    Get PDF
    To compress stereo video effectively, this paper proposes a novel macroblock (MB) level rate control method based on binocular perception. A binocular just-notification difference (BJND) model based on the parallax matching is first used to describe binocular perception. Then, the proposed rate control method is performed in stereo video coding with four levels, namely, view level, group-of-pictures (GOP) level, frame level, and MB level. In the view level, different proportions of bitrates are allocated for the left and right views of stereo video according to the prestatistical rate allocation proportion. In the GOP level, the total number of bitrates allocated to each GOP is computed and the initial quantization parameter of each GOP is set. In the frame level, the target bits allocated to each frame are computed. In the MB level, visual perception factor, which is measured by the BJND value of MB, is used to adjust the MB level bit allocation, so that the rate control results in line with the human visual characteristics. Experimental results show that the proposed method can control the bitrate more accurately and get better subjective quality of stereo video, compared with other methods
    • …
    corecore