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I 

Abstract 

Three-dimensional technology, more commonly referred to as 3D technology, has 

revolutionised many fields including entertainment, medicine, and communications to 

name a few. In addition to 3D films, games, and sports channels, 3D perception has 

made tele-medicine a reality. By the year 2015, 30% of the all HD panels at home will 

be 3D enabled, predicted by consumer electronics manufacturers. Stereoscopic 

cameras, a comparatively mature technology compared to other 3D systems, are now 

being used by ordinary citizens to produce 3D content and share at a click of a button 

just like they do with the 2D counterparts via sites like YouTube.  But technical 

challenges still exist, including with autostereoscopic multiview displays. 3D content 

requires many complex considerations--including how to represent it, and deciphering 

what is the best compression format--when considering transmission or storage, 

because of its increased amount of data. Any decision must be taken in the light of the 

available bandwidth or storage capacity, quality and user expectations. Free viewpoint 

navigation also remains partly unsolved. The most pressing issue getting in the way of 

widespread uptake of consumer 3D systems is the ability to deliver 3D content to 

heterogeneous consumer displays over the heterogeneous networks. Optimising 3D 

video communication solutions must consider the entire pipeline, starting with 

optimisation at the video source to the end display and transmission optimisation. 

Multi-view offers the most compelling solution for 3D videos with motion parallax and 

freedom from wearing headgear for 3D video perception. Optimising multi-view video 

for delivery and display could increase the demand for true 3D in the consumer market. 

This thesis focuses on an end-to-end quality optimisation in 3D video 

communication/transmission, offering solutions for optimisation at the compression, 

transmission, and decoder levels.  
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Chapter 1: Introduction 
This chapter introduces the content and layout of the thesis, and the aims and objectives 

of the research. In addition, it provides a list of the research publications made by the 

author and summarises the research contributions made in each chapter. A summary of 

the content of the following chapters is also presented.  

1.1 Overview 

3D videos have gained considerable attention from the general public in the last decade. 

Major blockbusters are grossing an ever increasing amount of their revenue from 3D 

films. In the past few years, 3D displays have made it to people’s living rooms. There 

are exclusive 3D channels broadcast. 3D capturing cameras are now widely available 

for amateur film makers and hobbyists to create their own 3D videos. Video hosting 

sites such as YouTube now allow the general public to upload and share their videos in 

3D.  

However, there is still a long way to go. First of all, the 3D videos created are mostly 

stereoscopic, which requires users to wear a headgear to perceive 3D. In addition to the 

discomfort of wearing these headgears, stereoscopic videos cause eye-fatigue when 

watched for too long. There is still a vacuum of content available to the end users. 

Transmission of 3D video content requires more bandwidth compared to its 2D 

predecessor because of the additional view(s).  

The lack of motion parallax in stereoscopic 3D videos is another disadvantage that 

prevents the viewer from fully immersing in the video. Multi-view auto-stereoscopic 

3D videos solve the parallax problem but increase the amount of video content that is 
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proportionate to the number of additional views. In addition, the capture of multi-view 

videos requires complex camera calibration and synchronisation.  

While the broadcast of 3D videos over existing terrestrial networks is already in place 

and practised in many developed countries, the video quality is compromised in order 

to fit the stereoscopic content into the existing channels, which were designed for high 

definition 2D videos. There are still gaps in designing a practical transmission scheme 

for multi-view video content.  

Internet, a heterogeneous network of networks, with increasing bandwidth and speeds, 

has already changed people’s viewing habits. People like to watch what they want and 

when they want to instead of waiting for strict broadcast schedules. The concept is 

commonly referred to as On-Demand TV. Most broadcasters now have their own On-

Demand streaming options available online, such as iPlayer, 4oD, and Demand 5 from 

BBC, Channel 4, and Channel 5, respectively, to name a few. There are independent 

On-Demand video content providers that are now competing with broadcasters such as 

NetFlix, LoveFilm, BlinkBox and Now TV. This change is reflected in the new Smart 

TVs which come with internet connectivity for on demand content.  

Moreover, other immersive displays are emerging in the market, including the 4kHD 

and Ultra-HD. These displays provide at least 4 times the current high definition video 

quality. The production, transmission, and display of such systems is far less 

complicated than 3D videos.  

For 3D videos to be able to compete with such systems and to secure its future, it must 

be able to offer a competitive advantage. While 3D perception might be the unique 
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selling point, stereoscopic videos will not deliver that market share due to the 

restrictions and reduced quality of videos associated with it. 3D videos must provide 

glasses-free and comfortable viewing with an immersive motion parallax. Multi-view 

video with auto-stereoscopic displays could be one potential solution, if streaming was 

easy and straightforward, and content generation was not so complicated and 

expensive. The added benefit of allowing users to change their viewing angles in free-

view-point TV (FTV) adds to its competitive advantage.  

This research focuses on end-to-end quality optimisation in 3D videos over 

heterogeneous networks. This research analyses the different 3D video systems 

currently available and under research. It explores the most promising technology—

multi-view 3D videos—from compression, transmission and display angles. The 

complete pipeline, shown in Figure 1.1, is considered to find solutions for 3D video 

optimisation and delivery, from choosing the correct codec and transmission methods 

to reducing the number of cameras needed for capturing 3D video content.  

 

Figure 1.1: 3D video communication pipeline. 

In the video capture stage, the most pressing challenge is the complexity of camera 

setup which is directly proportionate to the number of cameras needed. The challenge 

at the compression stage is related to the challenge of the video capture. We have a 

large amount of data that needs to encoded. The solution presented in this thesis for 
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these two stages is the utilisation of virtual view rendering techniques to reduce the 

number of cameras. This directly affects the compression stage, increasing the 

efficiency of the multi-view video coding, which as demonstrated in chapter 3 

efficiently exploits inter-view redundancies to reduce the amount of data to be 

stored/transmitted with negligible effect on video quality.  

Transmission errors in one view of a multi-view video propagate to other views which 

negatively affect the video quality. One of the solutions presented in the thesis is the 

use of multi-session transmission to contain errors only within parts of the bitstream 

that can easily be recovered or to frames that do a negligible effect on the video quality. 

This solution is complemented by the study of variable packet sizes in congested 

wireless networks which is also presented in this thesis.  

3D displays currently available include the multi-view autostereoscopic systems that 

do not require the user to wear glasses for 3D perception. It has the potential for 

widespread adaptation by the general public. However, due to the lack of content for 

such displays, their use is very limited. The solutions presented in this thesis are aimed 

at the increased adaptation of the multi-view autostereoscopic displays by means of 

reducing the complexity of video capture, increasing the coding efficiency and 

improving the error resilience of the multi-view video bitstream during transmission.  

1.2 Research Aims 

The aim of this research is to analyse the 3D video transmission pipeline and optimise 

each section from end-to-end. The process starts with the compression of 3D videos 

and the current state-of-the art codec. The choices made at this stage affect the whole 
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pipeline, including transmission and display. The transmission over heterogeneous 

networks is then analysed, and different protocols are tested, before moving to codec 

optimisation. The end-to-end analysis of the transmission pipeline gives us the full 

picture and puts us in a unique position to offer optimisation solutions for the entire 

pipeline. Only by understanding the full transmission pipeline can one understand the 

specific challenges and study the opportunities available.  

Multi-view video offers numerous advantages and is, currently, the only viable option 

for implementing free-view-point TV. Optimising the compression, transmission and 

display of multi-view videos will pave the way for increasing the demand for 3D videos 

and improve the quality of viewing experience.  

The following list summarises the aims and objectives of the research: 

 Survey the state of the end-to-end video systems and how they work together to 

provide users quality of experience;  

 Understand the challenges in 3D video communication and devise solutions to 

resolve them; 

 Analyse compression techniques currently available and understand how they 

affect the communication pipeline in 3D videos; 

 Study the transmission of 3D videos over heterogeneous networks and offer 

solutions that could improve the transmission eco-system; 

 Devise solutions for the entire pipeline taking the encoder/decoder, transmission 

and displays into account.  
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1.3 Publications 

The publications published during this research are listed below. 

1.3.1 Journal Publications  

I. Nawaz, Muhammad, John Cosmas, Pavlos I. Lazaridis, Zaharias D Zaharis, Yue 

Zhang, and Hamdullah Mohib, "Precise Foreground Detection Algorithm 

Using Motion Estimation, Minima and Maxima Inside the Foreground 

Object," Broadcasting, IEEE Transactions on , vol.59, no.4, pp.725,731, Dec. 

2013  

II. Mohib, Hamdullah, Abdul H. Sadka, “Multi-Session Transmission of Multi-

view Video”, Electronic Letter, IET,  (submitted)  

III. Mohib, Hamdullah, Abdul H. Sadka, “Decoder based virtual view rendering 

for multi-view video”, Image and Vision Computing, Elsevier (submitted) 

1.3.2 Conference Papers 

I. Mohib, Hamdullah, Abdul H. Sadka, and Mohammad R. Swash. "Multi-

session transmission of H. 264/MVC over heterogeneous IP networks." 

In Broadband Multimedia Systems and Broadcasting (BMSB), 2013 IEEE 

International Symposium on, pp. 1-6. IEEE, 2013. 

II. Mohib, Hamdullah, Mohammad R. Swash, and Abdul H. Sadka. "Multi-view 

video delivery over wireless networks using HTTP." In Communications, Signal 

Processing, and their Applications (ICCSPA), 2013 1st International 

Conference on, pp. 1-5. IEEE, 2013. 
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III. Sadka, Abdul, Hamdullah Mohib, Abdulkareem Ibrahim, and Mohd. M. 

Salzali, “Compression of 3D Stereoscopic Video Using ITU-T H.264/AVC” In 

Second Abu Dhabi University Annual Research Conference, 2013 

IV. Mohib, Hamdullah, and Abdul H. Sadka, “Quality Optimisation in 3D Video 

Communication over Heterogeneous Networks”, in Research Student 

Conference School of Engineering and Design, ResCon12, Brunel University, 

2012 

V. Mohib, Hamdullah, and Abdul H. Sadka, “The Effect of Transmission Errors 

in IP Networks On the Perceived Quality of Multi-view Video”, Research 

Student Conference School of Engineering and Design, ResCon13, Brunel 

University, June 2013  

1.4 Research Contributions 

The research contributions made in this thesis are listed below, in the order of chapters 

in this thesis: 

I. A detailed literature survey of 3D video systems with current challenges.  

II. Comparison and evaluation of simulcast compression and multi-view 

compression techniques.  

III. Investigation of the effects of variable packet sizes on transmission in congested 

wireless IP networks. 

IV. Investigation of multi-session transmission in multi-view video for increased 

protection against transmission errors and adaptive video transmission 

depending on channel conditions and end-point decoding capabilities.  
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V. Utilisation of virtual view rendering techniques to improve multi-view codec 

efficiency and evaluation of their execution complexities.  

1.5 Thesis Outline 

This thesis is organised into seven chapters and five appendices. Chapter 1 lays the 

foundation for the entire thesis. It introduces the research topic, its aims and objectives. 

It also provides an overview of the research contributions and lists the research 

publications and conferences attended.  

Chapter 2 provides an overview of end-to-end 3D video systems. Through an extensive 

literature survey, it lists the contribution of the research community in the area of 3D 

videos and the communication pipeline. The chapter starts with providing an 

understanding of how 3D is perceived and the different techniques used to represent 3D 

videos. It then explains the state-of-the-art in 3D displays, including the displays that 

are currently under research. It then discusses the transmission of 3D videos and the 

contributions the research community has made to this area. A detailed survey of 3D 

video transmission in terrestrial broadcast is given, followed by an introduction to 

transmission over the internet. Challenges that the 3D video systems currently face are 

discussed.  

Chapter 3 provides an understanding of compression techniques in 3D videos. The 

current state-of-the-art codec, the Multi-view Video Coding (MVC) extension of the 

H.264 Advanced Video Coding (AVC), is explained in relation to coding efficiency 

and transmission techniques. MVC is highly adaptable and provides a very efficient 
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coding functionality. The contribution in this chapter is the comparative evaluation of 

different compression techniques for coding efficiency.  

Chapter 4 discusses 3D video streaming over the internet using the HTTP protocol 

using simulated networks. 3D video streaming is introduced and the advantages of 

using the Hypertext Transfer Control Protocol (HTTP) are discussed. A variable packet 

size application was developed to transmit multi-view videos over HTTP using packet 

size variation. OPNET’s System-in-the-loop (SITL) module is used for the 

communication to real end points over a simulated heterogeneous network. Various 

packet sizes are tested under interface free and congested network conditions. The 

contribution made in this chapter is the experimental investigation of the effects of 

variable packet sizes on transmission in congested wireless IP networks. The 

segmentation at the application layer has a direct effect on transmission times. It was 

found that that 64 kB is the optimum segment size.  An application was developed to 

enable the selection of packet size when the client requests the video from the server 

over the simulated network.  

Chapter 5 further investigates the transmission of multi-view videos over Real-time 

Transmission Protocol (RTP) for real time video communication. The key contribution 

of this chapter is the study of the effect of transmission errors on the multi-view video 

codec is and a solution using multi-session transmission (MST) is proposed to decrease 

the effect of errors on the coded bitstream. Modifications to the MVC decoding frame 

management is made to increase codec robustness. Sirannon, a testing tool accepted by 

the Video Quality Expert Group (VQEG), is used for the multi-session transmission 

and error injection into the bitstream. Both single session transmission and multi-
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session transmission are tested for ten packet loss scenarios using ten transmissions 

each, in order to increase the accuracy of the test results. The transmission of the H.264 

multi-view video coding (MVC) bitstreams over multiple streams based on priority and 

view changes improves the quality of 3D video. MST of multi-view video can render 

the video stream more adaptable to channel conditions and offer additional error 

resilience capabilities by confining the errors to a particular spatial region. 

Experimental results prove MST’s effectiveness in handling error rates as high as 10% 

with negligible frame drop when the errors in transmission are confined to the relatively 

less important bi-predicted frames. 

Chapter 6 investigates MVC codec optimisation by applying virtual view rendering of 

views at the decoder, using two adjacent decoded views. Hence, increasing the coding 

efficiency of the video codec and decreasing the need for the number of cameras 

needed to capture multi-view videos. The key contribution in this chapter is the 

evaluation of three techniques for virtual view rendering and their execution 

complexity, which is an important feature in real time video playback. The three 

methods, which use simple image stitching, disparity prediction and panoramic view 

creation techniques are analysed and the results compared through objective and 

subjective testing. The challenges with virtual view rendering are also discussed in 

detail, with examples.  

Chapter 7 concludes the investigations of this research and makes recommendations for 

future work.  
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Results beyond the ones present in this thesis, program codes and software manuals are 

in Appendices A to D.  

1.6 Conclusions 

This chapter summarises the research. It starts by explaining the problem statement of 

the research, and continues to highlight the aims and objectives of the thesis. It is 

followed by a list of research publications and a list of research contributions made in 

this thesis. The layout of the thesis is explained with a brief description of the content 

of each chapter.  

The next chapter presents a detailed literature survey of the 3D eco-system and the 

challenges that are currently unresolved.  

 



 

 

 

 

Chapter 2: 3D Systems and the 

Communication Pipeline 
Three-dimensional technology, more commonly referred to as 3D technology, has 

revolutionised many fields, including entertainment, medicine, and communications to 

name a few. In addition to 3D films, games, and sports channels, 3D perception has 

made tele-medicine a reality. 

Thirty percent of the all HD panels at home by the year 2015 will be 3D enabled, as 

predicted by consumer electronics manufacturers. Stereoscopic cameras, a 

comparatively mature technology compared to other 3D systems, are now being used 

by ordinary citizens to produce 3D content and share at a click of a button just like they 

do with 2D counterparts via sites like YouTube.  

But technical challenges still exist, such as with autostereoscopic multiview and 

holoscopic video displays. Free viewpoint navigation also remains partly unsolved [1]. 

The most pressing issue getting in the way of widespread uptake of consumer 3D 

systems is the ability to deliver 3D content to heterogeneous consumer displays over 

the internet.  

This chapter sets the scene by introducing 3D, showing how it is represented, stored 

and transmitted, and the different types of displays that can be used to perceive 3D 

perception, as well as the challenges that need to be addressed.   
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2.1 Introduction 

The concept of 3D is not new. As early as 300 BC, Euclid discovered that humans see 

slightly different images of the same object with each eye. Eleventh century 

mathematician Al-Hazen also explained the concept of 3D in his book of optics. Since 

then, there has been gradual development with 3D research over the years until today. 

Today, 3D films gross more than ever before in cinemas, 3D sports channels are on 

satellite TV and video streaming online is available.  

The evolution of video processing technology is driven by progress in technological 

advancements and the content generation capabilities to meet user demands.  The 

evolutionary process began with analog TV and is currently at the smart TV stage, 

which combines HDTV, IPTV and in some displays 3DTV [2]. 4K HDTV is the next 

stage in the flat screen TV evolution, currently an active area of research [3]. In 3DTV, 

the most prominent technology in use is the stereoscopic 3D displays.  

The video processing field has evolved from one video displayed at different 

resolutions. The needs of the current era require on-demand connected interactive 

videos where the social experience is at the heart of it. The need for 3D video 

processing has given rise to content-adaptive processing that includes segmentation, 

depth map extraction, and structure from motion. [2]  

Smart TV is indicative of the change in people’s viewing habits. TV has exceeded the 

processing expectations from a PC in the 1990s. The Smart TV does not only support 

improved performance in terms of display, but is more efficient in power consumption, 

has more computing power, comes with a large amount of memory, has built-in 
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interactivity, and has internet connectivity at its heart [2]. In the race towards a true free 

view point TV, in many ways, the Smart TV in itself predicts the future of what will be 

expected from multi-media transmissions. It is no longer a straight forward broadcast or 

even multi-cast. Viewers already expect on demand content in 2D, thus their 

expectations from 3D videos will be threefold: on demand, interactive view angle 

changes, and high-definition quality, mobility, and seamless 2D to 3D conversion. 

Thus, it is imperative that any 3D communication system must meet these expectations.  

This chapter discusses the visual perceptions created to generate 3D, the displays 

currently available and under research, and finally how they are delivered and the 

challenges in the 3D communication pipeline.   

2.2 Fundamentals of 3D 

3D perception requires eyes and the brain, together referred to as the human visual 

system (HVS). They work together to receive light rays and interpret them to create the 

image seen in three dimensions [4]. Perception, it must be clarified, is not seeing the 

real world in our daily life. The HVS is fed the data that would make it look like the 

real world for the most part, but it fails to deliver the required outcome if the person 

perceiving 3D does not fit the conditions such as having irregular or defected eyes. 

Humans perceive 3D in two different ways; one is through binocular parallax, where 

we see a different angle of the same object through each eye. The other is motion 

parallax, where we see a different angle of the same object by moving our head or the 

movement of the object [5]. Both techniques were discovered as early as the 19
th

 

century by Wheatstone in 1838 and Helmholtz in 1866, respectively [6]. Wheatstone 
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demonstrated stereopsis, the unique depth sense produced by retinal disparity through 

constructing a simple stereoscope from mirrors.  

Stereoscopic 3D perception has come a long way since Wheatstone first proved the link 

between parallax and depth perception by studying them using a stereoscope, 

considered to be the world’s first 3D display [6]. Stereoscopic perception exploits 

binocular disparity in the human visual system. Two slightly different images are 

presented, one to each eye, captured by identical cameras that are placed 65 millimetres 

apart to correlate with the average distance between eyes [7]. The two images, fused in 

the visual cortex of the brain, compose a three-dimensional view. The techniques used 

to feed different images to the eyes range from using headgear (glasses) to using 

parallax barriers in the screen.  

2.2.1 3D Perception through Glasses 

The three most commonly used glass technique are anaglyph, polarisation and time 

division. Anaglyph glasses use colour coded image projection to separate the views that 

are simultaneously fed to the left and the right eye, to create the depth perception [8]. 

The second method, most commonly used today, is polarised glasses which 

simultaneously filter the left and the right views through linear or circular polarisation 

[9]. Anaglyph and polarisation techniques are shown in Figure 2.1. 

While both the anaglyph and polarisation techniques filter different light rays 

simultaneously, the time division technique, more commonly referred to as active 

shutters, uses frame sequencing to feed the left and the right images to the eyes one at a 

time, as depicted in Figure 2.2. While one eye sees an image the other eye does not see 
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anything. Active shutter glasses need a higher frame rate compared to anaglyph and 

polarisation techniques and require the glasses to synchronise with the screen [11].  

(a) (b) 

Figure 2.1: 3D perception using (a) anaglyph Filtering and (b) Polarised Filtering 

Techniques [10] 

 

Figure 2.2: Demonstration of time-division technique (active-shutters) for displaying 

3D videos [12] 

2.2.2 Glasses Free 3D perception 

Perceiving 3D with the help of glasses, regardless of the technique, presents several 

drawbacks. In addition to having to wear glasses, the most common drawbacks include 
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eye-fatigue, cross-talk of various degrees, and the lack of any motion parallax. 3D 

systems that do not require glasses utilise lenticular sheets or parallax barriers to direct 

the light rays to the left and right eyes, and are commonly called auto-stereoscopic as 

shown in Figure 2.3. 

Multi-view auto-stereoscopic systems, which provide a binocular vision from any angle 

without any special glasses, were first introduced by Stephen Benton in the 1970s—

who refined the vision of 3D displays by Gabriel Lippmann in 1908 [6]. Multi-view 

replicates stereoscopic systems but offer more views to add motion parallax [14]. 

Viewers will still see two views at a time but by moving the head, the viewer sees a 

different angle, hence providing a more realistic 3D experience.  

(a)  (b) 

Figure 2.3: Redirecting the light to the correct eye in the auto-stereoscopic technique: 

(a) lenticular sheet and (b) parallax barrier [13]  

2.3 3D Video Representation 

There are two key issues with 3D content: how to represent it and what is the best 

compression format, when considering transmission or storage, because of its increased 
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amount of data. Any decision must be taken in the light of the available bandwidth or 

storage capacity, quality and user expectations. There are typically three representation 

formats namely: full resolution, frame compatible resolution, and depth based 

representation [15].  

2.3.1 Full Resolution Representation 

This takes the full HD resolution videos, typically 1920x1080 or 1280 x 720, for all 

views starting with two views for stereo to N views for multi-views [15].  This means 

that the raw data generated is directly proportionate to the number of views captured, as 

shown in Figure 2.4. Stereo cameras that capture the left and right views at half the HD 

resolution are not considered full resolution.  

The full resolution format produces the best quality results because none of the views 

are degraded to save bandwidth or storage capacity.  

 

Figure 2.4: In the Full Resolution Representation all views are taken as they are: (a) 

both left and right views in Stereoscopic 3D representation are taken as full, (B) In 

multi-view all views are taken, in this example there are 5 views. They are all 

represented 
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2.3.2 Frame-Compatible Representation 

In stereo 3D videos, the left and the right views are sub-sampled and interleaved in to a 

single frame or sequence of frames [15]. The multiplexing reduces the amount of data 

to take advantage of existing infrastructure for broadcast. The sub-sampling can be 

done either (i) horizontally and placed top-and-bottom—proposed by Comcast; or (ii) 

vertically and placed side-by-side—proposed by Sansio, RealD and adopted by 

Samsung, Panasonic, Sony, Toshiba, and Direct TV [13]; or (iii) checkerboard format; 

or (iv) temporal multiplexing—where the frames or fields are placed sequentially after 

one another at half the frame rate for each view, to equate the data of a single view; or 

(v) as mixed resolution—where one view has a reduced resolution. Depictions of the 

frame-compatible representations are shown in Figure 2.5. 

 

Figure 2.5: Frame compatible representation of 3D stereoscopic videos: (a) Left-Right 

Representation, (b) Top-Bottom, (c) Mixed Resolution, (D) Checkerboard Interlacing, 

(e) Horizontal Interlacing, (F) Vertical Interlacing, (g) Temporal (Time Division) 

representation 



End-to-End 3D Video Communication over Heterogeneous Networks 

 

Chapter 2 – 3D Systems and the Communication Pipeline pg.20 

Frame-compatible representation makes use of existing encoder/decoders and 

transmission channels making it an ideal solution for quick deployment over existing 

infrastructure at the cost of reduced quality in spacial or temporal resolution.  

2.3.3 Depth-based Representation 

Depth-based-image-rendering (DBIR), technique helps in generating a virtual view, 

effectively reducing the amount of data for transmission or storage, typically called 2D 

plus depth [15]. Depth can be captured by the camera or can be extracted from a stereo 

pair by solving for stereo correspondence stored in a format called the depth map. The 

depth map is used by the decoder to extract the second view. While it can be used for 

both stereo and multiview videos, 2D plus depth format cannot handle occlusion very 

well and is limited in the amount of depth range it can render [16]. Using depth data, 

instead of the full view, has its benefits of reducing data for storage or transmission. On 

average, it requires only 10 to 20% of the original view for storage or transmission [17]. 

 

Figure 2.6: Example of 2D plus depth format [17] 
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2.4 3D Compression Formats 

The 3D representation formats presented above can be compressed using different 

methods. Sometimes the representation format reduces the choices of compression but 

in most cases, the following compression techniques apply to all. They are briefly 

introduced here and discussed in the future chapters in more details.  

2.4.1 Simulcast 

In simulcast, each view is encoded independently, without taking interview similarities 

in to account [15]. It helps keep the computational requirements low during 

encoding/decoding and is inherently backwards compatible. However, it means the 

amount of data to be stored and transmitted will increase proportionally depending on 

the number of views. The only way to reduce the data is to either encode one of the 

views with a less quality or smaller spacial resolution as described above in the frame 

compatible representation. The key difference in simulcast compression format is that 

each view is encoded independently and hence can be transmitted without any effect on 

the other view(s). Simulcast is discussed in Chapter 3 in more details.  

 

Figure 2.7: Example of simulcast coding using H.264/Advanced Video Coding (avc) 
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2.4.2 Frame Compatible Coding with SEI Message:  

Supplemental Enhancement Information (SEI) message, in H.264/AVC standard, are 

transmitted with frame-compatible videos to signal the packaging arrangements 

between them [15]. It helps the decoder identify the order of the images, scaling 

required, colour format conversion, and de-noising if required. Receiving devices can 

be signalled through SEI message of the frame-compatible format through supported 

interfaces such as the High-Definition Multimedia Interface (HDMI) [15]. The videos 

are encoded as one video. This compression technique benefits from a reduced amount 

of data and, because the videos are merged before compression process, redundancies 

are accounted for, hence producing an efficiently compressed bitstream. However, the 

quality degradation is increased because each view is taken at half the resolution as 

shown in Figure 2.8.  

 

Figure 2.8: Example of frame compatible coding with SEI messages using 

checkerboard representation and H.264/AVC encoder 

2.4.3 Multi-View Video Coding (MVC) 

A key concept of video compression is the exploitation of redundancies between 

consecutive frames. In 3D videos the redundancies between views can also be exploited 

to increase encoding efficiency. The MVC extension of the H.264/Advanced Video 

Coding (AVC) exploits these redundancies, reduces decoding complexity, and adds 
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new functionalities specific to multi-view video coding [18]. MVC can be used to 

encode full resolution formats, mixed resolution, and video plus depth depending on the 

requirement. Figure 2.9 shows an example of multi-view video coding for three views. 

MVC is discussed in more details in Chapter 3. 

 

Figure 2.9: Example of H.264/MVC compression technique for three views 

2.5 3D Displays 

3D display manufacturers are continuously trying to produce realistic 3D displays. 

Most of the displays currently in production are stereoscopic TVs with active shutter 

glasses. Our extensive search of 3D display markets show that the most popular 

products on the UK market are Sony Bravia Smart 3D LED TV, Samsung 3D Plasma 

TV, LG Smart 3D LED TV and Panasonic Viera Smart 3D LED TV. They all come 

with a various number of free glasses. [19][20] Sony and LG come with active shutter 

glasses where as the Samsung and Panasonic with polarised glasses. Auto-stereoscopic 

displays are still rare and a novelty product but certainly available to buy if one wishes.  

Toshiba, Sony, Aliscopy and Philips have auto-stereoscopic TVs available for sale, 
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albeit at a high cost.  Some manufacturers, such as Toshiba’s Qosimo F755 [21], have 

also employed auto-stereoscopic abilities in laptop displays.  

Some manufacturers such as Tridelity have multi-view displays capable of displaying 

five views. [22] This section describes the different techniques used to display 3D 

videos. Some of them such as volumetric displays are still in experimental stages but it 

is important to understand what the future holds for 3D displays.  

2.5.1 Stereoscopic displays 

Stereoscopic displays employ one of the 3D representation techniques described above. 

They require the viewers to wear special glasses that filter the left and the right view to 

perceive depth. They each employ a different technique to do this, either by overlaying 

the images or showing them alternatively in fast succession. These glasses, namely, 

anaglyph, polarized or active-shutters glasses [2], ensure the viewers only see the left 

eye image with the left eye and the right eye image with the right eye.  

These displays, also referred to as binocular displays, use a particular multiplexing 

method to display videos. The multiplexing combined with the glasses, which could 

either be active or passive, enables the user to perceive 3D depth [23]. 

Anaglyph display method uses colour multiplexing method to combine stereo pairs 

overlaid onto each other by using non-overlapping colours. The most common colour 

pairs used are red and blue, red and green, red and cyan, and amber blue and dark blue. 

Anaglyph displays, due to its use of colours to separate left and right views, affect the 

natural colour of the image. It also suffers from cross-talk, which in the specific case of 
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Anaglyph means, the left and right views leaking over to each other. This can result in 

eye-fatigue [24].  

 

Figure 2.10: An example of combining left and right views in anaglyph format for 

display [25] 

 

Figure 2.11: A range of different anaglyph glasses [26] 
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Polarized display method uses polarization-division multiplexing, where, just like 

anaglyph, two non-overlapping polarised images are laid on top of each other. This 

polarisation can be, as described above, linear or circular. It is filtered by matching 

polarized filtered glasses. Linear polarisation, horizontal or vertical, suffers from image 

distortion when the viewers tilt their head. Circular polarisation solves this problem to 

give the user seamless 3D perception from any angle [27].  

 

Figure 2.12: An example of polarised glasses [28] 

Active-shutter display systems use time-division multiplexing to display the right and 

left images to the viewer consecutively one after another. This method requires the 

glasses to work in sync with the display, hence the name active-shutter, to display one 

image to one eye while masking the other. This method requires working at least twice 

the frame rate of normal video to make up for the alternation [11].  

 

Figure 2.13: A range of Active-shutter glasses provided by Samsung with their 3D 

Displays [28] 
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Figure 2.14: Example of a head mounted display use [29] 

2.5.2 Head Mounted 3D Displays 

Head mounted displays, such as the Sony Personal 3D viewer [29], are similar to 

stereoscopic displays. They require the user to wear a headgear that directs the left and 

the right views to each eye in a more confined space.  

2.5.3 Volumetric 3D Displays 

Volumetric 3D displays have better 3D perception than stereoscopic techniques. They 

use projected light emission in a confined volume to generate a 3D object in space [30]. 

Volumetric displays can be generated using different techniques [31], from cylindrical 

displays [32], such as the one shown in Figure 2.15, to stacking multiple 2D displays 

that each displays a slice of the scene to create 3D effect [24].  

Volumetric displays offer the real world experience. The objects inside them can be 

seen from 360 degree angles simultaneously by as many viewers as can fit around the 

display with full parallax—including motion and vertical/horizontal parallax. The 
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disadvantages of volumetric displays are that they are expensive, difficult to design and 

generate content. They are only used in specialised environments in the medical and 

military industries [34].  

 

Figure 2.15: The Sony Ray Modeler autostereoscopic display projects 360 individual 

slices of an image onto an array of special LEDs, providing a volumetric display you 

can walk around and view from any angle – without glasses [33] 

2.5.4 Holographic 3D Displays 

Unlike volumetric displays, holographic 3D displays are projected onto a flat screen. 

They use the diffraction of light rays, using the inference patterns in the light waves, to 

generate a 3D image, recorded on a photographic film [35]. It is a well-recognised 

technology that, like volumetric, offer full parallax displays. The simplest method for 

recording a holographic image is to divide the laser beam into two separate beams. One 

of the laser beams passes directly through a lens spreading through the film plate, while 
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the other beam is reflected off the object before it is spread on the film. The reflected 

beam arrives with a slight delay. A holographic image is created when the two beams 

interfere on the film plate, creating an identical model of the original object with a 360 

degree viewing angle.  

However, the requirements for creating holographic 3D display/videos, including a 

coherent light source, a height level of mechanical stability, and dark room conditions, 

make it an impractical 3D display system.   While there are successful applications for 

using holographic imagery on consumer products for security purposes [36], its 

practicality in using it for 3D displays is limited. 

 

Figure 2.16: A demo picture of the Holographic display built by EON Interact, the 

EON Holographic I [41] 

There are a range of holographic display systems developed [37][38][39][40][41]. An 

example of holographic display, shown in the Figure 2.16, uses holographic 
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geometrical principles to create holographic 3D vision. EON Holographic I, developed 

by EON Interact, is where 2D images are projected onto a 3D screen to create the 

illusion of a 3D system [41]. This system is perhaps the most practical because of the 

need for a single camera lens for filming and a single projector for playback. But even 

this is not a system for the general public, reserved for use during special 

demonstrations. Creating holographic displays require many other systems that exploit 

the holographic geometric principles, which have been developed by companies such as 

Hologaficka, Innovistion Labs, and viZoo to name just a few.  

2.5.5 Holoscopic 3D Displays 

Holoscopic 3D (H3D) display technology [42] is similar to the holographic 3D display 

technique with one key difference--it does not need coherent light source and confined 

dark spaces. Holoscopic imaging technology is also known as Integral Imaging 

technology.  H3D uses microlenses to record and display the 3D scene using light 

intensity [43]. One of the advantages of integral imaging is the ability to refocus on 

different parts of the image after the image has been taken, commonly referred to as 

post processing [44].   

It is worth mentioning that colleagues at Brunel University working on the 3DVIVANT 

research project have been actively contributing to this area [42][45][43][46]. One of 

their key contributions has been the deployment of a H3D camera prototype which 

builds on a 2D camera to capture holoscopic images as shown in Figure 2.17.  

Integral imaging, despite its obvious advantages, is still an experimental technology. It 

is outside the scope of our research but interested readers can refer to 
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[47][48][49][50][51][52][53][54] for a detailed understanding. The references provided 

are not extensive. 

 

Figure 2.17: Illustration of holoscopic 3D camera design with a relay and objective 

lens [42] 

2.5.6 Auto-stereoscopic and Multi-view 3D Displays 

Auto-stereoscopic 3D displays (AS3D) pursue natural viewing as they do not require 

glasses, but still employ stereoscopic technology. They instead use space-division 

multiplexing to display 3D videos, directing light to the left and the right eyes through 

the use of parallax barriers or lenticular lenses.  Because there is no need for the 

viewers to wear special glasses to perceive 3D depth, this approach is considered to be 

more convenient and practical [55]. AS3D can have two views or more--only using two 

views does not provide any motion-parallax because it is still a binocular display 

system.  

The most promising display currently available is the multi-view 3D displays. They 

build on the auto-stereoscopic concept but offer more views, which makes it able to 

have motion-parallax.  
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Multiview 3D (M3D) displays [14] try to mimic the real world view still using 

stereoscopic technique, by using two views at each viewpoint to perceive 3D depth and 

offer motion parallax as the eyes move from one viewpoint to another. By doing so, it 

tries to mimic the real world, with multiple prospective views to immerse into. It of 

course cannot provide infinite views as we would in the real world, but even the finite 

numbers that it can provide takes a step closer to immersive realistic 3D perception.  

In [56], the concept was first proposed to use the parallax barriers technology that 

would provide multiple views or windows to viewer by making two adjacent views at 

one time, which was later engineered by Frederic Ive in 1901. This gives the user the 

ability to perceive 3D without the need to wear glasses and offer motion parallax when 

the viewer changes or moves their head, where a different pair of stereoscopic images 

offer a different angle as it would in real world. The parallax barrier technology is 

depicted in Figure 2.18. Parallax barriers, when placed in front of the display, channel 

the left and the right views to the correct eye through the use of occlusion and stereo 

pair images placed in a precise grid.  

Parallax barriers technology as depicted in Figure 2.18 was a breakthrough in creating 

realistic 3D perceptive technology but it had several disadvantages, the first being 

viewing distance limitation. The viewer can only perceive high quality 3D within 

specific viewing distance as shown in Figure 2.18. If the viewer is not within the 

recommended viewing zone, the viewer can no longer perceive 3D depth [31]. The 

second problem is visible dark areas caused by the barriers between pinholes that are 

put in place to separate the view. In addition, the motion parallax offered by parallax 

barriers if viewed from outside the supported viewing area can cause motion sickness 
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and eye fatigue due to the ghosting effect that is caused by the cross-talk between the 

images.  

 

Figure 2.18: The concept of lenticular sheet to display multiple views in multiview 3D 

technology [31] 

 

Figure 2.19: The problem with lenticular sheets is the viewing distance from the 

display. If the viewer is not in the optimum viewing zone they will see a distorted image, 

causing discomfort [31] 
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A solution was proposed in [57] which solved the motion parallax issue, where a head-

tracking system would monitor the viewer’s movements and adjust the viewing angle 

accordingly but this system could not support multiple viewers, making it only 

applicable to mobile devices used by individuals, rather than TVs that are built for 

communal use. Besides, replacing glasses with a head tracking device is 

counterproductive both in terms of comfort and monetary cost savings.    

Lenticular lenses technology was proposed in [58] to solve the problem of the dark 

areas between pinholes and improve the quality of the image. The concept of lenticular 

lenses is very similar to parallax barriers with one significant difference--parallax 

barriers use the occlusion of light to separate the left and the right view whereas 

lenticular lens technology use refraction of light, which improves the brightness that the 

lenticular barriers reduced to half through occlusion.   

 

Figure 2.20: Principle of multiview 3D imaging based on parallax barriers and 

lenticular technology [31] 
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Although lenticular lens technology improved the image quality, it brought with it the 

moiré effect caused by the overlapping of the LCD pixel sheet patterns with the 

lenticular lens patterns [59]. Solving the lenticular lens sheet issue is an active area of 

research with several solutions offered in [60][61][62] which tilts the pixels to reduce 

the moiré effect. It is outside the focus of this research to explain here but interested 

readers can refer to the above mentioned references for details.   

M3D display is a promising technology with bright prospects [63] that could increase 

the public demand for 3D television and displays in general because of its proximity to 

real world 3D perception. It is also less complex and cheaper to produce than its 

alternatives—holographic, volumetric and integral imaging based displays. The other 

major advantage is the content creation for multi-view is simpler. Real-time 2D to 

multiview content migration, offered by some displays such as Ultra-D [64], makes it 

even more attractive. Migrating from 2D to 3D in Multiview display technology is 

easier compared to volumetric, holographic and holoscopic displays because multiview 

video capturing uses the same cameras used for 2D video capturing. The only 

difference is there are more cameras used in Multiview video capture.  

2.6 Delivery of 3D Videos 

In the interconnected world that we live in today, the success of 3D systems must have 

video delivery as a core part of the 3D eco-system. Video transmission is not a new 

concept. The success of video sharing sites such as YouTube and Vimeo demonstrate 

the demand for video consumption. This, however, has created a problem for the 

internet backbone-networks with an estimated 30 to 40% of the bandwidth consumed 
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by video delivery [65]. 3D videos as described in this chapter require more data to 

represent them than their 2D counterparts. With the demand of multi-view auto-

stereoscopic 3D videos increasing, each delivery system must find suitable solutions to 

handle the increase in data transmission. This section explores the different 

transmission channels and the concepts employed to make them work.  

2.6.1 3DTV broadcasting 

3D TV has been an active research area and perhaps one of the most developed area in 

3D video delivery using Digital Video Broadcasting-Terrestrial (DVB-T), Terrestrial 

Digital Multimedia Broadcasting (T-DMB), or Digital video Broadcasting-Handheld 

(DVB-H), as the underlying technologies. Several approaches based on 2D TV 

broadcast technologies have been proposed and used. Considerable work has been done 

by the 3DTV project [66], supported by the European Union Framework Programs for 

Research and Technological Development, as part of FP6 and FP7. One of the 

advantages of 3D TV implementation is that existing broadband protocols and 

compression standards do not need to be changed for transmission.   

In [67] a broadcasting technique has been using DMB-T. Two other solutions proposed 

for 3D content broadcast based on DVB-H using H.264/AVC or its MVC extensions 

are proposed in [68][69]. Both suggest the use of simulcast encoding, the first with 

side-by-side representation and the second as full image representation. The European 

ATTEST [70] project also proposed a 3DTV broadcasting approach using DVB-T 

transmitting video plus depth, under the pretext that the additional overhead presented 

by the depth information is considerably less than transmitting a second view.  
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In [71] Hur et al. present two new systems based on DMB and DVB-H for mobile 3D 

video transmission. In their experiments, they used multi-view video coding 

(H.264/MVC) to encode the stereo pair in a frame-compatible format, horizontally 

halved in resolution, before transmission over Real-Time Transport Protocol (RTP). 

The left view is used as the main view and in cases of error displayed in 2D for 

backward compatibility purposes, as MVC is built on the H.264/AVC standard.  The 

left and the right views are transmitted during different time slices or bursts to increase 

error resilience. DVB-T modulator is then used to transmit the video in MPEG-2 

Transport Stream (TS) packets.   

The challenges with transmitting 3D over terrestrial TV networks are threefold; first, 

the channel bandwidth is restricted to 6MHz and the transmission bitrate to 19.4 Mbps 

[71]. While most 2DTV broadcasts allocate less than 17.5 Mbps for transmitting a 

video, having to split that between the stereo pair of images required for 3D 

transmission means compromising on the quality of the video, especially in cases of 

backward compatibility with 2D. In other words, the 2D video quality of the primary 

view in HD resolution will suffer from the reduced bitrate.   

Most 3DTV terrestrial transmissions use the frame compatibility. This means halving 

the resolution of each video to fit into the allocated bandwidth. Since most 2DTVs use 

MPEG-2 as the coding standard, the primary view will have to be encoded using 

MPEG-2 and the right view using H.264 video codec respectively and use different 

bitrate to each view [71]. Both degrade the HD quality of the primary view which 

unfortunately also means the quality of the 3D video is also affected. The second 

problem is maintaining a timing constraint between the two videos that have been 
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multiplexed into one stream, raising the issue of buffer management at the receiver. The 

third problem is that current HDMI 1.4 products available support 1920x1080p at 30Hz 

whereas the stereo video requires 60Hz for each view.  

2.6.2 3D Video Transmission over the Internet 

Transmission of 3D videos over the internet faces different challenges. The bandwidth 

is one of the biggest concerns to date, as well as the heterogeneous nature of IP 

networks, ranging from Ethernet (wired) to 4G (wireless), each with a different set of 

preferences and architectures. There are a range of protocols that can be used to 

transmit 3D videos over the internet such as RTP, UDP, and HTTP [72][73][74][75]. 

A number of researchers have already addressed 3D video communication. In [7], a 

system is shown that uses JPEG still-image coding to encode stereoscopic views. They 

are then streamed in a single RTP session for shutter-glasses display.  

In [74], a system using stereo modified H.264/AVC has been proposed using RTP 

protocol for transmission. The focus of this work, however, is mostly on coding 

optimisation in stereoscopic 3D videos. Several researchers have also suggested peer-

to-peer architecture for multiview video delivery.  

Transmission of 3D videos is still an active research area and the focus of Chapter 4 

and 5 in this thesis. It will be discussed in more detail. This section just provides an 

introduction to the topic.  
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2.7 Challenges in 3D Eco-System 

There are several challenges still facing the 3D systems ranging from content creation, 

error resilience and concealment, heterogeneity, achieving true free-view-point TV, 

quality of experience. The focus in this thesis is the end-to-end optimisation of multi-

view videos before, during and after transmission. The challenges described below 

therefore relate to multi-view videos.  

3D multiview videos are captured using 2D video cameras, usually with identical 

specifications. The number of views required is directly proportionate to the number of 

cameras used. Multiview displays use a different number of views, so the number of 

cameras must be adjusted to the display. Aliscopy multiview 3D display has eight 

pixels per lens under its lenticular lenses which means the number of views it needs is 

eight [76]. That is eight 2D cameras capturing the same view from slightly different 

angles.  

Display manufacturers have tried to overcome this problem by including a 3D 

rendering engine in the displays to generate multiview videos from 2D plus depth 

images [76]. The other way to overcome this problem is by generating a depth map 

from 2D images [77]. But these solutions do not offer real multiview 3D experience 

because the images created from 2D plus depth or stereoscopic image pairs cannot offer 

enough angular visual information as multiple cameras. But capturing multiview 3D 

videos with multiple 3D cameras requires complicated camera calibration and 

synchronisation [78].  
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3D video communication solutions must consider the entire pipeline, starting with 

optimisation at the video source to the end display and transmission optimisation. 

Multi-view offers the most compelling solution for 3D videos with motion parallax and 

freedom from wearing headgear for 3D video perception. Optimising multi-view video 

for delivery and display could increase the demand for true 3D in the consumer market.  
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2.8 Conclusions 

An overview of the trends in 3D video technological advancements is presented in this 

chapter. The underlying techniques in 3D video perceptions are discussed followed by 

the way they are represented in videos. Different representations affect the video 

perception depending on the compromises made to represent them. The most ideal 

representation is where all views are used with full resolution. This makes for the best 

3D perception but increases the amount of data that needs to be recorded proportionate 

to the number of views captured.  

3D displays correlating to the 3D video representation are also discussed, including 

those that are still under current investigation in research. The most promising display 

that could increase the uptake of the 3D video displays with the general public is the 

Multiview Autostereoscopic 3D displays. One challenge with multiview displays is the 

requirement to capture the different views using 2D video cameras, which need to be 

synchronised and calibrated. But the biggest challenge is to optimise them for delivery 

over the internet and display.  

Compression of 3D videos is also introduced in this chapter, paving the way for a more 

detailed analysis in Chapter 3. Since compression of the 3D videos depend on the 

number of views, the best compression technique would have to exploit the interview 

redundancies and provide an optimum solution for delivery over heterogeneous 

networks.  

Transmission of 3D videos is discussed. Transmission techniques used in 3DTV 

broadcast, which is the most mature and well-researched delivery mechanism, is 
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analysed.  The future of any 3D video transmission is foreseen to be over the internet. 

Transmission over the internet is introduced and the transmission methods briefly 

explained. They will be discussed in more details in Chapter 4 and 5. 

The next chapter presents a literature survey of the video compression and the state of 

the art in multi-view video coding. A comparison of the traditional compression 

technique—simulcast—and the state of the art codec H.264/MVC is presented. The 

study is focused on understanding the effect of exploiting inter-view redundancies on 

video quality and whether any coding efficiency is achieved as claimed by the codec. 

The chapter compares the coding efficiency with the loss in video quality to evaluate 

whether the decrease in the resultant encoding bitrate is worth the loss in video quality.  

  



 

 

 

Chapter 3: Compression 

Techniques in 3D Videos 
Compression of video has long been exploited in 2D videos. The most commonly used 

and currently state of the art encoder/decoder is H.264/MPEG-4 Part 10 or Advanced 

Video Coding (AVC). It efficiently exploits the redundancies between consecutive 

frames to reduce the amount of data for storage or transmission while maintaining the 

quality of service. This chapter investigates the compression of 3D video and its 

evolution from the 2D predecessor. A detailed survey of the relevant compression 

techniques is presented. The benefits of exploiting inter-view redundancies are 

demonstrated through experimental results. Stereoscopic video signals are compressed 

using the 3D feature of the ITU-T Video Coding Standard H.264/AVC. The work 

analyses the coding of 3D video with regards to both perceptual video quality and 

bitrate generation, with the equivalent 2D signal (single view) setting a benchmark. The 

perceptual quality is demonstrated objectively in order to determine the effect of the 

additional view on the perceptual 3D video quality. The bitrate analysis aims at 

estimating the range of bitrate increase that is expected when two views are compressed 

compared to single view compression. The objective results shown in the chapter for 

both the quality (PSNR) and bitrate metrics are produced from a series of experiments 

run under different encoding scenarios in order to tabulate average figures in a 

conclusive and reader friendly manner. Experimental results show that exploiting inter-

view redundancies in stereoscopic videos increases coding efficiency by 24% compared 

with simulcast—where each view is independently encoded.   
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3.1 Introduction 

3D video has seen considerable attention from the research community over the past 

decade. The interest in 3D videos has been fuelled by the fascination of the general 

public created by 3D movies. Today there are sports channels that broadcast 3D content 

and the expectation is to provide similar services over IP networks. The most common 

type of 3D content is the stereoscopic video which generates two views for the left and 

right eyes. The Human Visual System fuses the two images to form perceptive 3D 

depth. The images are filtered by either a pair of glasses of different types such as 

anaglyph glasses and shutter glasses--which synchronize with the display to feed 

different images to the left and right eyes—or by a display system to create an auto-

stereoscopic video through parallax barriers or lenticular lenses.  In the case of the 

latter, the viewer does not need to wear glasses to perceive a 3D image. The images are 

separated by the mentioned optical elements to be viewed by each eye separately. 

Chapter 2 (section 2.5) discusses 3D display technologies in detail. Interested readers 

are also referred to [13] where the authors have discussed 3D displays and 

communications challenges in details. The focus of this chapter is to introduce 

compression techniques in 3D videos using the H.264/AVC and the challenges it faces 

from bandwidth restrictions.  

H.264 Advanced Video Coding (AVC) is the de facto standard from the Joint Video 

Team (JVT) for video coding. It is defined by ITU-T recommendation for advanced 

video coding for generic audiovisual services [79]. In addition to having the ability to 

encode single view video streams, it has been extended to include the increasing 

demand from 3D video. The stereo and multiview video coding extension is described 
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in Annex-H of the ITU-T recommendation [79]. It deals with the increase in encoding 

complexity and the additional bandwidth requirement. All stereo and multiview streams 

are backward compatible with 2D decoders [80]. This makes it the most logical encoder 

to use for experiments done as part of this research.  

3.2 State-of-the-Art in Video Codecs 

One of the most widely used codecs, which enabled digital television systems 

worldwide [79], is the MPEG-2 video coding standard (also known as ITU-T H.262). It 

was standardised in the 1992. In addition to being used for terrestrial television 

transmissions, it is also used for the compression of both standard definition (SD) and 

high definition (HD) videos for storage of videos on DVD and transmission over 

satellite and cable [85].  

However, as the need for more efficiency in coding came about in the internet age, 

where Cable modems, DSL, and UMTS had a much lower data rate than broadcast 

channels,  the H.262 codec evolved through a series of developments to H.263 and later 

to H.264/MPEG-4 advanced video coding (AVC) [85]. With each improvement the 

coding efficiency was improved, effectively increasing the capacity of the transmission 

channels. The additional capacity meant that existing transmission channels can now 

transmit higher quality videos.  

H.264/AVC, developed by the Joint Video Team of ITU-T Video coding Experts 

Group (VCEG) and the ISO/IEC Moving Pictures Experts Group (MPEG), is still 

considered the state-of-the-art codec for 2D video. It is being used for broadcast over 
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cable, satellite, and the internet. It is also broadly used in consumer electronics, from 

video cameras and blue-ray discs to digital TV set-top boxes [86]. 

Given the success, efficiency, and widespread adoptability of H.264/AVC, JVT 

extended it for 3D videos—the Multiview Video Coding (MVC) extension of 

H.264/AVC (commonly referred to as (H.264/MVC) [79]. The MVC extension has two 

profiles for encoding 3D videos, stereo high profile and multi-view high profile [80]. 

MVC exploits the interview redundancies between views and is also backward 

compatible with AVC; therefore, any AVC decoder can decode the base view of an 

MVC encoded bitstream.  

A new standard, the High Efficiency Video Coding (HEVC) or H.265, recently 

introduced in January 2013 by the Joint Collaborative Team on Video Coding (JCT-

VC), [87] aims to address new services such as 4kHD and multiview video capture and 

display. HEVC is specifically designed to focus on increased video resolution and use 

of parallel processing [87]. In [14] D Milovanovic and Z Bojkovic compared 

H.264/AVC with H.265/HEVC and shown that HEVC provides 59.35% average 

compression efficiency compared to AVC but the coding time exceeds ~70% on 

average compared to AVC [88]. Since HEVC is still a new codec and more focused on 

the HD videos, the focus of this research is on the MVC extension of AVC.  

3.3 H.264/Multi-view Video Coding (MVC) 

MVC, standardised in 2009, covers a wide range of 3D video applications including 3D 

video streaming, free-viewpoint video as well as 3DTV [83]. It is an extension of the 

AVC standard. This makes it inherently backward compatible with AVC which serves 
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as the base-view that can be decoded independently in the absence of the MVC decoder 

[80]. Any additional views are referred to as enhancement views and are typically 

coded using interview prediction within the same bitstream [84].   

It is beyond the scope of this research to discuss the H.264/AVC standard but those 

features of the AVC that are relevant to MVC and are also relevant to this research are 

discussed below. Interested readers can find details of the AVC in the ITU-T 

Recommendations for H.264 – Advanced Video coding for generic audio-visual service 

document [79] and for an overview refer to [85]. Details about the MVC extension can 

also be found in the annex-H of [79] and an overview presented in [80][84][18].  

AVC has two key components—the video coding layer (VCL) and the network 

abstraction layer (NAL). They work together to serve a heterogeneous client base. The 

VCL represents all the video content. The NAL encapsulates the VCL data to provide 

meaningful information to the decoding client and transmission channels for effective 

interpolation, through the information in each NAL unit header. NAL and VCL are 

described in details in the following sections. 

3.3.1 Video Coding Layer (VCL) 

AVC uses a hybrid block based video coding approach, with an increased flexibility 

and adaptability compared to its predecessors. Pictures are divided into slices, which in 

turn are further divided in to macroblocks. Slices are independent of each other and 

hence can be parsed without affecting other slices in the frame. [80] 

Macroblocks cover an area of 16x16 luma samples. In 4:2:0 chroma sampling format 

videos the macroblocks cover 8x8 of each of the two chroma components. Macroblocks 
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are spatially or temporally predicted with three main slice coding types, intrapicture 

coding (I), predictive coding (P) and bipredictive coding (B) [79][80].  

I slices are spatially predicted from neighbouring regions. P slices can be predicted 

from both intrapicture and interpicture regions with only one signal for each predicted 

region. B slices can be predicted from intrapicture, interpicture and interpicture 

biprediction. It uses two prediction signals combined to form a weighted average from 

both regions. [80] 

One of the problems with block based coding is the blocking artifacts. AVC employs an 

adaptive deblocking filter in the motion compensated interpicture prediction loop [80] 

to reduce the blocking artifacts. 

The coded slices are then transformed using Hadamard transform, quantised using a 

uniform reconstruction quantizers and entropy coded using either context-based 

adaptive variable-length coding (CAVLC) or context-based adaptive binary arithmetic 

coding (CABAC). CABAC uses a more sophisticated mechanism for statistical 

dependencies which is reported to have a bit rate saving of 10 to 15% savings compared 

to CAVLC [80]. 

In AVC, the picture order of coding and display are completely decoupled [80]. Any 

picture can be independently used as a reference picture for motion compensated 

prediction of future pictures. The decoded picture buffer (DPB) can be adaptively 

controlled by memory management control operation (MMCO) commands [80]. 

Reference picture list modification (RPLM) commands can be used to arbitrarily 
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construct a reference picture list for P and B slices from the pictures available in P or B 

slices [80]. 

3.3.2 Network Abstraction Layer (NAL) 

AVC coded video bitstream is organised in NAL units (NALU) [18]. NAL units are 

packets that contain an integer number of bytes. NALUs act as an interface for the 

transport and system layers [84]. AVC has two types of NALUs identified by the 1-B 

indicator as either a video coding layer (VCL) NAL unit or a non-VCL NAL unit, with 

a variable payload. VCL NAL units contain coded video data whereas the non-VCL 

NAL units carry information about the decoding process settings such as picture 

parameter sets (PPS), sequence parameter sets (SPS), and supplemental enhancement 

information (SEI) messages [80][84].  

Although, non-VCL NALUs do not contain coded video, they carry information that 

helps the decoder with bitstream manipulation and display. Although they do not affect 

the core decoding process, they usually contain infrequently changing information; SEI 

messages, for example, contain information for the decoder which can be used for 

bitstream manipulation and/or display [80]. SPS contains video dependency 

information, a key feature of MVC, which helps signalling-aware media gateways to 

construct view dependency trees [18].  

An independently coded sequence contains a set of consecutive access units, which are 

a set of consecutive NALUs that belong to a single coded picture, with certain 

properties and their associated parameter sets [80]. Every independently decodable 

video sequence begins with an instantaneous decoding refresh (IDR) access unit. The 
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IDR access unit tells the decoder that it and all the following access units can be 

independently decoded without the need for any of its preceding pictures [80].   

 

Figure 3.1: MVC NALU interface [84] 

MVC bitstreams are backward compatible with AVC. The NALU structure is extended 

to allow for the additional information relating to the enhancement views to be added to 

the NALU header. The 1-byte AVC header is extended by 3 bytes, as shown in Figure 

3.1, and a new NALU type is added (NALU type = 20) for MVC extension [84]. If an 

MVC bitstream that contains NALU of the new type is seen by legacy AVC decoders, 

they ignore it and only decode the base view (NALU type = 14). Note that the 3-byte 

extension is not exclusive to MVC. It is also used for Scalable Video Coding (SVC) 

extension of AVC.  

The NALU type, therefore, plays a key role in identifying its content.  Each of the new 

header syntax types namely, idr_flag, priority_id, view_id, temporal_id, 

anchor_pic_flag, inter_view_flag, help perform different functions. For instance, the 
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anchor picture flag can be used as random access points if the flag is on [18]. A 

combination of these flags can be used for random access and view switching.   

View switching, as the name suggests, is to change the view(s) being displayed to the 

user. This could be a pair of stereoscopic views, a single view, or multiple views. View 

switching is an important application for free-viewpoint video [18].  

Random Access in MVC refers to starting the video at any point other than the start. 

Digital 2D videos have made this a common and expected feature in videos. In MVC 

this is more complicated because of the additional views.  

MVC makes random access and view switching possible with its bitstream extraction 

features available in the NALU header as described above. Two important syntax 

elements named earlier, view_id and temporal_id, help with the extraction of the target 

views and required adaptation. Temporal_id in an MVC bitstream indicates the frame 

rate [18]. The priority_id flag is usually used for a simple one-path bitstream adaptation 

process. It is set by the encoder and can be used by media gateways to discard NAL 

units higher than a defined value [18].  

IDR frames are the best place for random access points. In MVC, only the base view 

has IDR frames (NALU type = 5), while the preceding views are dependent on the base 

view. However, the IDR flag, known as view-IDR or V-IDR, in the extended MVC 

header is turned on when the base view frame is IDR. V-IDR pictures only depend on 

the views in the same access unit. MVC employs time-first coding, which means access 

units contain all the NALUs that belong to a certain time instance, hence the IDR 

picture in the base view can continue the random access points [18].  
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3.3.3 Inter-view Redundancies 

MVC exploits the redundancies between views in a more comprehensive manner. 

Figure 3.2 shows the dependency structure between the views, assuming there are eight 

views with a Group of Picture (GOP) size of eight. The first view in an MVC encoded 

video is independently decodable, to make it backward compatible with AVC. The 

other views depend on the first view as a reference to increase the encoding efficiency. 

Coding efficiency in this context is referred to a smaller file size, decreasing the amount 

of storage space required and a reduced amount of data for transmission.  

 

Figure 3.2: Prediction structure of H.264/MVC. Note the inter-view dependency is 

much more comprehensive than in the stereo profile of H.264/AVC 
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Inter-view prediction structure is similar to the temporal prediction that is common to 

2D videos, the only difference being the prediction happening between frames of 

different views. Temporal prediction within each view still happens. As shown in 

Figure 3.2, MVC employs both the traditional temporal prediction and a new type of 

prediction that happens between adjacent views called inter-view prediction. One of the 

disadvantages of such a design is that transmission errors in the reference view can 

propagate exponentially in subsequent views. This is discussed in more detail in 

Chapter 4, 5 and 6. 

3.4 Compression Options for Stereo Video 

Stereo videos have two views, Left and Right, which doubles the encoding complexity 

and bandwidth requirement for transmission. There are two techniques that can be used 

to encode the two views. The most basic is to treat each video as separate videos and 

encode them separately as depicted in Figure 3.3. This technique is called simulcast, as 

each view is independently encoded.  

 

Figure 3.3: Encoding the left and right views as independent views 
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Figure 3.4: Example of temporal prediction in each view 

Figure 3.4 shows prediction when the two views are encoded independently. While this 

method has its benefits, it does not exploit the redundancies that are preset in between 

the views. Figure 3.5 shows the stereo encoding where the two views are incorporated 

in one transmission stream for better encoding. While this increases the coding 

complexity, it exploits the similarities that are present between the two views. Figure 

3.6 shows the interview prediction when the two views are incorporated. As depicted 

by Figure 3.6, the interview prediction produces a more efficient bitstream.   

 

Figure 3.5: Incorporating the two views of a stereoscopic pair into one stream 

 

Figure 3.6: Example of temporal and interview prediction in the stereoscopic pair [80] 
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3.5 Comparison of Simulcast and MVC 

Three standard videos namely Ballroom, Vassar, and Exit [81] were used to test the two 

scenarios. The left and right views are 10 cm apart. Figure 3.7 shows frame 63 of the 

ballroom sequence for the left and right views respectively.  

The videos were put under different conditions by varying the quantization parameter 

(QP) to see how the different conditions affect the bitrate and PSNR of the videos. The 

QPs used for each video were 28, 31 and 34. The resolution of all three videos was 

640x480 pixels. The number of frames encoded was 125 for each test at 25Hz, i.e. each 

sequence is 5-second in length.  

The number of reference frames is set to 2, with hierarchical B-coding enabled and 7 B-

coded frames in between two anchor frames. In total 27 tests were carried out. The 

benchmark used for the stereo pair and the independently encoded videos (simulcast) is 

the single view. 

 (a) (b) 

Figure 3.7: Frame 63 of the Ballroom sequence of the left (a) and right view (b) 

respectively 
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3.6 Experimental Results 

The test results shown in Table 3.1 illustrate bitrate savings between ~3% to ~24% 

could be achieved by using stereo profile which exploits interview redundancies. From 

Table 3.2, it is evident that this additional bitrate saving has a negligible effect on the 

quality of the reconstructed view. More savings can be achieved if both views are 

halved in spatial resolution, however, that would degrade the quality of the video.  

    Bitrate (kbits/s) @ 25.00 Hz 

    Single (view 0) Simulcast (view 0 + view 1) Stereoscopic 

  QP 28 31 34 28 31 34 28 31 34 

S
eq

u
en

ce
s 

Ballroom 1088.33 727.7 484.44 2218.65 1479.3 985.36 2139.78 1415.78 938.61 

% Diff.             3.55% 4.29% 4.74% 

Vassar 289.99 142.15 79.53 582.59 280.03 155.48 447.98 234.05 137.15 

% Diff.             23.11% 16.42% 11.79% 

Exit 336.4 207.39 133.2 692.58 422.78 271.42 634.9 394.96 263.52 

% Diff.             8.33% 6.58% 2.91% 

 Table 3.1: Bitrate values of test sequences 

    Bitrate (kbits/s) @ 25.00 Hz 

    Single (view 0) Simulcast (view 0 + view 1) Stereoscopic 

  QP 28 31 34 28 31 34 28 31 34 

S
eq

u
en

ce
s 

Ballroom 38.53 37.08 35.53 38.49 37.06 35.53 38.55 37.14 35.63 

% Diff.       0.04 0.01 0.00 -0.06 -0.07 -0.09 

Vassar 38.21 37.19 36.14 38.20 37.22 36.18 37.92 36.96 35.92 

% Diff.       0.01 -0.03 -0.04 0.28 0.26 0.25 

Exit 40.00 38.91 37.68 39.95 38.88 37.67 39.70 38.60 37.37 

% Diff.       0.04 0.02 0.01 0.25 0.28 0.29 

Table 3.2: Average PSNR values of test sequences 

To explain these tables graphically, the QP is fixed at 31 for all three of the videos, 

Ballroom, Vassar and Exit to make the comparison between videos in terms of bitrate 

saving compared with quality (PSNR) loss. Results in Figure 3.8 show the bitrate of 
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single view, simulcast, and stereoscopic video encoding schemes compared to PSNR of 

the three video sequences. As it is anticipated, the bitrate generated by coding two 

views simulcast is about twice as much as in the single view case with very little 

quality loss. In the case of Ballroom, there is even a slight gain in quality. On the other 

hand, the usage of stereoscopic encoding could reduce the increase in bitrate to almost a 

half such as in Vassar at QP 28 as shown in Table 3.2. It is not as high using other QP 

values in other videos but Figure 3.8 clearly highlights the bitrate saving with the use of 

the stereoscopic profile of MVC compared with simulcast.  

The improvement seen from the Ballroom sequence is not as substantial as the Vassar 

sequence as it is categorized as a complex sequence containing a lot of ballroom dance 

movements, resulting in less temporal redundancies between its frames. The Vassar 

sequence falls under the low activity category with stationary background and a moving 

object, which makes it of lesser complexity. The exit sequence is of a moderate 

complexity with considerable motions. In general, the amount of bitrate generated by 

stereoscopic coding is less than simulcast. 

From Figure 3.8, it can also be seen that a higher QP value produces a lower bitrate for 

transmission or storage. The QP value is an indication of how much the spatial detail is 

retained. A small QP retains almost all the spatial information, whereas retention of that 

spatial detail is less when a higher QP value is applied.  

A good objective quality measurement of the reconstructed video is the PSNR, and that 

can be verified from Table 3.2. 
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 (a) 

 (b) 

 (c) 

Figure 3.8: Comparison of PSNR and bitrate when the QP is fixed at 31 in simulcast 

and stereo encoding with respect to single view encoding for (a) Ballroom, (b) Vassar, 

and (c) Exit sequences 
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PSNR for more than one view is calculated by averaging the individual PSNR values 

for each view. This approach can be used for both stereoscopic and multi-view 

scenarios. It can be observed that the simulcast coding achieves comparable video 

quality as compared to the single view coding. On the other hand, stereoscopic coding 

achieves a slightly lower quality. From our experimental results, the maximum quality 

degradation was computed to be -0.3dB obtained from the exit sequence (QP: 34), 

which is negligible. 

3.7 Analysis and Discussion 

Temporal redundancies in video compression have long been exploited for compression 

efficiency. In 3D videos the redundancies between views are also exploitable to further 

increase compression efficiency. The above results show two distinct methods for the 

compression of 3D videos.  

The simulcast method, where each view is independently coded, only takes temporal 

redundancies into account. This method is the most clear-cut due to the fact that it can 

employ currently 2D encoders/decoders. It does, however, increase the amount of data 

to be transmitted or stored proportionate to the number of views. In stereoscopic 3D 

videos, for instance, it doubles the amount of compressed data.  

Exploiting inter-view redundancies increases coding efficiency by up to 24% in 

stereoscopic videos compared with simulcast coding without any significant reduction 

in visual quality. The gains shown here are for full-resolution representation but it is not 

limited to full-resolution. These gains could also increase compression quality in frame 

compatible and 2D plus depth representation described in Chapter 2.3.  
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The codec used is H.264/AVC for both simulcast and stereoscopic coding techniques 

used in the above experiments. The stereoscopic and multi-view extensions of 

H.264/AVC are backward compatible. In the event the stream is decoded by 2D 

decoder, it will only decode the base view. In other words, encoding with the multi-

view video coding extension of H.264 does not render the video un-decodable for 

legacy 2D AVC decoders.   
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3.8 Conclusions  

Multi-view video coding enables auto-stereoscopic displays and Free View-point TV 

for the mass market. It is the most promising technology in 3D videos to date. But it 

comes with a large amount of data captured by multiple synchronised 2D cameras.  The 

similarities between the views can be exploited for coding efficiency. Multi-view video 

coding (MVC) extension of the H.264/AVC standard is explained and its benefits 

highlighted. 

A comparison of video compression on 3D video is presented with 2D video setting a 

benchmark. Two views are encoded with the stereo profile of the Advanced Video 

Coding (AVC) standard, first with treating each view as an independent view and then 

by exploiting the inter-view dependency. The results show that while there is no 

considerable quality degradation, the savings in bitrate can range from 3% to 24% in 

the test bed used in the experiments.  The bitrate analysis presented in this work was to 

demonstrate the range of bitrate savings when two views are compressed in a 

stereoscopic encoding scheme as compared to simulcast compression. The stereoscopic 

coding scheme can be exploited further to reduce the bitrate by incorporating other 

techniques such as depth map estimation [82]. 

The results shown here demonstrate the importance of selecting the correct codec for 

robust compression efficiency. The stereo profile of the H.264/AVC where the 

redundancies between the views are exploited without any considerable effect on the 

quality of the video highlights how efficiency in 3D video can be achieved, which 
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provides the basis for using MVC as the standard codec for 3D videos. The next two 

chapters will focus on the transmission of 3D videos.  



 

 

 

Chapter 4: 3D Video Delivery 

over HTTP  
With the increased popularity of wireless communications and more advanced end 

points such as smart phones and tablet PCs, it is becoming increasingly demanding to 

deliver a variety of services, including 3D video services, which optimize the users’ 

Quality of Experience (QoE). Some smart phones can now capture and play 

stereoscopic videos.  Enabling these devices to deliver their content in 3D will open up 

new opportunities in the 3D video communications area. This chapter investigates an 

approach for delivering Multi-view Video using HTTP over wireless networks, with 

varied packet sizes depending on observed channel conditions. OPNET System-in-the-

Loop module is used to transmit real video over a simulated network. It is commonly 

expected that small packet sizes will perform better in bursty wireless channels when 

the network is reported to be busy. Our results show that an optimum packet size for IP 

networks at the application level is 64 kB Smaller packets increase the transmission 

overhead in an already congested network and the communication between the physical 

and application layers incur additional delays. Larger packets at the application level 

also have an adverse effect on the transmission times. Packet size variation and its 

effect on transmission times is discussed in details.  
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4.1 Introduction 

3D videos have a large amount of data that not all networks can handle. Wireless 

communication is bursty and lossy by nature. It is important to maintain the quality of 

video to a satisfactory level. Errors loss of a received packet can propagate to other 

frames and views. Since HTTP uses TCP to deliver, it guarantees the delivery of the 

packets but at the cost of extra time. This may not be the best option for video 

streaming but in cases where video quality is an important factor and time is not critical 

though an important factor in the user’s quality of experience.  

This chapter investigates the optimum packet size for an efficient video delivery. With 

H.264/MVC, in addition to exploiting the similarities between frames of the same view, 

it also exploits the similarities between inter-view frames [80] as discussed in Chapter 3 

in detail. This greatly reduces the amount of traffic that needs to be delivered compared 

to simulcast transmission of independently coded streams [89]. Real video bit streams 

are transmitted via an OPNET simulated network using its System-in-the-Loop (SITL) 

module [90].  

The quality of experience in a 3D video communication system can be affected by 

many things, including errors in signal processing, lack of required information, packet 

loss, and optical errors in display [13]. This can cause visual artifacts, visual discomfort 

and fatigue which impairs the user’s QoE. This research focuses on the packet loss, and 

strives to ensure that while using a protocol that guarantees a packet arrival at the 

destination with 0% loss, the sender and receiver can adapt themselves to the changes 

in the channel to maintain constant delivery of packets and QoE. The rest of this 
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chapter is organised as follows: A brief overview of H.264/MVC is given, followed by 

the introduction of SITL before presenting the proposed system. The results from the 

simulation are discussed in light of the impact of using the proposed system. The 

chapter concludes the findings with recommendations for the future.  

4.2 H.264/MVC 

It is beyond the scope of this chapter to describe the Multi-View Video Coding (MVC) 

extension of the H.264/AVC (Advanced Video Coding) standard. A brief overview of 

the coding scheme and the packetisation of the Network Abstraction Layer Unit 

(NALU) is provided here to understand the delivery mechanism. For a comprehensive 

study of MVC, please refer to chapter 2 and 3. Readers can also refer to [80,89,91] for 

further study.   

3D video is referred to many different visual formats. Stereoscopic video, where two 

slightly different views are presented to each eye, is one form of the most commonly 

used formats. Its usage may differ from one video to another, ranging from anaglyph to 

polarization or barrier parallax. The other format is the video plus depth. Multi-view is 

another format where more than two views are represented including in free-view point 

displays. This variation makes it difficult to build one transmission system that can 

apply to all. MVC can encode stereo and multi-view videos as well as video plus depth. 

This makes it an ideal encoder on which to build the proposed delivery system.   

A standard MVC bitstream generated by JMVC 8.5 is used. The videos used for 

experiments are the original MERL videos available at [92]. The benchmarked 

sequences used are Ballroom, Exit and Vassar.  
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MVC has two types of NALUs identified by the 1-B indicator as either a video coding 

layer (VCL) NAL unit or a non-VCL NAL unit. VCL NAL units contain coded video 

data where as the non-VCL NAL units carry parameter sets and supplemental 

enhancement information (SEI) messages [80]. Although, non-VCL NALUs do not 

contain coded video, they carry information that helps the decoder with bitstream 

manipulation and display. For the purpose of the experiments for this research, these 

are important to get the quality of output required. The experiments in this research 

attempt to deliver the complete bitstream as generated by the MVC encoder without 

any modification.  

4.3 System-in-the-Loop 

System-in-the-Loop (SITL) is a module of OPNET simulator that allows for 

transmission of real packets over simulated networks. The proposed test bed is created 

using this module. SITL can be connected to communicate with two real end points 

communicating over simulated networks, real end point to communicate with a 

simulated node, or simulated nodes to communicate over a real network [93]. Here, the 

first scenario of real nodes communicating over simulated networks is used. The 

alternative to using SITL is to use video trace files that replicate the behaviour of the 

bitstream or transmit the video over a real network. Using trace files limits the ability to 

conduct subjective tests on the received video. Using SITL has the benefit of 

transmitting real videos over simulated networks between real client and server. Using 

video traces would also limit the objective test methods such PSNR comparisons. 

Although this is not applied in the work presented here, it is critical to future work and 

opens new opportunities for more in-depth analysis of the transmitted video. Figure 4.1 
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shows the communication of the simulation setup using SITL. A central computer with 

OPNET installation and access to the license server is used to create the simulated 

network shown in the test bed. Two computers are connected to the central computer, 

alternating as the video server and receiver.  

 

Figure 4.1: System-in-the-Loop Connections model 

 

Figure 4.2: First scenario with no interference 

The simulated network does not impose any restrictions on the communications 

channel other than those defined here. Two scenarios have been used.  In the first 

scenario two Wireless LAN routers are connected using point to point connection with 
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a data rate of 1Mbps at the 2.4GHz frequency as seen in Figure 4.2. In the second 

scenario, 4 other nodes are introduced that operate in the same frequency as shown in 

Figure 4.3. The three workstations are streaming video from the server at the same data 

rate as that of the routers, i.e. 1Mbps. This interference increases the load that the 

routers have to handle and thus causes the point to point connection between the two 

routers to drop packets. The effect of this increased load (congestion) is observed on the 

packets being transmitted via HTTP.  

 

Figure 4.3: Second scenario with introduced interference nodes 
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4.4 Maximum Transmission Unit (MTU) Size 

Every network has a maximum packet size that it can transmit, called the Maximum 

Transmission Unit (MTU). If the size of the packet is larger than the defined MTU, it 

has to be split into chunks that are equal to or less than the maximum size allowed 

before it can be transmitted. The probability of packet loss is increased when a large 

packet has to be fragmented because even if one of the fragments is lost, the whole 

packet might be rendered useless. MTU compliant packets also benefit from an 

optimized payload/header overhead relationship [95]. The maximum size of an IP 

packet allowed is 64 kilobytes [94] but it is rarely used outside research. In IP 

networks, the size of an MTU can range from 128 bytes to 10 kilobytes [95]. 

The size of the packet mutually agreed in a network based on the smallest MTU in the 

network is called Path MTU. But it is very difficult to determine an end-to-end MTU 

size between two IP nodes, and it may change dynamically between them during the 

connection [94]. In IP, being a packet switched network, each packet may take a 

different path with the need to determine a separate PMTU for each of the possible 

paths the packet could take. This is an additional overhead for a network. This has led 

to making the most common size used on the Internet to being 1500 bytes [94], because 

it is the size of Ethernet MTU. While not always the case, most end points in an IP 

network are connected to Ethernet; this becomes the largest size a network can connect.  

Researchers have been trying to increase the size of the Path MTU by determining the 

lowest size a network would accept before fragmenting the received packets. These 

efforts led to the RFC on Packetisation Layer Path MTU Discovery (PLPMTUD) in 
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2007 [96]. In PLPMTUD, the maximum packet size on a particular path can be 

dynamically discovered through progressively transmitting larger packets.  

4.5 Experimental Evaluation of Packet Size Variation  

In the proposed solution, an MVC encoded bit stream is transmitted over HTTP as 

shown in Figure 4.4. The sequences are encoded using MVC. The encoded bit stream is 

passed to the HTTP packetiser where they are packaged in different sizes at the 

application layer before being passed to the physical layer for transmission. The process 

is applied to congestion-free network first and then repeated using a busy wireless 

channel. The bottleneck in the network is the wireless channel with a fixed bandwidth of 

1Mbps. This bandwidth is competed for by the video transmitted as part of the 

simulation and the other nodes in the network which are set to communicate with each 

other in the set wireless domain.  

The time of the complete video delivery is recorded for each packet size. Fifteen packet 

sizes are used for testing starting with    to    . Although the most commonly used size 

of an MTU is 1500B, this data set is chosen to test the effect of both the smallest packet 

size of 256B to 4MB. The largest packet size IP allows is 64kB. This is much smaller 

than the packet sizes considered in the data set here. This is to study the effect of the 

increased sizes on the transmission rate when exceeded. 

To establish a benchmark, the first view is transmitted through the network with no 

interference. The process is repeated three times. The average time is recorded for each 

video size. The system is further tested by the transmission of three views over the same 

network for the entire packet sizes repeated three times and the average noted. The final 
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test is the transmission of the first view through the network with interference from the 

other four nodes that are competing for the 1Mbps wireless bandwidth. The average of 

the three transmissions is recorded to compare with the benchmark.   

 

 

Figure 4.4: Proposed System testbed 

 

Figure 4.5: Proposed System 
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To test the proposed system, an HTTP packetiser was developed, depicted by Figure 

4.4 and Figure 4.5. The server advertises the videos available that can be pulled by the 

client node. The client sets the size of the packets when establishing a connection with 

the server and selects the bitstream it wants to download. The server sends the 

requested bitstream using the packet size defined by the client. The video used in the test 

is Exit using 3 views, each consisting of 250 frames. It is encoded with Quantization 

parameter set to 29 and Group of Pictures (GOP) to 12. The optimum packet size is 

discussed in the following sections. A packet size is considered optimum when it takes 

the least amount of time to deliver with the least number of redelivery attempts. Figure 

4.4 shows the proposed system blocks. 

4.6 Experimental Results  

Figure 4.6 shows the delivery times variation between the different packet sizes. The 

blue and red lines indicate the results of the benchmark obtained from the interference 

free network for one and three views respectively. The green line indicates the 

transmission time of the test video when interference is introduced. 

Figures 4.7 and 4.8 show the network load when there is no interference, and when the 

bandwidth of the wireless network is competed for by four other nodes respectively.  

Figures 4.9 and 4.10 show the amount of data drop due to buffer overflow in the 

wireless network in the interference-free network respectively. Notice that there is no 

data drop in the interference-free network.  
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Figure 4.6: Delivery time variation depending on packet sizes for the network with interference in reference to the network with no interference 

(used as a benchmark)
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Figure 4.7: Network load when there is no interference from other nodes in the network 

 

Figure 4.8: network load when the other four nodes in the network are competing for 

the wireless bandwidth in the network 

 

Figure 4.9: Data dropped due to the interference free network. Note that it is zero, 

meaning no data has been dropped 
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Figure 4.10: Data dropped in the network with interference from the other four nodes 

in the network 

4.7 Analysis and Discussion 

Starting with Figures 4.7 and 4.8, the data being transmitted on the network before any 

of the videos are being transmitted, paint a picture of the load on the network from 

other nodes. Figure 4.7 shows that after the initial handshake the network traffic is 

reduced to 55 bits/sec on average, which is the announcement and route discovery 

traffic. There is no other traffic going through the network. Figure 4.8 on the other hand 

shows the large amount of traffic going through the wireless network. This is the 

communication of the other four nodes on the network. Figures 4.9 and 4.10 enforce 

this picture with the data dropped by the wireless network due to buffer overflow. Note 

that there is no data drop when the other nodes are not transmitting but a huge spike in 

data drop can be seen when the other nodes start transmitting, indicating that the 

wireless network is already congested before any of the videos is transmitted as part of 

this research. This is the desired outcome that this research was looking to establish—a 

0 

5000000 

10000000 

15000000 

20000000 

25000000 

30000000 

35000000 

1
 

5
 

9
 

1
3

 

1
7

 

2
1

 

2
5

 

2
9

 

3
3

 

3
7

 

4
1

 

4
5

 

4
9

 

5
3

 

5
7

 

6
1

 

6
5

 

6
9

 

7
3

 

7
7

 

8
1

 

8
5

 

8
9

 

9
3

 

9
7

 

D
at

a 
(b

it
s)

 

Time (sec) 

Data Dropped (Buffer Overflow) (bits/sec)  



End-to-End 3D Video Communication over Heterogeneous Networks 

 

Chapter 4 – 3D Video Delivery over HTTP pg.76 

congested network through which the delivery of MVC encoded video is transmitted 

over HTTP under different packet sizes. 

In the test bed network, the most optimized results in terms of delivery time are seen 

when the packet size is     (64 kB)—the size of maximum IP packet allowed [94]. This 

trend continues to the congested network. The amount of delivery time increases when 

the packet size is reduced or increased beyond 64kB. This increase is considerably 

more in the congested network.  

Small packets take longer to deliver because of the increased overhead. They also 

perform badly in the congested network because there are more packets to be sent and 

hence more chance of loss. This increased packet loss adds to the spike in delivery 

times.  There is also the matter of processing the packets in time. The network cards 

transmitting/receiving must have the capability to process more packets per second 

(PPS) as they arrive. The load on the processor or the sending and receiving node 

increases, not because there is extra load but because there are more packets to process.  

Packets larger than the maximum size allowed for IP packets also increase the amount 

of processing time. Since the network card has to fragment all packets larger than 1500 

bytes, because it is connected to an Ethernet network, the amount of data it has to hold 

in the buffer increases with larger packets and more processing needed. Although TCP 

can transmit a maximum of 64kB packets/segments, Ethernet (the network it is 

connected to) does not allow the transmission of packets larger than 1500 bytes. But the 

segmentation is faster at the physical layer than when handled by the application layer. 

The latter increases the levels of communication required for each packet delivery.  
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4.8 Conclusions 

Transmission of the multi-view video requires more bandwidth compared to its 

spatially equivalent 2D counterpart. The reason for this is the increased number of 

views. H.264 MVC can encode videos with better efficiency by exploiting inter-view 

redundancy but it is still considerably more data to transmit.  

HTTP is widely used for streaming video over the internet. Most video sharing sites, 

such as YouTube, Netflix, Vimeo use HTTP to serve their videos to clients. In a 

network where quality is an important factor, the video can be transmitted via HTTP 

which is built on top of TCP/IP at the cost of extra time. It guarantees the delivery and 

benefits from security clearances as it is not blocked by most firewalls. However, time 

is critical in the transmission. This chapter explored the idea of varying packet sizes to 

reduce the delivery time. Small packets are favoured by real-time video streaming and 

they are also used in mobile networks but they require more processing power and are 

more prone to loss in congested networks.  

Large packet sizes take longer and if lost can affect the video but since in TCP it will be 

retransmitted, they are preferred. Moreover, the largest packet size that a network can 

handle is dictated by the Maximum Transmission Unit (MTU) of the weakest link in 

the network. MTU differs for each network. The experiments in this work used 

Ethernet with an MTU size of 1500 bytes.  

Application designers should consider dynamic path discovery to understand the largest 

packet sizes allowed avoiding fragmentation of packets en route and the processing 



End-to-End 3D Video Communication over Heterogeneous Networks 

 

Chapter 4 – 3D Video Delivery over HTTP pg.78 

power of the end-devices. Increased amount of packets will increase the required 

processing power.  

This chapter focused on the transmission over HTTP which uses TCP and hence adopts 

a reliable transfer approach. All packets transmitted are guaranteed to arrive through 

repeat transmissions when packet erasures are reported. It is not an ideal protocol for 

time critical transmission such conversational video communication. But errors in the 

transmission of multi-view video propagate from one view to its dependent views. The 

next chapter explores the use of Real-time Transport protocol (RTP) and proposes a 

solution to minimise the effect of transmission errors on multi-view video quality.   



 

 

Chapter 5: 3D Video 

Transmission over RTP 
The use of inter-view prediction and hierarchical pictures in the Multi-view Video 

Coding (MVC) extension of the H.264 Advance Video Coding (AVC) standard 

produces better compression efficiency in multi-view video. This however, results in a 

bitstream that is considerably more prone to transmission errors than its simulcast 

coding counterpart. This chapter presents the idea of transmission of MVC coded multi-

view video over multiple RTP sessions with experimental evaluation of its 

effectiveness. The results show that by separating the transmission of frames based on 

their level of importance and protecting the important streams, one can minimise the 

effect of transmission errors in the hierarchical B frames. This chapter also discusses 

the use of multi-session transmission in delivering a more adaptable bitstream where 

the number of streams can be adjusted based on the network conditions and, in extreme 

circumstances, all but the base view stream can be dropped to avoid further congesting 

the network and to deliver at least one high quality view to the end user. Our 

experimental results prove that in multi-session transmission confining errors to the 

RTP session encompassing the hierarchical B results in minimising the impact of errors 

on the sessions containing the base view and inter-view P frames; error rates as high as 

10% have negligible effect on the quality of video received.  

5.1 Introduction 

Three-dimensional (3D) videos have been around in the entertainment industry for 

some time now with major blockbusters grossing more than their two-dimensional 

rivals.  3D videos are also becoming a common sight at home thanks to 3D sports 

channels, blue-ray discs and now the Internet. It is the Internet – with its inherent 
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flexibility, heterogeneous nature, and increasing bandwidth – that is expected to be the 

most widely utilised medium of delivery for 3D videos. This chapter explores the 

delivery of 3D videos encoded with the multiview video coding (MVC) extension of 

the H.264/AVC (Advanced Video Coding) standard using multi-session transmission 

(MST) feature of the Real-time Transport Protocol (RTP). Each RTP session is 

generated based on the number of priority levels required. A frame is important if it 

cannot be reproduced. Sessions with low priority level can be dropped based on 

network conditions. Depending on the network conditions and bandwidth availability, 

the number of streams can be adjusted, giving the MVC encoded stream the flexibility 

of simulcast without compromising encoder efficiency. 

5.2 MVC NALU Interface 

 

Figure 5.1: MVC NAL unit interface 

MVC, standardised in 2009, covers a wide range of 3D video applications including 3D 

video streaming, free-viewpoint video as well as 3DTV [83]. It is an extension of the 

AVC standard. This makes it inherently backward compatible with AVC which serves 
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as the base-view that can be decoded independently in the absence of the MVC decoder 

[80]. Any additional views are referred to as enhancement views and are typically 

coded using inter-view prediction within the same bitstream [84].  Regardless of the 

view, the encoded video is packaged into the bitstream using Network Abstraction 

Layer (NAL) units which can be identified by its 1-B header. In its payload, NAL units 

carry the video coding layer (VCL) and non-VCL information which includes 

supplemental enhancement information (SEI), sequence parameter set (SPS), and 

picture parameter set (PPS). The 1 byte header is extended by 3 bytes in non-base view 

NAL units. The extended octets include, among other things, view ID and priority ID as 

shown in Figure 5.1. 

This information is used to identify and build multiple streams with different priority 

levels as defined in section 3.3.3. One benefit of simulcast transmission is that it 

generates independently decodable bit streams [97] but it does not exploit inter-view 

redundancies (see Chapter 3 for more details). MVC generates more efficient bit 

streams but contains inter-view dependencies and the presence of all views in the 

bitstream even if the decoder can only extract AVC bitstream. Creating multiple 

streams based on priority level and different views at the NAL unit, an MVC bitstream 

can be transmitted with different levels of protection and make the extraction of the 

base view independent of the enhancement views. MST transmission gives the end-

point the flexibility to drop enhancement views in congested and/or low bandwidth 

channel conditions. This will reduce the amount of traffic that needs to be transmitted 

in scenarios where the decoder can only decode the main view and where bandwidth 

restrictions do not allow for the transmission of multiview video. In the latter case, we 
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avoid further congestion of an already congested network with data that cannot be 

decoded without significant drop in the quality of the received video. In the first 

scenario, it makes the transmission more selective, e.g. the base view only is 

transmitted in the absence of an MVC decoder. This is further discussed in section 5.4. 

5.3 RTP Payload for MVC 

Real-time Transport Protocol (RTP) provides encapsulation of real-time media for 

immediate transport and consumption over the Internet Protocol (IP) using a variety of 

transport layer protocols such as the user datagram protocol (UDP), the transmission 

control protocol (TCP) or the datagram congestion protocol (DCCP) [84].  

 

Figure 5.2:  MVC multi-session transmission with two flows [84] 

An Internet draft of the RTP payload is presented by the Audio/Video Transport 

Payloads Working Group which specifies how MVC NAL units can be encapsulated in 
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an RTP packet stream. It is built on AVC and some features of H.264/SVC (scalable 

video coding). An RTP packet can include a single NAL unit, a fragment of it, or 

multiple NAL units and in cases where the size of NAL units is smaller than the 

maximum transmission unit (MTU) size, multiple NALUs can be aggregated into a 

single packet. Where the latter is applied, the NAL units must belong to the same layer 

and access unit. Once the packets are formed, they can be transmitted in single-session 

transmission (SST) or multi-session transmission (MST) as depicted in Figure 5.2. 

In SST, all views are transported with one RTP flow whereas in MST, multiple RTP 

flows deliver the NAL units from a single or multiple views. It is the latter that we 

employ in transmitting MVC bitstreams.  In MST, each stream must have the same 

synchronisation source (SSRC) to associate the multiple streams with each other. 

Association can also be established using RTP control protocol (RTCP) Canonical 

Names CNAME [83]. The dependency between the RTP sessions can also be signalled 

via session description protocol (SDP). 

5.4 Video Transmission 

Multiview video as the name suggests has two or more views, which increases the 

encoding complexity and bandwidth requirement for transmission. There are two 

techniques that can be used to transmit these views. The most basic is to treat each view 

as separate and encode them separately as depicted in Figure 5.3. This technique is 

called simulcast as each view is independently encoded.  
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Figure 5.3: Simulcast transmission with three views 

 

Figure 5.4: Multiview transmission with three views 

Figure 5.5 shows prediction when each view is encoded independently. While this 

method has its benefits, it does not exploit the redundancies that are preset in between 

the views. Figure 5.4 shows the multi-view encoding where three views are 
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incorporated for better encoding. While it exploits the similarities that are present 

between the three views, it increases the effect of transmission errors. Figure 5.6 shows 

the inter-view prediction when the three views are incorporated. The inter-view 

prediction produces a more efficient bitstream but one that is more vulnerable to 

transmission errors.  

 

Figure 5.5: Prediction in each view when encoded independently 

Since MVC is an extension of H.264/AVC and needs to have at least one view which is 

backward compatible with AVC, it uses the AVC encoder to encode each view and 

then assemble them in the time-first coding [99]. The interdependency between the 

views makes switching views difficult as the frames that the required view depends on 

for inter-view motion prediction will also need to be transmitted.  The time first coding 

structure allows the decoder to decode pictures belonging to different views in the same 
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time domain. This, however, introduces issues when transmitting with multi-sessions as 

the pictures need to be put back in the right order for the decoder to be able to decode 

and display the videos in the correct order, as shown in Figure 5.7.  Although it exposes 

the bitstream to transmission errors, the time-first coding of frames is used as a solution 

to the multisession transmission synchronisation. Frames received from the different 

RTP sessions are synchronised in the order of display before being fed to the decoder.   

 

Figure 5.6: Prediction structure when the three views are encoded using inter-view 

prediction in addition to temporal prediction in each view 

Video transmission of MVC encoded bitstream has been an active research area. 

Several publications have studied the effect of errors and error concealment techniques.  

However, these studies have focused on single channel transmission. To the author’s 

knowledge, MST of MVC encoded video has not yet been experimentally explored for 

3D video transport in available literature. Interested readers can refer to [94] for 
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streaming H.264/AVC video over IP networks. The effect of packet loss on the quality 

of streamed MVC videos is studied in [102]. Error concealment techniques for MVC 

encoded video sequences are evaluated in [103].  

 

Figure 5.7: Time-first coding 

5.5 Multi-Session Transmission in RTP 

In order to see the effect of transmission errors in single view and the proposed multi-

session transmission, a model of the transmitter and receiver nodes were produced 

using the open source multimedia streaming application, Sirannon [100]. Sirannon is a 

testing tool accepted by the Video Quality Expert Group (VQEG) for streaming video 

sequences and simulating network impairments. Three videos of the MERL sequences, 

Ballroom, Exit, and Vassar, were used for testing and encoded in accordance with 

[102]. The numbers of views used were three, each containing 250 frames, totalling 750 

frames per multi-view video. The views were encoded with base QP of 31, 29, and 30 

respectively. The sequences were tested for Group of Pictures 4, 8 and 12 to make the 

tests more comprehensive.  

First, the video was transmitted in a single view session with packet loss 0%, 0.5%, 1%, 

2%, 3%, 4%, 5%, 7%, 9%, and 10%. The video was then split into three RTP sessions. 

The first view, which is independently decodable, was transmitted in a separate session, 
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the P frames in view 2 were sent in another RTP session and all of the hierarchical B 

frames from views 1 and 2 were sent in a third RTP session. For each packet loss test, 

10 transmissions were made. A total of 1800 tests were done, 900 using each 

transmission method, i.e. single and multi-session. The best of the 10 tests for each 

transmission were selected for comparison.  

 

 

Figure 5.8: MST transmission test bed 

The experimental test bed for multi-session RTP transmission is depicted in Figure 5.8 

and Figure 5.9.   

In the multi-session transmission, only the RTP session with the hierarchical B frames 

session was subject to error loss. A frame classifier was used to identify each frame 

before they are forwarded to the relevant RTP transmitter.  A frame scheduler was used 
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to synchronise the two receiving RTP channels into a single stream ready for decoding. 

The maximum MTU size was set to 1500 Bytes. NAL units larger than the maximum 

MTU size were fragmented as described in section 4.4 and in accordance with RFC 

3984 (RTP payload format for H.264 video). 

 

Figure 5.9: MST receiver test bed 

JMVC reference software version 8.5 was used for the encoding and decoding of the 

multi-view videos. Since H.264/AVC decoder only accepts complying bitstreams, the 

decoder was modified to accept corrupt bitstream by using frame copy to replace the 

missing frame. This is done by inserting the previously decoded frame if and when 

available in the decoder buffer.  

The quality of the video is assessed with the objective quality assessment widely used 

in 2D videos, PSNR. Since we are interested in the quality of each view, PSNR is a 

suitable measurement to evaluate the effect of errors in a particular view.  
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5.6 Experimental Results 

Despite changing the code in the JMVC decoder to accept erroneous bitstreams, the 

decoder failed to decode some bitstreams in two conditions: (a) where the loss in 

transmission was in a frame that was either a reference frame; or  (b) when the decoder 

buffer over loaded. The latter was more frequent in large GOPs.  

Decoder failure occurred when a reference frame was dropped and the decoder lost 

synchronisation, making it unable to continue decoding the bitstream. In the multi-

session transmission, the base view is kept error-free whereas the hierarchical B frames 

in the second and third views are subjected to packet loss. Due to the fact that B frames 

are bi-predicted, they were re-generated in both of the enhancement views despite the 

high packet loss. 

As evident from Figure 5.10 compared to Figure 5.11 the number of decodable frames 

increases with multi-session transmission by threefold, especially at high error rates.  

Videos in MST scenarios were decoded in their entirety when the scenarios were GOP 

4 and GOP 8. The few missing frames from the total 750 are those that were lost, but it 

can be seen that the decoder succeeded in continuing to skip past the errors. This was 

not the case in the 12 GOP scenarios at high error rates. The reason for this was the 

requirement for keeping a larger number of reference frames in the memory causing the 

decoder to crash in the case where there were a large number of errors in the 

hierarchical bi-predicted frames.  
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Figure 5.10: Graph shows the number of frames decoded for each error loss pattern in 

single session transmission 
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Figure 5.11: Graph shows the number of frames decoded for each error loss pattern in 

multi session transmission 
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PSNR results shown in Figures 5.12 and 5.14 further strengthen the case for using 

separate channels for different frames in MVC transmission. The optimum PSNR 

achievable for the MVC streams is demonstrated by the zero loss bitstreams. MST 

streams show a steady decline with the increase in the error rate. Since, in MVC, each 

view contributes to the quality of experience, the average of the three views is 

considered in the graphs shown in Figures 5.12 to 5.14. While in MST, the average 

PSNR drops below 25 dB—which in Mean Opinion Score (MOS) translates to an 

annoying level of impairment—in the high moving video, Ballroom, the other two 

videos stay 30 dB for most of the tests. In SST this decline is more rapid, despite the 

fact that only those frames that are decodable were compared. In instances where PSNR 

is zero reflects the fact that none of the 10 transmission tests for that video contained 

one which was decodable.  

 

Figure 5.12: Average PSNR for each error loss pattern in single session and multi-

session transmission for Ballroom sequence 
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Figure 5.13: Average PSNR for each error loss pattern in single session and multi-

session transmission for Exit sequence 

 

Figure 5.14: Average PSNR for each error loss pattern in single session and multi-

session transmission for Vassar sequence 
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It must be noted that the quality degradation is consistent in SST and MST at 

comparable rates until the packet loss increases beyond 3%. The best performing video 

in SST is in the highest (12) GOP scenario but even then it is not predictable.    

The effect on the quality of video is different at every simulation run. This is due to the 

random errors that are introduced affecting the bitstream differently each time. The 

effect is also different given the type of video tested. For example, in Vassar which has 

low object motion, the effect of transmission loss is lower. This is because the frame 

copy that was employed to recover dropped frames has a higher likeness to the dropped 

frame than it has in the medium and high motion sequences of Ballroom and Exit 

respectively. In the multi-session transmission, the quality is, in most cases, comparable 

to single session at 1% loss and slightly lower at 3% loss.  But the major difference is 

its ability to resist errors far beyond 3%. Even at 10%, the PSNR value stays above 30 

dB, except in the high motion video sequence—ballroom.   

The reason the second and third views are able to stand errors in the multi-session 

transmission at considerably higher loss percentage in the hierarchical B frames, 

despite there being far more hierarchical B frames than I and P frames, is because they 

can be recreated. Only B frames depend on other B frames for prediction. I frames can 

be independently decoded and P frames only depend on the preceding I frames. This 

experimental evaluation proves that multi-session transmission can improve the quality 

of the bitstream when the base view and key frames are protected by separate 

transmission streams. 
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5.7 Analysis and Discussion 

Multi-view videos have a large number of data with inter-dependent coding. Errors in a 

frame in one view can propagate to other views. The effect of these errors can be much 

larger when the following frames are bi-predicted from the frames where the errors 

occurred. Multi-view videos, as shown in this chapter, heavily use bi-predicted frames. 

This makes them more susceptible to error propagation resulting from errors in 

reference frames. Protecting the reference frames can improve the quality of the 

complete multi-view video content. 

Decoupling the reference frames from the bi-predicted frames for transmission over 

separate sessions presents the problem of out-of-order-arrival of the frames. MVC as 

discussed employs time-first coding, which means it needs the frames in time order to 

decode them. Out-of order arrival of frames in a multi-view video during multi-session 

transmission is a certainty. Frames will arrive before those that are needed before it. 

RTP is therefore the right protocol to use, as it contains within itself certain 

mechanisms such as timestamps and control mechanism which can be used to establish 

the synchronisation needed at the end-point in such arrangement the frames are put in 

the correct order for decoding. Conventional transport protocols such as TCP, which is 

used in Chapter 4, are not designed for real-time transmission. 

The content of a multi-session transmission can vary depending on how the video is 

segmented. In this work, the segmentation is based on the importance of data in multi-

view video with respect to adaptable transmission channels. The 3-view multi-view 

video is segmented into three distinct sessions.  
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The first session being the base view which can be independently coded, should the 

end-device be a 2D video decoder or when the network is congested. The end-device 

can drop the other views without incurring any quality loss on the base view or further 

congesting the network with data it cannot decode in time for display. This makes every 

multi-view video stream adaptable. In addition, the bitstream extraction is already 

conducted so the decoder does not need to perform further bitstream extraction to 

display the base view. 

The second and third streams contain all the predicted and bi-predicted frames for the 

auxiliary views respectively. This stream separation is to protect the more important 

predicted frames from the less important bi-predicted frames. Errors in the predicted 

frames can propagate exponentially in the bi-predicted frames but the same is not true 

vice versa. Hence, the stream containing the predicted frames can be protected to 

reduce errors.  

The experimental results show that multi-view video decoders can handle errors in the 

bi-predicted frames and tolerate a high error loss. The results presented above show that 

almost all of the frames, excluding the ones dropped as a result of network congestion, 

are decodable even at a 10% loss rate. The effect of errors in bi-predicted frames, 

however, increases with the increase in GOP size. There are a number of factors for 

this, the most important of which is the decoder buffer. With a high GOP the decoder 

must keep more frames in memory for a longer period of time to serve the decoder 

needs for prediction. This leads to buffer overflow when the error rates increase. In this 

work, in case of an error in a frame, the previous reference frame is used to replace it, 

but it may already be flushed out of the buffer before the error occurs, which leads to 
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the decoder failure. This problem, however, is not critical and can be fixed by using 

error control techniques such as Forward Error Correction (FEC).  The increased error 

rates also highlight the importance of selecting the right GOP size for a stream. Coding 

efficiency and transmission errors must both be considered when selecting the GOP 

structure during the encoding process.  

Multi-session transmission of multi-view video can render the video stream more 

adaptable to the end-devices and offer additional error resilience capabilities by 

confining the errors to a particular spatial region. Experimental results shown above 

prove MST’s effectiveness in handling error rates as high as 10% with negligible frame 

loss when the errors in transmission are contained to the relatively less important bi-

predicted frames.   
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5.8 Conclusion 

MVC greatly reduces the amount of data that needs to be transmitted by exploiting 

inter-view redundancies between adjacent video sequences in addition to the regular 

temporal and spatial redundancies in each view. This, however, makes it more 

vulnerable to transmission errors. Errors in key frames can render the entire bitstream 

un-decodable.  

The inter-view dependency also means that errors propagate to other views when errors 

occur in frames that are used by other views for motion compensation prediction. The 

transmission of MVC bitstreams over multiple streams based on priority and view 

changes improve the quality of 3D video.  

MST gives the end users/systems the flexibility to drop views in congested networks in 

order to allocate more bandwidth to the base view for better QoE. MST can also be 

used to reap the advantages of simulcast without losing the benefits of inter-view 

similarities exploitation.   

It does, however, introduce problems with the synchronisation in erroneous channel 

conditions when packets arrive out of bound. This problem has been resolved by using 

the frame order to resynchronise by taking advantage of the MVC time-first frame 

ordering.  

The focus of Chapter 4 and 5 was on the transmission of multi-view videos as produced 

by the current encoders. The next chapter tries to evaluate the use of virtual view 

rendering techniques in MVC, hence reducing the number of cameras required for 
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video capture and further increasing the coding efficiency while reducing the 

bandwidth requirements.   



 

 

Chapter 6: Decoder Optimisation 

in MVC 
Multi-view video delivery, as discussed in previous chapters, requires the transmission 

of a large number of views. H.264/MVC does a good job in compressing the views by 

exploiting inter-view redundancies. This, however, still puts the bulk of the load on the 

encoder/transmitter with little effort on the part of the receiver. With the increase in the 

processing power of end points, be they mobile phones, PCs, or even smart TVs, it is 

imperative to take advantage of this processing power. This chapter focuses on 

solutions to eliminate the need for transmitting all views in an MVC sequence, by 

recreating the views at the receiver using the full resolution adjacent decoded views to 

recreate the middle view without the need for any auxiliary information to be delivered. 

This chapter evaluates the complexity of different virtual rendering solutions and 

compares the quality of their results against each other and against the actual decoded 

view.  

6.1 Introduction 

Multi-view videos are recorded by cameras very close to each other, capturing the 

scene from slightly different angles. The video sequences used in most MVC research 

studies are the MERL sequences, Ballroom, Exit, and Vassar [104]. This research also 

employs these sequences. They are captured in 640x480 Bayer with a 19.5 cm baseline 

between optical centres, with the optical axis being parallel to the ground plane at 

approximately 1.5m alleviation from the ground up [104]. They are hardware 

synchronised so the time each camera captures a frame is the same. Figure 6.1 shows 

the camera setup used by MERL to capture their sequences. 
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Figure 6.1: Illustration of 8 camera setup in Multiview Video Test Sequences from 

MERL [83] 

 As a consequence the inter-view similarities can be exploited to reduce the number of 

cameras needed for capturing a scene. This will greatly reduce the amount of traffic that 

needs to be transmitted across networks, thus allowing better utilisation of the available 

bandwidth. For example, if for every three views, one of the views can be set to be a 

virtual view that is recreated by the decoder. This means that the same amount of traffic 

that three views would normally generate can transmit five views, as depicted by Figure 

6.2. Capitalising on the compression capabilities of MVC, this would reduce the load 

on the encoder at the cost of extra processing required by the decoder—effectively 

balancing the load between the server and the client.  

Figure 6.2 illustrates the compression of five sequences using the H.264/MVC encoder, 

with the view 2 and 4 excluded from the process, making view 3 as the middle view—
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which would otherwise have been view 2. Virtual view 2 and 4 will be recreated by the 

decoder from views 1 and 3, and views 3 and 5 respectively.  

 

Figure 6.2: Depicting virtual views to further improve the compression ratio of the 

H.264/MVC  

In order to reconstruct the virtual view by the receiver, the frames of the two reference 

views must be decoded. Since MVC employs a time first approach when decoding 

views, as highlighted in Chapter 3, the virtual view creation module can simply be 

inserted after the decoding of the frames in each time block. The process needs to be 

simple so that it does not add too much extra delay and does not considerably increase 

the processing power required.  

6.2 Extracting Virtual View 

Similarities between the frames of the views are visually demonstrated by Figure 6.3, 

where Figure 6.3 (a) represents view 1, Figure 6.3 (b) represents view 2, and Figure 6.3 

(c) represents view 3. As can be seen the details required in view 2 are present in view 
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1 and 3. The process of generating the views is described in this section. Three methods 

are devised: Stitching, Disparity Prediction, and Panoramic Imaging.  

(a) 

 (b) 

  (c) 

Figure 6.3: Frame one of Vassar Sequence demonstrates the similarities between the 

frames (a) View 1, (b) View 2, (c) view 3 
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6.2.1 Stitching Virtual View 

The first method proposed is simple with low algorithmic complexity--remove the 

excess pixels from the frame of view 1 and view 3 and then stitch them together to form 

the virtual view.  

 

Figure 6.4: Creating virtual view from one adjacent view on each side 

Assume    and    represents the frames of view 1 and 3 respectively and     represents 

the virtual view.   is the size of the slice containing the excess pixels. To create the 

virtual view, we will first need to remove the excess pixels   from   . The rest of the 

image,        are shifted to position     to form the first part of the virtual view. 

Equation 1 represents this process mathematically and Figure 6.5 graphically.  

                      Equation 1.  

Where    = size of image along x-axis, and   is a variable length difference between 

consecutive views along x-axis.   is calculated through trial and error for each video 

once, at the start of the process.  



End-to-End 3D Video Communication over Heterogeneous Networks 

 

Chapter 6 – Decoder Optimisation in MVC pg.106 

 

Figure 6.5: Extracting the relevant parts of view 1 to make the first part of the vitrual 

view 

The pixels in the     to complete     are between       to    . These pixels are 

appended to     to complete the virtual view frame. Equation 2 represents this process 

mathematically and Figure 6.6 graphically.   

                                  Equation 2.  

 

Figure 6.6: Extracting the relevant parts of view 3 to make the remaining part of the 

virtual view 

It must be noted that the above steps must be applied to each colour channel separately, 

i.e. the process to be repeated for R, G, and B channel individually. Applying the above 

process to frame 1 of the Vassar video sequence, we get the result shown in Figure 6.7. 

To an untrained naked eye this frame looks very similar to the original frame but 
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objective test using PSNR produces 22.5 dB. Its MOS is below the very annoying 

threshold of 25dB, where the same frame has a PSNR of 36.6 after being 

encoded/decoded using MVC.   

 

Figure 6.7: Virtual view through stitching 

With a more careful look at the image, one can see that the pixels added from view 3 

are not aligned with the first part of view 1. This shows that even though the cameras 

are vertically and horizontally aligned, the angle at which each camera captures the 

scene is different. Nevertheless, this simple technique can produce a virtual view at 

high speed at the cost of quality degradation. The overhead of the additional processing 

is computationally inexpensive as highlighted by Equations 1 and 2, hence a valid 
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candidate for reducing the transmission load on bandwidth and the number of views to 

be encoded but not a real representation of the original view.  

6.2.2 Disparity Predicted Virtual View 

The stitching method highlighted that while the cameras are aligned horizontally at 

equal distance from one other, each camera captures the scene from a slightly different 

angle. One way to find the displacement between objects, employed in stereo videos, is 

disparity prediction. Disparity compensation exploits the correlation between 

views/frames.  

It has also been applied to the creation of virtual views in multi-view, albeit not for 

display nor at the decoder. It is used for prediction purposes. Martin et al. introduced a 

technique called view synthesis prediction (VSP) to improve the prediction efficiency 

amongst inter-views [104]. Since then, various researchers have adopted this technique 

to offer improvements. Flierl et al. discussed the impact of inaccurate disparity 

compensation for N views in a group of views (GOV) [106]. Chung et al. proposed 

virtual view interpolation with bilateral criterion and disparity smoothness, as an 

additional reference frame for encoding [107]. Hu et al. built on the idea of VSP to 

propose a least squared based synthesis prediction method to enhance the prediction 

capability of virtual view picture [108].  

In this section, we employ disparity algorithm Sum of Squared Differences (SSD) to 

calculate the virtual view at the decoder, for the purpose of reducing the number of 

cameras needed to capture as many views as possible. In addition to reducing the need 

for cameras, the load on the encoder is reduced, as well as the bandwidth requirement 
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when transmitting the views and reduced storage space need.  The sole aim of our 

investigation is to reduce the amount of data and reduce the amount of bandwidth 

required for transmission, and create a virtual view during the decoding process before 

display. Other efforts to reduce the amount of traffic for transmission still require the 

capturing of the virtual view and transmitting some sort of data to represent that view. 

Movan et al., for example, proposed replacing the transmission of the central view with 

its texture data and a corresponding depth map [109]. It does not absolutely eliminate 

the need for transmitting any information about the virtual view. 

Disparity compensated prediction with SSD is usually calculated as in Equation 3 

where W is the window (block) size, x and y are the coordinates of the image along x-

axis and y-axis respectively and i and j are disparity locations along x-axis and y-axis.  

                       
 

       

 Equation 3.  

Since we know the cameras are horizontally aligned, the disparity prediction in this 

method is going to be just along x-axis, as represented by Equation. 4: 

                     
 

       

 Equation 4.  

The cameras are placed at an equal distance from each other. The disparity between the 

I1 and I3 will be twice as much as the disparity between I1 and I2, and I2 and I3; hence 

the disparity is halved before applying to each half of the image to make the virtual 

view.  The mathematical model for this process is explained as follows: 
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Where         is a frame in view 1,         is a frame in view 3, and        is the 

disparity from         and        , then        from      will be twice as much as the 

required disparity for the virtual view between      and     , therefore the disparity of 

the virtual view will be    
      

 
.   

 

Figure 6.8: Graphical representation of the Disparity compensated virtual view 

creation Process 

Once the disparity is calculated, the next step is to create the virtual view. The 

mathematical model for this two step process is represented in Equation 5 and Equation 

6:  
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Equation 5.  

      
 

 
           

 

 
       

 

 
       

Equation 6.  

In Equation 5 and Equation 6, the disparity matrix is applied first to the first half of    

and then to the second half of   . The two half images are put together in the same order 

to create    (virtual view). Figure 6.8 shows this process graphically.  

 

Figure 6.9: Virtual view through Disparity prediction 

Figure 6.9 shows the virtual view created using the above described disparity prediction 

method. It has definitely improved the mismatch of artifacts that were formed by the 

stitching process. Objective tests also show a great improvement with a PSNR of 25.6 
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dB which is a 3.1 dB gain from the stitching method. In addition, subjective assessment 

also shows more resemblance between the virtual view and the real view it was meant 

to reproduce. However, artifects still exist as highlighted by the green boxes. The 

mismatch caused by disparity errors would require further correction before making it 

visually closer to original view. Regardless, the results prove the viability of the 

method. 

6.2.3 Panoramic Stitched Virtual View 

(a) (b) 

 (c) 

Figure 6.10: Comparing the three views of Vassar for inter-view difference, where (a) 

is view 1, (b) is view 2 (the view we want to recreate), and (c) is view 3 

Another relatively more computationally expensive method is to create the virtual view 

through panoramic stitching. This method uses Scale-invariant feature transform 
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(SIFT), RANdom SAmple Consensus (RANSAC), and Homography to generate a 

panoramic stitched image by using the two reference frames from View 1 and View 3. 

The resulting image is then cropped to the required dimensions to form the virtual view. 

SIFT is used to extract keypoints in the reference images, which are then fed into 

RANSAC to find the outliers before applying homography to map the filtered points 

together. SIFT, RANSAC and Homography are well known algorithms and interested 

readers can refer to [110] and [111]. The basic concept and the reason for the 

recommendation of this method are explained below.  

 

Figure 6.11: Finding keypoints in the image using sift 

Figure 6.10 highlights the differences between the three views. The most prominent of 

which is the post sign highlighted by the red boxes. The middle view or view Figure 

6.10 (b) is the one attempted to recreate here. The size of the post sign is wider than 

present in view 1, which is where it is hoped that the first half of the virtual view will 

be recreated. In view 3 (Figure 6.10 (c)), only half of the post is present. The shadow in 

the window, highlighted by the green boxes, is another example. In this scenario, it 
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shrinks moving from view 1 to 3. This is due to the angle of the camera capture, 

although only 19.5 cm apart, the angle at which the information is recorded makes the 

differences in the information captured.  

These may be small visible details compared to the whole picture but it is what makes 

the view different. The virtual view will have to employ the changes. 

Panoramic picture calculation requires the extraction of key points in an image using 

SIFT as depicted in Figure 6.11. The keypoints are then fed to RANSAC to find the 

outliers, eliminating the noise or error points as shown in Figure 6.12.  

 

Figure 6.12: The keypoints found by SIFT are now fed to RANSAC to find the outliers 

highlighted by the colours red, purple and blue 

 

Figure 6.13: Using Homography the images are adjusted through the matching points 
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The outlier points are then used by the homography process to align the two views to 

form the panoramic view as depicted in Figure 6.13. The final virtual view is extracted 

by cropping the excess information from the panoramic image to form the virtual view.  

 

Figure 6.14: SIFT matching Points in the Vassar video sequence example using view 1 

and 3 as the reference frames [111] 

 

Figure 6.15: RANSAC points for the two reference images of view 1 and view 3 in the 

Vassar video sequence 

Figure 6.14 through Figure 6.18 show this process applied to the first frame of the 

Vassar sequence. The final image shows some blurriness caused by the homography 

alignment process which could be improved but, other than that, subjective comparison 

with the original view shows remarkable resemblance. Objective tests, using PSNR, 
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show a commendable value 24 dB. It is far from perfect but a viable alternative to 

creating a more realistic virtual view.  

 

Figure 6.16: Homography applied to the two images using the RANSAC points as the 

guide 

 

Figure 6.17: Panoramic image created from view 1 and 3 
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Figure 6.18: Virtual view extracted from the panoramic image 

6.3 Experimental Results 

All three methods proposed in the chapter were tested on the MERL sequences, 

Ballroom, Vassar and Exit [111]. The sequences were encoded with JMVM 8.1 

reference software for H.264/MVC. The middle view was recreated as the virtual view 

using views 1 and 3 as shown in Figure 6.2.  

6.3.1 Computational Complexity 

In order to assess the computational complexity of the three algorithms objectively, we 

have employed the Big O notation, which is also called Landau’s symbol. It tells us 

how fast a function grows or declines. The letter O symbolises the rate of growth of a 

function, also called its order [112]. It is worth noting that Big O notation does not take 

time complexity into account. It only takes into account the growth of a function. Time 

complexity would depend on the processing power and coding efficiency.   
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To explain the order of each function, let: 

 H = height of image 

 W = width of image 

 C = colour channels*  

 D = Disparity Compensation 

 R= RANSAC outlier points calculation 

 F = Frame 

* Three colour channels are used in our experiments, R, G and B.  

Algorithm 
Complexity Per Video Frame 

Reading Processing Writing Total 

Stitching O(HWC) O(HWC) O(HWC) O (F) for F>0 

Disparity O(HWC) O(HWD) O([HWC]+D) O (F) for F>0 

Panoramic O(HWC) O(HWR) O(HWC) O (F) for F>0 

Table 6.1: Complexity Calculation using Big O notation for the three algorithms 

As evident from Table 6.1, the complexity of each algorithm is linear so the only 

function that effects growth in any of these three algorithms is the image size. Since 

these calculations are done for each frame the complexity will be multiplied by the 

number of frames.  

6.3.2 Objective Quality Comparison 

The average PSNR of the three methods for all three views is shown in Figure 6.19. As 

evident from the graph in Figure 6.19, the disparity compensated virtual view 

outperforms the other two. The stitching model, although in terms of time 

computationally the least expensive due to the number of functions it has to perform, is 

probably a good solution to use in error concealment, but not for creating a virtual 

view, because it lacks the ability to capture the scene from the right angle.  
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Objective results for the panoramic virtual view creation do not do it justice. 

Subjectively analysing, it has the most resemblance to the real scene, but unfortunately 

the blurriness of the view makes it structurally less similar to the original view. Frame 

5, a randomly selected frame number, is displayed from Figure 6.20 through Figure 

6.31 for demonstration purposes here. The frame number is kept consistent throughout 

the views. Figure 6.23, 6.27 and 6.31 show the virtual views created through panoramic 

stitching for Ballroom, Exit and Vassar respectively. Comparing their subjective quality 

with both the virtual views created through disparity and normal stitching models, the 

panoramic stitched virtual views are of a higher quality, albeit blurry. The blurriness is 

caused by the homography alignment. The blurriness could be improved if the 

homography alignment is further explored.  

 

Figure 6.19: Average PSNR for the virtual view creation using the three models 

presented in this chapter 

If there is anything that these three methods prove, it is that the creation of a virtual 

view at the decoder end is not only possible but computationally cheap as shown in 
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Table 6.1. Hence, this research proposes integrating the virtual view model into the 

H.264/MVC decoder. It will reduce the processing load on the encoder by reducing the 

amount of views to be encoded. It will further benefit the transmission channel where it 

will greatly reduce the amount of bandwidth required to transmit a multi-view video. 

With relatively less traffic on the transmission channel, one can afford to protect the 

transmission as proposed in Chapters 4 and 5. This process will require the decoder to 

have more processing power than previously required because of the additional 

rendering of the virtual view. This, however, should not be a problem since most end 

points, from smart phones to personal computers, have in recent years been equipped 

with enhanced processing capabilities that could be used to assist with reducing the 

delivery load required for multi-view videos. 

6.3.3 Subjective Quality Comparison 

 

Figure 6.20: Original frame 5 of the Ballroom sequence 
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Figure 6.21: Virtual Frame 5 of the Ballroom sequence created through stitching 

 

Figure 6.22: Virtual frame 5 of the Ballroom sequence created through disparity 

compensated prediction 
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Figure 6.23: Virtual frame 5 of the Ballroom sequence created through panoramic 

stitching 

 

Figure 6.24: Original frame 5 of the Exit sequence 
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Figure 6.25: Virtual frame 5 of the Exit sequence created through stitching 

 

Figure 6.26: Virtual frame 5 of the Exit sequence created through disparity 

compensated prediction 
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Figure 6.27: Virtual frame 5 of the Exit sequence created through panoramic stitching 

 

Figure 6.28: Original frame 5 of the Vassar sequence 
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Figure 6.29: Virtual frame 5 of the Vassar sequence created through stitching 

 

Figure 6.30: Virtual frame 5 of the Vassar sequence created through disparity 

compensated prediction 
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Figure 6.31: Virtual frame 5 of the Vassar sequence created through panoramic 

stitching 

6.4 Analysis and Discussion 

Multi-view videos are captured with synchronised cameras that are horizontally aligned 

with an equal distance between them. It is therefore possible to extract a virtual view by 

taking one adjacent camera image on each side. The similarities between the frames are 

already exploited in multi-view video coding (MVC) extension of H.264 advanced 

video coding (AVC) during compression. The middle view is bi-predicted using the 

frames from the adjacent views. The bi-prediction improves coding efficiency and 

reduces the amount of data but does not completely eliminate the middle view. 

The experimental results shown above prove that if one out of three cameras can be 

eliminated completely. The middle view can be recreated during the decoding process 

in real time. In addition to reducing the number of cameras required to capture a multi-
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view video, virtual view rendering will further improve the efficiency of the codec. 

This will effectively reduce the bandwidth requirement for multi-view video 

transmission. However, rendering virtual view does not come without challenges. The 

first and the most important challenge is occlusion, where certain elements in the visual 

scene are seen by one camera but not the other due to differences in cameras viewpoint. 

The rendered virtual view must be structurally similar to the original view it aims to 

imitate.  

Three methods are presented based on their computational simplicity (see Table 6.1 for 

details) to ensure virtual view rendering can be done in real time. The first method 

which employs cropping excess pixels from both views and then stitching the 

remaining to form the virtual view is simplest of all but it cannot handle the occlusion 

problem. A multi-view video offers viewers different perspective views from different 

angles. While this method includes all the information that would be included in the 

original view, the angle at which it is captured is not the same. Hence, it may only be 

used in error concealment but not an advisable contender for virtual view rendering for 

large number of frames.  

The disparity compensated prediction and panoramic image stitching are the two real 

contenders that can render a virtual view similar to the original view. Disparity 

compensated view rendering is a more traditional method because of its wide use in 

image processing, not for virtual view rendering but for other processes such as the 

Depth Based Image Rendering (DBIR). It is quick to implement but cannot handle 

occlusions very well.  
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The panoramic image stitching is not a new concept. As the name suggests it is used to 

stitch several images of a scene to create a panoramic view. From the author’s literature 

survey, there was no evidence of it being used for virtual view rendering. The benefit of 

using panoramic image stitching is because it goes beyond checking the similarities 

between the frames being considered. It also aligns them based on a number of 

matching points so the angle of the image is adjusted to create a more realistic virtual 

view. It therefore handles occlusions better and the resulting view is more similar to the 

original view. This is evident from both subjective and objective testing performed as 

shown in the experimental results.  

Including the virtual view rendering process as part of the MVC decoder will improve 

coding efficiency as highlighted in this chapter and reduce the bandwidth requirement 

for transmission. It will however increase the workload on the decoder. With end-

devices today having more processor power than servers that were available a decade 

ago, this additional work should not be a challenge. The other advantage of using 

virtual view rendering, in addition to reducing capturing costs, improving coding 

efficiency and reducing bandwidth requirement for transmission, is to balances the load 

between the encoder and the decoder. For real-time transmission reducing the encoding 

time is a critical component of coding efficiency.   
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6.5 Conclusion 

This chapter suggests decoder optimisation in H.264 Multi-view video coding through 

the insertion of full resolution virtual views from neighbouring decoded views. Three 

methods are proposed, namely image stitching, disparity compensated prediction, and 

panoramic stitching, to create virtual views using two reference views from the decoded 

bitstream. The advantages and shortages of each process are discussed with visual aid 

and objective results. The shortcomings of the objective methods to correctly analyse 

the images are also highlighted.  

All three methods are computationally inexpensive, requiring minor manipulations, and 

mathematical models which are presented in this chapter. The viability of considering 

two of three models for creating virtual views is recommended whereas the third 

method, image stitching, can be employed for error correction in the middle views, in 

case of frame loss.  

Disparity prediction requires less computational load than the panoramic view but it is 

not able to overcome occlusions where an object in the scene is smaller in the middle 

view because of the angle it was captured from in the reference views. The panoramic 

stitching model, however, is relatively more computationally expensive. It also suffers 

from blurriness due to the incorrect alignment during the homography process. But 

subjectively speaking, it is the method which produces the best result. With further 

study of the homography alignment, it could produce virtual views almost identical to 

the original view.  
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This thesis has so far discussed the challenges in 3D video communication 

technologies, compression of 3D videos, transmission, and virtual view rendering in 

multi-view video transmissions. The next chapter concludes the thesis and highlights 

the key achievements of this research.  

 



 

 

Chapter 7: Conclusions and 

Future Work 
This chapter concludes the research contributions in this thesis and the 

recommendations made in the preceding chapters. The aim of this research was to find 

solutions to optimise the end-to-end 3D video communication system. A list of tasks 

for future work is also recommended in this chapter.   

7.1 Overview 

3D video communication solutions must consider the entire pipeline, starting with 

optimisation at the video source to the end display and transmission optimisation. 

Multi-view offers the most compelling solution for 3D videos with motion parallax and 

freedom from wearing headgear for 3D video perception. Optimising multi-view video 

for delivery and display could increase the demand for true 3D in the consumer market.  

There are several challenges still facing the 3D systems, ranging from content creation, 

error resilience and concealment, heterogeneity, achieving true free-view-point TV, and 

quality of experience. This thesis addresses some of these challenges and recommends 

solutions that would optimise the quality of 3D videos throughout the communication 

pipeline in heterogeneous networks.  

In chapter 1, an overview of the trends in 3D video technological advancements was 

presented. The underlying techniques in 3D video perceptions were discussed followed 

by the way they are represented in videos. The fact that different representations affect 

the video perception depending on the compromises made to represent them was 

highlighted. The most ideal representation is a scenario where all views are used to the 
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fullest extent. This makes for the best 3D perception but increases the amount of data 

that needs to be recorded proportionate to the number of views captured.  

3D displays correlating to the 3D video representation were also discussed, including 

those that are still under current investigation in research. The most promising display 

that could increase the uptake of the 3D video displays but the general public is the 

Multiview Autostereoscopic 3D. The challenge with multiview displays is the 

requirement to capture the different views using 2D video cameras, which need to be 

synchronised and calibrated. But the biggest challenge is to optimise them in order for 

delivery over the internet and display.  

7.2 Optimisation of 3D videos through Compression 

Multi-view video coding enables auto-stereoscopic displays and Free-view-point TV 

for the mass market. It is the most promising technology in 3D videos to date. But it 

requires a large amount of data to be captured by multiple synchronised 2D cameras.  

The similarities between the views can be exploited for coding efficiency. Multi-view 

video coding (MVC) extension of the H.264/AVC standard was explained and its 

benefits highlighted in chapter 3.  

A comparison of video compression on 3D video is presented taking 2D video as a 

benchmark. Two views are encoded with the stereo profile of the Advanced Video 

Coding (AVC) standard, first with treating each view as an independent view and then 

by exploiting the inter-view dependency. The results show that while there is no 

considerable quality degradation, the savings in bitrate can range from 3% to 24% in 

the test bed used in the experiments.  The bitrate analysis presented in this work was to 
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demonstrate the range of bit rate savings when two views are compressed in a 

stereoscopic encoding scheme as compared to simulcast compression. The stereoscopic 

coding scheme can be exploited further to reduce the bitrate by incorporating other 

techniques such as depth map estimation. 

The results shown in chapter 3 demonstrated the importance of selecting the correct 

codec for robust compression efficiency. The stereo profile of the H.264/AVC, where 

the redundancies between the views are exploited without any considerable effect on 

the quality of the video, highlight how efficiency in 3D video can be achieved, which 

provides the bases for using MVC as the standard codec for 3D videos.  

7.3 Optimising the Transmission of 3D Videos 

Transmission of the multi-view video requires more bandwidth compared to its spatially 

equivalent 2D counterpart. The reason for this is the increased number of views. H.264 

MVC can encode videos with better efficiency by exploiting inter-view redundancy but 

with considerably more data to transmit.  

In a network where quality is an important factor, the video can be transmitted via 

HTTP which is built on top of TCP/IP at the cost of extra time. It guarantees the 

delivery and benefits from security clearances as it is not blocked by most firewalls. 

However, time is critical in the transmission. Chapter 4 explored the idea of varying 

packet sizes to reduce the delivery time. Small packets are favoured by real-time video 

streaming and they are also used in mobile networks but they require more processing 

power and are more prone to loss in congested networks.  
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Large packet sizes take longer and if lost can affect the video but since in TCP it will be 

retransmitted, they are preferred. Moreover, the largest packet size that a network can 

handle is dictated by the Maximum Transmission Unit (MTU) of the weakest link in the 

network. MTU differs for each network. The experiments in this work used Ethernet 

with an MTU size of 1500 bytes.  

Application designers should consider dynamic path discovery to understand the largest 

packet sizes allowed avoiding fragmentation of packets en route and the processing 

power of the end-devices. Increased amount of packets will increase the required 

processing power.  

MVC greatly reduces the amount of data that needs to be transmitted by exploiting 

inter-view redundancies between adjacent video sequences in addition to the regular 

temporal and spatial redundancies in each view. This, however, makes it more 

vulnerable to transmission errors. Errors in key frames can render the entire bitstream 

un-decodable.  

The inter-view dependency also means that errors propagate to other views when errors 

occur in frames that are used by other views for motion compensation prediction. 

Chapter 5 investigated the transmission of MVC bitstreams over multiple channels 

based on priority, and view changes to improve the video quality.  

MST gives the end-devices the option to drop streams in congested networks in order to 

allocate more bandwidth to the base view for better QoE. MST can also be used to reap 

the advantages of simulcast without losing the benefits of inter-view similarities 

exploitation.  It does, however, introduce problems with the synchronisation in 
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erroneous channel conditions and when packets arrive out of bounds. This problem has 

been resolved by using the frame order to resynchronise by taking advantage of the 

MVC time-first frame ordering. 

7.4 Decoder Optimisation for 3D Videos  

Chapter 6 suggested decoder optimisation in H.264 Multi-view video coding through 

the insertion of full resolution virtual views from neighbouring decoded views. Three 

methods were proposed, namely image stitching, disparity compensated prediction, and 

panoramic stitching to create virtual views using two reference views from the decoded 

bitstream. The advantages and shortages of each process were discussed with visual aid 

and objective results. The shortcomings of the objective methods to correctly analyse 

the images is also highlighted.  

All three methods are computationally inexpensive; require minor manipulations, 

mathematical models for which are presented in chapter 6. The viability of considering 

two of three models for creating virtual views is recommended where as the third 

method, image stitching, can be employed for error correction in middle views, in case 

of frame loss.  

Disparity prediction requires less computational load than the panoramic view but it is 

not able to overcome occlusions and where an object in the scene is smaller in the 

middle view because of the angle it was captured from in the reference views. The 

panoramic stitching model, however, is relatively more computationally expensive. It 

also suffers from blurriness due to the incorrect alignment during the homography 

process. But subjectively speaking, it is the method which produces the best result. 
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With further study of the homography alignment, it could produce virtual views almost 

identical to the original view.  

7.5 Future Work 

Quality optimisation in 3D video communication will be an ongoing research area for 

the foreseeable future. The findings presented in this research investigate the end-to-

end challenges in the communication pipeline. They are by no means an end result. 

Each section of this research could be further investigated. The following key future 

work areas are recommended for future research uptake: 

I. MVC decoder fails when there is an error in the bitstream. One way to address 

this issue would be to make the codec more robust through synchronisation 

points using Instantaneous Decoder Refresh (IDR) pictures. When an error 

occurs, the codec can simply ignore the rest of the non-decodable bitstream until 

the next IDR picture is received. It certainly is not the ultimate solution but is a 

good start at making the JMVC reference software more robust.  

II. Further investigate virtual view rendering using the panoramic view stitching 

and disparity compensated view prediction to improve the quality of the virtual 

view created from the decoded adjacent views in multi-view video coding.  

III. Add virtual view rendering to the decoder. The virtual view rendering 

techniques presented in this research could be used as a starting point to 

modifying the decoder.  

IV. Investigate HTTP and RTP combined transmission for multi-view video 

delivery, where the base view and inter-view predicted frames in a group of 
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pictures are transmitted using HTTP and the inter-view bi-predicted frames 

through RTP. The cost of such a transmission needs to be evaluated in terms of 

time and the quality improvements.   
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Appendices 

Appendix A 

MVC Software Manual 

Version:  JMVC 8.5 (CVS tag: JMVC_8_5) 

Last update: March 26, 2011 

The JMVC (Joint Multiview Video Coding) software is the reference software for the 

Multiview Video Coding (MVC) project of the Joint Video Team (JVT) of the ISO/IEC 

Moving Pictures Experts Group (MPEG) and the ITU-T Video Coding Experts Group 

(VCEG). Since the MVC project is still under development, the JMVC Software as is 

also under development and changes frequently. 

The JMVC software is written in C++ and is provided as source code. Section 0 

describes how the JMVC software can be obtained via a CVS server. Information about 

the structure of the CVS repository is presented in section Error! Reference source 

not found.. Section Error! Reference source not found. describes how the JMVC 

software can be build on Win32 and Linux platforms, and section Error! Reference 

source not found. gives basic information about the binaries that are contained in the 

JMVC software package. 

Accessing the latest JMVC Software 

In order to keep track of the changes in software development and to always provide an 

up-to-date version of the JMVC software, a CVS server for the JMVC software has 

been set up at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen. 

The CVS server can be accessed using WinCVS or any other CVS client. The server is 
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configured to allow read access only using the parameters specified in Table 0.1. Write 

access to the JMVC software server is restricted to the JMVC software coordinators 

group. 

Table 0.1: CVS access parameters 

authentication: pserver 

host address: garcon.ient.rwth-aachen.de 

path: /cvs/jvt 

user name: jvtuser 

password: jvt.Amd.2 

module name: jmvc 

Example 1 shows how the JMVC software can be accessed by using a command line 

CVS client. 

Example 1: Accessing the JMVC software with a command line CVS client 
cvs -d :pserver:jvtuser:jvt.Amd.2@garcon.ient.rwth-aachen.de:/cvs/jvt login 

cvs -d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt checkout jmvc 

In Example 2, it is shown how a specific JMVC software version – specified by a tag 

(JMVC_2_1 in Example 2) – can be obtained using a command line CVS client. Note 

that co represents an abbreviation for the command checkout, which was used in 

Example 1. 

Example 2: Accessing the JMVC software version with the tag JMVC_2_1 with a command line CVS 

client 
cvs -d :pserver:jvtuser:jvt.Amd.2@garcon.ient.rwth-aachen.de:/cvs/jvt login 

cvs -d :pserver:jvtuser@garcon.ient.rwth-aachen.de:/cvs/jvt co –r JMVC_2_1 jmvc 

Example of Configuration Files Used  

# JMVM Configuration File in MVC mode 

#======================GENERAL=============================== 

InputFile    D:\MVC\ballroom\ballroom  
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OutputFile   D:\MVC\ballroom\ballroom_QP31_4GOP3v 

ReconFile    D:\MVC\ballroom\rec_QP31_4GOP3v 

MotionFile              D:\MVC\ballroom\motion_QP31_4GOP3v 

SourceWidth             640        # input  frame width 

SourceHeight            480        # input  frame height 

FrameRate               25.0       # frame rate [Hz] 

FramesToBeEncoded       250        # number of frames 

#======================CODING================================ 

SymbolMode              1          # 0=CAVLC, 1=CABAC 

FRExt                   1          # 8x8 transform (0:off, 1:on) 

BasisQP                 31         # Quantization parameters 

#======================STRUCTURE============================= 

GOPSize                 4    # GOP Size (at maximum frame rate)  

IntraPeriod             4    # Anchor Period 

NumberReferenceFrames   3          # Number of reference pictures 

InterPredPicsFirst      1          # 1 Inter Pics; 0 Inter-view 
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Log2MaxFrameNum         11         # specifies max. value for frame_num (4..16) 

Log2MaxPocLsb           7          # specifies coding of POC’s (4..15) 

DeltaLayer0Quant        0          # differential QP for layer 0 

DeltaLayer1Quant        3          # differential QP for layer 1 

DeltaLayer2Quant        4          # differential QP for layer 2 

DeltaLayer3Quant        5          # differential QP for layer 3 

DeltaLayer4Quant        6          # differential QP for layer 4 

DeltaLayer5Quant        7          # differential QP for layer 5 

MaxRefIdxActiveBL0      2          # active entries in ref list 0 for B slices 

MaxRefIdxActiveBL1      2          # active entries in ref list 1 for B slices 

MaxRefIdxActiveP        1          # active entries in ref list for P slices 

#==============================MOTION SEARCH================ 

SearchMode              4          # Search mode (0:BlockSearch, 4:FastSearch) 

SearchFuncFullPel       3          # Search function full pel 

                                   #   (0:SAD, 1:SSE, 2:HADAMARD, 3:SAD-YUV)  

SearchFuncSubPel        2          # Search function sub pel 
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                                   #   (0:SAD, 1:SSE, 2:HADAMARD)  

SearchRange             96         # Search range (Full Pel)  

BiPredIter              4          # Max iterations for bi-pred search 

IterSearchRange         8          # Search range for iterations (0: normal) 

#==============================LOOP FILTER=================== 

LoopFilterDisable       0          # Loop filter idc (0: on, 1: off, 2: 

                                   #   on except for slice boundaries) 

LoopFilterAlphaC0Offset 0          # AlphaOffset(-6..+6): valid range 

LoopFilterBetaOffset    0          # BetaOffset (-6..+6): valid range 

#==============================WEIGHTED PREDICTION========== 

WeightedPrediction      0          # Weighting IP Slice (0:disable, 1:enable) 

WeightedBiprediction    0          # Weighting B  Slice (0:disable, 1:explicit, 

                                                         2:implicit) 

#=================== PARALLEL DECODING INFORMATION SEI Message  

PDISEIMessage           0          # PDI SEI message enable (0: disable, 1:enable) 

PDIInitialDelayAnc      2          # PDI initial delay for anchor pictures 
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PDIInitialDelayNonAnc   2          # PDI initial delay for non-anchor pictures 

 

#=========================sEQUENCE PARAMETER SET  

NumViewsMinusOne 2          # (Number of view to be coded minus 1) 

ViewOrder               0-2-1   # (Order in which view_ids are coded) 

View_ID          0          # (view_id of a view 0 - 1024)                        

Fwd_NumAnchorRefs 0          # (number of list_0 references for anchor)  

Bwd_NumAnchorRefs 0          # (number of list 1 references for anchor) 

Fwd_NumNonAnchorRefs    0          # (number of list 1 references for non-anchor) 

Bwd_NumNonAnchorRefs    0          # (number of list 1 references for non-anchor) 

View_ID                  1                                                     

Fwd_NumAnchorRefs  1 

Bwd_NumAnchorRefs  1 

Fwd_NumNonAnchorRefs     1 

Bwd_NumNonAnchorRefs     1 

Fwd_AnchorRefs        0 0 
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Bwd_AnchorRefs          0 2 

Fwd_NonAnchorRefs  0 0 

Bwd_NonAnchorRefs  0 2 

View_ID                  2           

Fwd_NumAnchorRefs  1 

Bwd_NumAnchorRefs  0 

Fwd_NumNonAnchorRefs     0 

Bwd_NumNonAnchorRefs     0 

Fwd_AnchorRefs          0 0 
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Appendix B 

HTTP Packet Variant Transmitter Application – Server 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
using System.Threading; 
namespace ServerApp 
{ 
    public partial class FrmMain : Form 
    { 
 
        private DataLayer.Server Starter; 
 
        public FrmMain() 
        { 
            InitializeComponent(); 
            Starter = new DataLayer.Server(); 
         
 
        private void CmdRun_Click(object sender, EventArgs e) 
        { 
 
            LblServer.Text = "Configuring MVC Server Application..."; 
LblServer.Refresh(); 
            Thread.Sleep(300); 
 
            Starter.Configure(); 
            Starter.RegisterTCPChannel(); 
 
            LblServer.Text = "Starting MVC Server Application..."; 
LblServer.Refresh(); 
            Thread.Sleep(300); 
            if (Starter.Run()) 
            { 
                CmdRun.Text = "Started"; 
                LblServer.Text = "The MVC Server is started"; 
                Starter.StartListening(); 
                CmdRun.Enabled = false; 
             
            else 
                LblServer.Text = "The Server could not started.  please check 
your security settings"; 
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        private void CmdStartStop_Click(object sender, EventArgs e) 
        { 
 
 
            if (CmdStartStop.Text == "Stop Listenning") 
            { 
                Starter.StopListening(); 
                CmdStartStop.Text = "Start Listenning"; 
                LblServer.Text = "The MVC Server is stopped"; 
 
             
            else 
            { 
                Starter.StartListening(); 
                CmdStartStop.Text = "Stop Listenning"; 
                LblServer.Text = "The MVC Server is started"; 
 
             
 
 
         
 
        private void cmdadd_Click(object sender, EventArgs e) 
        { 
            OpenFileDialog of = new OpenFileDialog(); 
 
            if (of.ShowDialog() == System.Windows.Forms.DialogResult.OK) 
                lstVideos.Items.Add(of.FileName); 
 
            of.Dispose(); 
 
            UpdateVideoList(); 
 
 
 
         
 
        private void cmdremove_Click(object sender, EventArgs e) 
        { 
            if (lstVideos.SelectedIndex != -1) 
            { 
                lstVideos.Items.RemoveAt(lstVideos.SelectedIndex); 
                UpdateVideoList(); 
             
 
         
 
        private void UpdateVideoList() 
        { 
            try 
            { 
                if (System.IO.File.Exists("c:\\tmp.txt")) 
                    System.IO.File.Delete("c:\\tmp.txt"); 
 
                using (System.IO.StreamWriter sw = new 
System.IO.StreamWriter("c:\\tmp.txt")) 
                { 
                    // Add some text to the file. 
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                    string strmsg = ""; 
                    for (int i = 0; i < lstVideos.Items.Count; i++) 
                    { 
                        if (i == 0) 
                            strmsg = lstVideos.Items[i].ToString(); 
                        else 
                            strmsg = strmsg + "\r\n" + 
lstVideos.Items[i].ToString(); 
                     
 
 
                    sw.Write(strmsg); 
 
                    sw.Flush(); 
                    sw.Close(); 
                    sw.Dispose(); 
 
                 
             
            catch { ;   
         
     
 

HTTP Packet Variant Transmitter Application – Client 

using System.Windows.Forms; 
 
namespace ClientApp 
{ 
    public partial class FrmClient : Form 
    { 
        public FrmClient() 
        { 
            InitializeComponent(); 
         
 
        private void button2_Click(object sender, EventArgs e) 
        { 
            Application.Exit(); 
         
 
        private void CmdPing_Click(object sender, EventArgs e) 
        { 
            LblProgress.Text = "Connecting to MVC Server..."; 
LblProgress.Refresh(); 
 
            
Utilities.Utility.setServerIP(Properties.Settings.Default.serverIPandPort); 
            Utilities.Utility.RegisterTCPChannel(); 
            if 
(Utilities.Utility.PingDataAccessTier(Int32.Parse(Properties.Settings.Default.po
cketsize)))//Make Sure It's connected  
            { 
 
                LblProgress.Text = "Connected to MVC Server";  
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                LblProgress.Refresh(); 
                CmdPing.Text = "Connected"; 
                CmdPing.Enabled = false; 
             
            else 
                LblProgress.Text = "Couldn't connected to MVC Server"; 
 
         
 
        private void button1_Click(object sender, EventArgs e) 
        { 
             
         
 
        private void cmdadd_Click(object sender, EventArgs e) 
        { 
            String[] videolist = Utilities.Utility.GetVideoList(); 
            lstVideos.Items.Clear(); 
            foreach (string a in videolist) 
            { 
                lstVideos.Items.Add(a); 
             
         
 
        private void cmdRetreive_Click(object sender, EventArgs e) 
        { 
            System.IO.FileInfo a = new 
System.IO.FileInfo(lstVideos.Items[lstVideos.SelectedIndex].ToString()); 
            string file = a.Name; 
            double startsend; 
            startsend = DateTime.Now.TimeOfDay.TotalMilliseconds; 
            Utilities.Utility.ReadVideo("c:\\" + file , 
lstVideos.Items[lstVideos.SelectedIndex].ToString()); 
             
            double diff2 = DateTime.Now.TimeOfDay.TotalMilliseconds - startsend; 
            MessageBox.Show(diff2.ToString() + " Milliseconds"); 
             
            lstdownloaded.Items.Add("c:\\" + file); 
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Appendix C  

Sirannon Application Manual 

SIRANNON 1.0.0 

MODULAR MULTIMEDIA STREAMING 

 Alexis Rombaut 

 Introduction 

Sirannon is a flexible and modular media server, client and proxy. It distinguishes itself 

by providing a modularity that manifests itself in how the user controls and configures 

the streamer. Each configuration describes graph of components, each handling basic 

video operations such as reading frames, packetizing frames and transmitting packets. 

The streamer handles both video and audio, something left out in many experimental 

streamers. Finally, the program supports variety of protocols such as RTP, RTSP, 

RTMP and HTTP. Jump to chapter installation if you immediately want to start 

installing the sirannon. The latest stable version is always available on 

http://sirannon.atlantis.ugent.be. The latest addition is a brand new GUI featuring graph 

drawing, XML editing and console execution for multiple configurations using tabs. 

Streaming, Modular, Multimedia, Open source 

Fact Sheet 

Supported Codecs 
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 MPEG1 Video & Audio 

 MPEG2 Video & Audio 

 MPEG4 Video & Audio 

 H264 AVC & SVC 

 VP6, VP8/WEBM 

 Vorbis 

 AC3 

 AMR-NB, AMR-WB 

 

Supported Containers 

Note, even if the sirannon supports a container, it still needs to support the codecs 

within the container. 

 AVI 

 MOV/MP4/F4V 

 FLV 

 WEBM 

 MPEG2 (MPEG2 Program Streams) 

 TS (MPEG2 Transport Streams) 

 RAW (containing any of the supported codecs) 
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Supported Protocols 

Sirannon can be both server and client for the following protocols: 

 RTSP/RTP/UDP 

 RTMP/TCP 

 RTMPT/HTTP 

 HTTP 

 RTP/UDP 

 UDP 

 TCP 

 Apple Live HTTP Streaming 

Media Server 

Universal Server - Universal Client - Protocol translation 

The strongest feature is the combination of universal server (RTSP, HTTP, RTMP, 

RTMPT) and universal client (RTSP, HTTP, RTMPT, RTMPT). This combination 

gives Sirannnon the ability to transcode one protocol to another in real-time, 

dynamically and for many users. For example a request of the form  

rtmp://mysirannon.com/RTSP-proxy/www.tv-world.net/content/AJaXo93cdW.mov in 

a Flash Player will make it connect to a Sirannon server that will in its turn connect to 

the fictional site www.tv-world.net using RTSP, request the stream and in real-time 
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change to protocol and packetization to sent it to the client using RTMP. The following 

table provides the supported protocol translations. 

To -- From RTMP, RTMPT,  HTTP, RTSP  

Connecting to the media server 

You can run Sirannon as media server (HTTP, RTMP, RTMPT, RTSP) by placing 

content in the folder "dat/media" and running: 

sirannon dat/xml/media-server-std.xml dat/media 

All requests to the Sirannon media server are of the form: 

url ::= <protocol> "://" <server> "/" <application> "/" <request> 

request ::= <server> "/" <application> "/" <request> |  

When using the application FILE or HTTP, the request is a path to a file: 

rtmp://sirannon.atlantis.ugent.be/FILE/flash/example.flv 

http://sirannon.atlantis.ugent.be/HTTP/mp4/example.mp4 

When using the Sirannon server as proxy for another protocol the applications are: 

RTMP-proxy, RTMPT-proxy, RTSP-proxy and HTTP-proxy. In this case request 

contains the server, application and file to request: 

http://localhost/RTMP-

proxy/vod01.netdna.com/play/vod/demo.flowplayer/metacafe.flv 
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Media Server URL Examples 

HTTP 

http://" <server> "/" <HTTP|FILE@CONTAINER>  

http://sirannon.atlantis.ugent.be/HTTP/demo.mov 

http://sirannon.atlantis.ugent.be/FILE@FLV/mysequence.mkv 

 

Apple Live HTTP 

The short form 

http://" <server> "/APPLE/"  

http://sirannon.atlantis.ugent.be/APPLE/demo.mov 

The long form 

http://" <server> "/M3U/" <server> "/FILE@TS/"  

http://sirannon.atlantis.ugent.be/M3U/sirannon.atlantis.ugent.be/FILE@TS/demo.mov 
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 RTMP 

"rtmp://" <server> "/FILE/"  

rtmp://sirannon.atlantis.ugent.be/FILE/mysequence.mov 

RTMPT 

"rtmpt://" <server> "/FILE/"  

rtmpt://sirannon.atlantis.ugent.be/FILE/mysequence.mov 

RTSP 

"rtsp://" <server> "/FILE/"  

rtsp://sirannon.atlantis.ugent.be/FILE/mysequence.mov 

Installation 

Refer to the README in the distribution for the documentation about the compiling 

sirannon. 

Tutorial 

Introduction 

This chapter describes how to construct, using the user interface, a basic streaming 

solution. Chapter describes several examples of streaming solutions without directly 

specifying the construction in the user interface. The following will create a basic 
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streamer for streaming a trailer from Apple using RTP. The output from the user 

interface is an XML configuration file. The next chapter describes how to run the 

sirannon with this configuration file. 

Exploring the user interface 

Launch the user interface by running: 

sirannon.py 

The user interface will launch and present itself in five tabs: Construct, Draw, XML, 

Run and Library. This tutorial will focus on the Draw and Run tab. Initially the draw 

area is empty and should look like in figure fig:6. Many of the functions available in the 

menu bar such as save, quit, undo, \textellipsis are self-explanatory.  

Creating your first component 

In order to open the trailer, a reader component is needed. The ffmpeg-reader 

component provides access to the Quicktime container. Let us create this component 

now. Right-click anywhere in the work area or click on the button 'New' in the toolbar. 

A menu will appear with the different categories of components. Select reader, ffmpeg-

reader. A new component will appear as seen in fig:7. If you left click inside the new 

component, in the right of the screen an overview of the parameters of the component 

appears. These parameters are set at sensible defaults, we only need to fill out the 

filename of the trailer. After filling out the filename, the result should look as in figure 

fig:8. 
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Creating your second component 

The component ffmpeg-reader creates packets containing video and audio frames. 

However, such frames are too large to be sent directly on the network: they have to be 

packetized into smaller packets. Now let us create the second component. Right-click in 

the empty work area and select packetizers, PES-packetizer in the menu. Change the 

name of the component to PES-packetizer-video by clicking on the button next to 

"name" in the properties area in the right of the screen. Drag this new component to a 

fitting place, as shown in figure fig:9. 

Connecting your components 

The two components need to be connected with each other. When you left-drag from 

inside one of the blue squares of a component, you will start drawing a line. Left-drag 

from inside the component ffmeg-reader and release the mouse inside one of the blue 

squares of the component avc-packetizer. The connection between the two components 

is now made and the configuration should now look as in figure fig:10. 

Creating and connecting your third component 

The PES-packetizer-video component will only process video frames. We need a 

similar packetizer for audio frames. Let us create a third component PES-packetizer-

audio, found as packetizer, PES-packetizer in the menu. Change the name of the 

component to PES-packetizer-audio. Connect ffmpeg-reader with PES-packetizer-

audio. No parameters have to be changed for this component either. The result should 

be as in figure fig:11. How can the component ffmpeg-reader know on which 
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connection to send packets, since video frames should be sent to AVC-packetizer and 

audio frames to MP4-packetizer? In the sirannon each packet is tagged with a number 

called xroute. If you look at the parameters from ffmpeg-reader, notice the parameters 

video-route and audio-route. Using the default settings, video packets will be tagged 

with xroute $100$ and audio packets with xroute $200$. Left click anywhere on 

connection between ffmpeg-reader and AVC-packetizer. In the properties area in right 

of the screen the parameter xroute appears. Since we want to sent only video packets 

over connection, fill out the value $100$. By default the xroute is $0$, meaning all 

packets are accepted on this connection. If a packet can take multiple paths, for 

example if multiple connections share the same xroute value, a separate copy will be 

sent over each of those connections. Now left-click on the connection between ffmpeg-

reader and MP4-packetizer and fill out the value $200$, causing audio packets to be 

sent over this connection. 

Creating a transport stream 

If we want to send the trailer over a single connection we need to multiplex the trailer 

into an MPEG2 Transport Stream. Create new component TS-multiplexer by selecting 

multiplexer, TS-multiplexer from the menu. Connect both packetizers with this new 

component. The result should look in figure fig:99. If you made a mistake, you can 

always undo using CTRL-Z or selecting undo in the menu. 

Scheduling the packets 

We need a scheduler to add real-time behavior: it stores packets in a buffer and releases 

them at the correct time. Create a scheduler by selecting schedulers, frame-scheduler 
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from the menu. Figure fig:12 shows the intended result. If your draw area becomes too 

small you can always zoom out by clicking the appropriate button in the toolbar. 

Transmitting the packets 

The frames are ready now for transmission: they are packetized in sufficiently small 

packets, multiplexed into an MPEG2 transport stream and scheduled at the correct time. 

Let us create an RTP-transmitter. Select transmitter, RTP-transmitter from the 

component menu and connect the scheduler with the new transmitter. We have to fill 

out the source port and destination address. In the properties area for the parameter port 

fill out the value 5000 and for the parameter client fill out $127.0.0.1:1234$. Also set 

the parameter debug to true for this component. Figure fig:13 shows the result.  

In order to close the sirannon after streaming the sequence, we should place a special 

block called sink at the end of the chain. After the last packet of the sequence has 

passed through this sink, it terminates the program gracefully. Select system, sink from 

the component menu and make a connection form the transmitter to this sink. The result 

should look as in figure fig:14. Zoom out or use best fit if the drawing area is too small. 

Saving and Executing your the configuration 

Now that the configuration is complete, we can save it. In the menu bar under File use 

either Save or Save as or press CTRL-S. We can now run sirannon using the tab "Run". 

A new tab should appear that looks like in figure fig:98. 

If the GUI finds the binary it should appear as first item of the command line options. 

Under Unix you should have compiled and installed the sirannon binary if you wish to 
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continue. If you installed the binary in a different location you can always select that 

location. 

 

We do not need to fill out the configuration, when you press play the GUI will 

automatically using the current configuration unless you overwrite it. 

Press the large Play button. The console window expands and shows the output of the 

sirannon process. If you filled out an incorrect container for the ffmpeg-reader, 

sirannon should fail with an error like Unhandled RuntimeError: core.ffmpeg-reader: 

Could not open file(iTrailer.mov). If you do not have a sample video at hand you can 

always download the demo containers from 

http://sirannon.atlantis.ugent.be/files/demo.tar.bz2. Bear in mind that for MPEG2 

Transport Streams only MPEG video and audio codecs are supported. If you created 

everything correctly output should appear in the console as in figure fig:97. 

 

Once the console is running you can open for example VLC Media Player. Under 

Media, select Open Network Stream. Fill out rtp://@:1234 as URL. VLC should now 

start playing the video. \textbf{CAVEAT: If your sequence uses H.264/AVC, VLC will 

not have critical information that was transmitted by streamer before VLC launched. 

You will need to press Stop followed by Play to fix it. To prevent this behaviour you 

can set the parameter repeat-parameter-sets to true for the component ffmpeg-reader. 
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Now the video should be playing as in figure fig:96. If it is not working, go over the 

following check list. 

 Press Stop followed by Play 

 Is parameter destination for RTP-transmitter set to 127.0.0.1:1234? 

 Does the console show an error such as Could not open file or Unsupported 

codec? 

Internal view 

We shortly describe here the internal view of the sirannon in order to understand the 

parameters in the next section. The basic operation of the sirannon is single threaded. 

The execution consists of a series of cycles with each cycle aiming to process one 

frame. The real duration of such a cycle, for example 2ms, is often much lower than the 

duration of one frame, typically 40ms. The process can sleep during the difference, 

lowering the CPU load considerably. 

Execution parameters 

Let us introduce three execution parameters. To modify these parameters in the user 

interface for a configuration, go in the menu bar to Settings, Settings. These parameters 

are specific for each configuration. 

quantum: in milliseconds, defines the minimum time to process one frame. If 

processing of a frame took less than this quantum, the process sleeps during the 

difference, lowering the CPU load. If you match this quantum with the duration of each 

frame, you get a working performance with minimal CPU load. For example a stream 
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with 25 frames per second or 40 ms per frame, can be streamed using less than 1\% 

CPU using a quantum of 40ms. If the quantum is set at 0, the process never sleeps, 

producing very accurate timing (order 1 ms) at the cost of 100\% CPU utilization. 

default: 0 

simulation: in microseconds, if this value is greater than 0 the sirannon runs in 

simulated time. Each cycle the simulated time is increased with this value. This has the 

advantage of providing arbitrary time precision and possibly faster execution at the cost 

of losing the real time behavior. For example the simulation of streaming an HD/H264 

stream using simulation steps of $40000\mu s$, can be run in $2s$ instead of $40s$ in 

real time. When simulation is defined, the parameter quantum is ignored. default: 0 

seed: if this value is greater than 0, it provides the seed for the random numbers in the 

sirannon. If the value is 0, the current time is used as seed. default: 0 

Command line parameters 

In order to use the configuration files without having to edit them when using differnt 

content, component parameters (not execution parameters!) can be entered in the form 

of \$1, \$2, \$3\textellipsis The symbol \$n will be replaced by the $n^{th$ command 

line parameter after the configuration file (see next section). Use the symbol \$\$ to 

circumvent this interpretation and represent the character "\$". 

Usage 

verbatim 
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sirannon [-cvbh] [-q=NUM[ns|us|ms|s]] [-s=NUM[ns|us|ms|s]] [-r=NUM] FILE [ARG-

1] ... [ARG-n] 

Run the program with FILE as configuration. 

Options: 

  -h       Help information 

  -b       Build information 

  -c       Overview of components 

  -v       Verbose, use up to 4 v's to increase the level 

  -q=NUM   Quantum in milliseconds 

  -s=NUM   Simulation in milliseconds 

  -r=NUM   Seed for the random number generator 

Arguments: 

  ARG-1    Replace any occurrence of "$1" in FILE with ARG-1 

  ARG-2    Replace any occurrence of "$2" in FILE with ARG-2 

  ARG-NUM  Replace any occurrence of "$NUM" in FILE with ARG-

NUM\end{verbatim 
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Example 1 

sirannon -v -q=5 avc-streamer.xml gladiator.avi 127.0.0.1:5000 

In this example we run the configuration file "avc-streamer.xml" with two command 

line parameters: the video file name and destination address. These command line 

parameters will replace the symbols \$1 and \$2 entered in the configuration file. In 

addition we set the quantum to 5 ms and print debug messages from toggled 

components. 

 

Example 2 

sirannon -b -c 

Prints the build information and the available components. Since no xml file is 

specified, the program end instantly. 

Examples 

The basics of the sirannon were explained in the previous chapters. By using examples, 

we will demonstrate the many possibilities of the sirannon. In contrast with the tutorial, 

we will not explain how to construct the configuration in the user interface but we will 

focus instead on describing the function and structure of different configurations. 

Sometimes we will refer to specific parameters of components. For a detailed 

description of the components and a full list of available parameters, refer to the next 
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chapter. The distribution of Sirannon contains for each example the corresponding 

XML file. 

Example 1: a basic streamer 

Let us start with a basic example, even simpler than the tutorial: a basic AVC streamer. 

Figure fig:ex:1 shows the schematic. It contains the four basic components: a reader, a 

packetizer, a scheduler and a transmitter, connected in a chain. 

Example 2: a basic receiver 

The stream sent by the basic streamer can be received by a media player, but the 

sirannon also can act as a receiver. Hence, the sirannon is more than just a streamer. 

Figure fig:ex:3 shows this receiver. The receiver has four components like the basic 

streamer, performing the reverse operation: a receiver, a scheduler, an unpacketizer and 

a writer. Received packets are unpacketized into the original frames and those are 

written back to a file. The scheduler avoid problems such as UDP reordering or 

duplication. However, the RTP protocol should circumvent these problems, making the 

scheduler superfluous in this example. 

Example 3: differentiated streaming 

This example modifies the structure of the basic streamer from example 1 in order to 

stream over multiple connections. Figure fig:ex:2 shows the result. Instead of having 

one rtp-transmitter, we now have three. We also add a frame-classifier to differentiate 

the I, P and B frames. The sirannon allows forks in the schematic using a simple 

routing mechanism based on a label xroute per packet. The reader gives each packet an 
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initial xroute of 100. A classifier increases the xroute\ with a fixed value for each 

classification. In this example, frame-classifier has three parameters I, P and B with 

values 1, 2 and 3 respectively, producing packets with xroutes 101, 102 and 103. The 

connections between frame-classifier and rtp-transmitter 1, 2 and 3 use xroutes 101, 

102 and 103 respectively to split the stream. Section sec:route also explains this routing 

system. 

Example 4: proxy 

A differentiated stream cannot be played by standard players such as VLC or 

Quicktime, because it only accepts one connection for video, not three for example. 

The sirannon can function as a proxy, converting a differentiated stream into a single 

stream. Such stream can then be received by standard players. Figure fig:ex:4 shows the 

schematic. The function consists of three types of components: three receivers, a 

scheduler and a transmitter. The packets from the three rtp-receivers pass through the 

scheduler. In this setting, the scheduler is anything but superfluous since the three 

connections are unsynchronized. The scheduler restores the original order. It uses 

additional information included by the transmitters in the RTP header extension since 

the sequence numbers and time stamps from the RTP connections are insufficient to 

restore the original order. It also gives the merged stream the correct time behavior, so 

that the rtp-transmitter can send the merged stream. This merged stream is then 

received by a standard player. 

Example 5: a packet loss generator 
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The sirannon can also run as an offline tool. Figure fig:ex:5 shows the schematic to 

introduce packet loss, with a different percentage for each type of frame. The frames 

are read and packetized by avc-reader and avc-packetizer. The frame-classifier splits 

the stream into I, P and B packets. For each of these types there is different component 

random-classifier 1, 2 or 3 with its specific packet loss. The damage streams are 

merged and unpacketized by avc-unpacketizer and the resulting frames (some of the 

original frames are lost) are written by the component writer. 

Example 6: using transport streams 

The sirannon supports MPEG2 transport streams, widely used in digital television. It 

multiplexes video, audio and meta-data into one stream that we can send over one 

connection, as opposed to the default RTP mode where each video, audio or meta-data 

substream has its own RTP session. Figure fig:ex:6 shows the configuration. It does not 

differ that much from the basic streamer. ffmpeg-reader opens a Quicktime file 

containing both video and audio frames and  xroute is set at 100 and 200 respectively 

for video and audio by the reader. Two packetizers create generic PES packets for 

video and audio respectively. The component ts-mutliplexer multiplexes these packets 

into one transport stream. The two remaining components schedule and transmit the 

transport stream packets. 

Example 7: using and constructing blocks 

Let us create a simulator to test the behavior of a buffer. Block components allows us to 

group several component into one component, allowing more readable and 

parameterized configurations. Figure fig:ex:7a shows a qmatch-buffer component and 
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three block components. Each block components uses a configuration file that reads 

and packetizes a sequence. Figure fig:ex:7b shows this configuration. This looks similar 

to the basic streamer example but it has at the end of the chain an out component which 

sends packets to the surrounding configuration (figure fig:ex:7a). In order to obtains 

precise timing results, we run the sirannon in simulation mode with a simulation step of 

1000 $\mu s$. 

Example 8: massive simulation 

Using blocks we can create massive simulators of for example 18 different streams, as 

shown in figure fig:ex:8. 

Extending sirannon 

In the source tree src/Misc/Example.cpp describes a good commented example about 

writing your own component. Place any new sources you create in the folder src/Local 

and add the flag --enable-local to configure. When adding new sources, rerun configure 

--enable-local. 

Components 

Components can have two special parameters: 

debug: if true, the component prints debug information, requires verbose level one or 

higher (use -v in the command line), default: false 

thread: if true, run the component in a separate thread, default: false  
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Appendix D 

Virtual View Stitching 

vassar_1 = imread('D:\0-Thesis\Chapter 6\Frames\ballroom\0_1.bmp'); 
vassar_3 = imread('D:\0-Thesis\Chapter 6\Frames\ballroom\2_1.bmp'); 
newimage = vassar_1(:,21:end,:); 
half3 = vassar_3(:,end-40:end-21,:); 
image2 = uint8(zeros(480,640,3)); 
%imshow(r);figure(gcf); 
image2(:,1:620,:)= newimage(:,:,:); 
%imshow(r);figure(gcf); 
image2(:,621:640,:)= half3(:,:,:); 
imwrite(image2,'D:\0-Thesis\Chapter 6\Frames\ballroom\v_1.bmp') 
imshow(image2);figure(gcf); 

Disparity Compensated Predicted Virtual View 

%running the programming to extract the middle view from the two 

%main program 
Image1= 'D:\0-Thesis\Chapter 6\Frames\ballroom\0_1.bmp'; 
Image3= 'D:\0-Thesis\Chapter 6\Frames\ballroom\2_1.bmp'; 

  
windowSize = 55; 
DisparityRange = 79; 
[disparity, Image2,time,dis13]= 

reconstructionNEW(Image1,Image3,windowSize,DisparityRange); 

  
figure(2);imshow(Image2); 
imwrite(Image2,'D:\0-Thesis\Chapter 6\Frames\ballroom\vDisp_1.bmp') 

  
image_or2=imread('D:\0-Thesis\Chapter 6\Frames\ballroom\1_1.bmp'); 
PSNR_value=PSNR(im2double(rgb2gray(image_or2)),im2double(rgb2gray(Imag

e2))); 

%view reconstruction functions 

function [disparity, Image2, time,dispmap]= 

reconstructionNEW(Image1,Image3,WindowSize,DisparityRange) 

  
Image1=imread(Image1);%read image 1 
Image3=imread(Image3);%read image 2 
tic; %start the clock 
[dispmap costmap,pcost,wcost] = desparitymatch( Image1, Image3, 

WindowSize, DisparityRange, 0); %retun disparity map. 
%we are passing values. the 0 means no subpixel disparity. change to 1 

for 
%sub pixel disparity. the values returned  
time=1000*toc; %stop clock 

  

 
disparity=dispmap; 
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disparity=floor(disparity/2); 

  
halfImage1=floor(size(Image1,2)/2); 

  

  
Image1H=Image1(:,1:halfImage1); 

 
for i=1:size(Image1H,1) 
    for j=1:size(Image1H,2) 
        Image2(i,j,:)=Image1(i,j+disparity(i,j),:); 

         

         
    end 
end 

  
for i=1:size(Image1H,1) 
    for j=1:size(Image1H,2) 
        Image2(i,j+halfImage1,:)=Image3(i,halfImage1+(j-

disparity(i,j+halfImage1)),:); 

         

         
    end 
end 

Panoramic Virtual View Rendering  

im1 = imread('ballroom_1.bmp'); 
im2 = imread('ballroom_3.bmp'); 
image_or2=imread('ballroom_2.bmp'); 

  

  
fshowH=figure; 
subH1=subplot(2,2,1); imshow(im1); 
subH2=subplot(2,2,2); imshow(im2); 
movegui(fshowH, 'northwest'); 

  
%% sift features 
figure(fshowA); figure(fshowH); 
[pts1 pts2] = SIFTmatch( im1, im2, 5, true );  

  

  
%% ransac homography 
figure(fshowA); 
[im2_TH, best_ptsH] = ransac( pts2, pts1, 'proj_svd', 10 ); 
showbestpts(subH2, subH1, best_ptsH); 
figure(fshowH); 

  
%% stitch homography 
[im_stitchedH, stitched_maskH, im1TH, im2TH] = stitch(im1, im2, 

im2_TH); 
figure(fshowH); 
subplot(2,2,3); imshow(im1TH); 
subplot(2,2,4); imshow(im2TH); 
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fH=figure; 
axis on; 
movegui(fH, 'northeast'); 
imshow(im_stitchedH); 

  
image2H = im_stitchedH(1:480,15:654,:);  
imwrite(image2H,'ballroom_2_pan.bmp'); 

  
PSNR_value=PSNR(im2double(rgb2gray(image_or2)),im2double(rgb2gray(imag

e2H))); 

Virtual View created using Sub-pixel Disparity Prediction 

 

Virtual View created using L0 Smoothing before Disparity 

Prediction 
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