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Improved Inter-Layer Prediction for Light Field Content Coding 
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ABSTRACT  

Light field imaging based on microlens arrays – also known as plenoptic, holoscopic and integral imaging – has recently 

risen up as feasible and prospective technology due to its ability to support functionalities not straightforwardly available 

in conventional imaging systems, such as: post-production refocusing and depth of field changing. However, to gradually 

reach the consumer market and to provide interoperability with current 2D and 3D representations, a display scalable 

coding solution is essential. 

In this context, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical 

coding architecture (previously proposed by the authors) that provides interoperability with 2D (Base Layer) and 3D stereo 

and multiview (First Layer) representations, while the Second Layer supports the complete light field content. For further 

improving the compression performance, novel exemplar-based inter-layer coding tools are proposed here for the Second 

Layer, namely: (i) an inter-layer reference picture construction relying on an exemplar-based optimization algorithm for 

texture synthesis, and (ii) a direct prediction mode based on exemplar texture samples from lower layers. 

Experimental results show that the proposed solution performs better than the tested benchmark solutions, including the 

authors’ previous scalable codec. 

Keywords: Light field, plenoptic, holoscopic, scalable coding, HEVC, MV-HEVC 

 

1 INTRODUCTION  

The recent advances in optical and sensor manufacturing allow having richer forms of visual data, where not only the 

spatial information about the three-dimensional (3D) scene is represented but also angular viewing direction – the so-

called four-dimensional (4D) light field/radiance sampling1. In the context of light field (LF) imaging technologies, the 

approach based on a single-tier camera equipped with a microlens array2 (also known as holoscopic3, plenoptic4, and 

integral imaging5,6) has become a promising approach, being applicable in many different areas of research, such as, 3D 

television3,7, richer photography capturing8,9, biometric recognition10, and medical imaging6. 

Among the advantages of employing a LF imaging approach based on microlens arrays is the ability to open new degrees 

of freedom in terms of content production and manipulation, supporting functionalities not straightforwardly available in 

conventional imaging systems, namely: post-production refocusing, changing depth-of-field, and changing viewing 

perspective. Recognizing these new and exciting possibilities, novel initiatives on LF image and video coding 

standardization are also emerging; notably, the JPEG committee has recently started the JPEG Pleno standardization 

initiative11, and the MPEG group has also started the third phase of Free-viewpoint Television (FTV) targeting free 

navigation and full parallax imaging applications12. One of the objectives of these new initiatives11,12 is to identify the 

requirements and challenges in light field systems, as well as to understand the users’ needs in terms of light field 

visualization and content interaction. The challenge to provide a light field representation with convenient spatial 

resolution and viewing angles requires handling a huge amount of data and thus efficient coding is of utmost importance. 

In addition to this, as the imaging technology moves toward richer representations, novel data representations are essential 

to support the new applications and functionalities that arise11. In this sense, a scalable coding architecture is desirable to 

accommodate in a single compressed bitstream a variety of sub-bitstreams appropriate for users with different 

preferences/requirements and various application scenarios: from the user who wants to have a simple 2D version of the 

light field content to be visualized in a conventional 2D display; to the user who wants immersive and interactive 3D 
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visualization by using a more advanced display technology, such as an integral imaging display3,7 or a head mounted 

display for augmented and virtual reality13,14. 

Therefore, this paper proposes an improved display scalable light field codec comprising a three-layer hierarchical coding 

architecture (previously proposed by the authors15) that provides interoperability with 2D (Base Layer) and 3D stereo and 

multiview (First Layer) representations, while the Second Layer supports the complete LF content. For further improving 

the compression performance in the Second Layer, novel exemplar-based inter-layer coding tools are proposed here for 

the Second Layer, namely: (i) an inter-layer compensated prediction using an inter-layer reference (ILR) picture that is 

constructed relying on an exemplar-based16 optimization algorithm for texture synthesis, and (ii) a direct prediction mode 

based on exemplar texture samples from lower layers. 

The remainder of this paper is organized as follow: Section 2 reviews the relevant work on coding solutions for LF content; 

Section 3 describes the used display scalable coding architecture; Section 4 presents the two novel exemplar-based inter-

layer coding tools for improving the compression performance; Section 5 presents the test conditions and experimental 

results; and, finally, Section 6 concludes the paper. 

2 RELATED WORK 

Several LF image coding schemes have been recently proposed in the literature which try to take advantage of its particular 

planar intensity distribution to achieve more efficient compression. Notably, as a result of the used optical system, the LF 

raw image corresponds to a two-dimensional (2D) array of micro-images (MIs) (see Figure 1a), and a significant cross-

correlation exists between neighboring MIs (see Figure 1b). In terms of the possible different ways to organize the LF data 

for coding and transmission, these LF image coding solutions can be categorized in three main types of approaches: i) LF 

raw data-based approach17–22, ii) multiview-based LF coding23–26, and iii) sub-sampled grid of MIs plus disparity 

approach27–29. 

The LF raw data-based approach corresponds to encoding and transmitting the light field image in its entirety, represented 

as a 2D grid of MIs. For this, a special prediction scheme is needed to exploit the non-local spatial redundancy between 

different MIs. Following this approach, the authors18,19 proposed to include a scheme for self-similarity (SS) estimation 

and compensation17 to improve the performance of HEVC standard for LF coding, while taking advantage of the flexible 

partition patterns used in this type of video codecs. More recently20, the SS estimation and compensation was extended for 

bi-prediction to further improve the coding efficiency. A similar scheme was also proposed in Li et al.21 to support SS 

estimation with multiple prediction hypothesis. In Lucas et al.22, a prediction framework based on locally linear embedding 

was included into HEVC for light field image coding. However, although these coding schemes achieved significant 

compression gains when compared to the existing state-of-the-art image coding alternatives, transmitting the entire light 

field data without a scalable bitstream may represent a serious problem since the user needs to wait until the entire content 

of each picture arrives before it can be visualized, independently of the users’ display type. 

Alternatively, other schemes followed a multiview-based approach and proposed to extract the viewpoint images from the 

LF content to be represented as multiview content23,24, or a pseudo video sequence25,26. A viewpoint image represents an 

orthographic projection of the complete captured scene in a particular direction, and can be constructed by simply 

extracting one pixel with the same relative position from each MI. Following this approach, the set of viewpoint images 

was then encoded using multiview video coding (MVC)23,24, H.264/AVC25, or HEVC26 standards. Since rendering 

viewpoint images usually produces very low resolution images with aliasing30, an alternative to the multiview 
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(b) 

Figure 1 Light field image captured with a 250 µm pitch microlens array: (a) Full image with resolution of 1904×1064; (b) 

Enlargement of 280×224 pixels showing a sub-array of micro-images 

 

 



 

 
 

 

representation based on these viewpoint images was proposed in the authors’ previous work15,31. The architecture and 

coding scheme of this solution will be reviewed in Section 3. 

Other coding schemes proposed to represent the light field data by a sub-sampled set of MIs with their associated 

disparity information 27–29. In this case, the grid of MIs was sub-sampled to remove the redundancy between neighboring 

MIs and to achieve compression. Thus, only the remainder set of MIs and associated disparity were encoded and 

transmitted. At the decoder side, the light field data was reconstructed by simply applying a disparity shift27,29 or by using 

a Depth Image Based Rendering (DIBR) algorithm modified to support the multiple MIs as input views28, and followed 

by an inpainting algorithm to fill in the missing areas. However, in real-world images, the disparity/depth information is 

estimated from the acquired LF raw data, which introduces inaccuracies. Hence, the quality of the reconstructed MIs – 

and, consequently, the quality of rendered views – is severely affected by these inaccuracies. 

3 SCALABLE LIGHT FIELD CODING ARCHITECTURE 

The coding architecture adopted in this paper, which has been previously proposed by the authors15, is built upon a 

predictive and three-layered scalable approach, as depicted in Figure 2. The Base Layer contains a sub-sampled portion of 

the light field raw data that represents a 2D version of the LF content, which can be then used to deliver LF content to 2D 

displays. This Base Layer is coded with a conventional HEVC Intra encoder to provide backward compatibility with a 

state-of-the-art coding solution, and the reconstructed frames are then used for coding the higher layers. Following this, 

the First Layer represents the necessary information to obtain an additional view (representing a stereo pair) or various 

views (representing multiview content) from the LF content, which can be visualized by using a stereo or an 

autostereoscopic display. This First Layer can be encoded by using a standard stereo or multiview coding solution, such 

as MVC32 or the 3D video coding extensions of HEVC33. With these solutions, inter-view prediction can be used to 

improve the coding efficiency between the Base Layer and the First Layer as well as within the First Layer. For the work 

presented in this paper, the multiview extension of HEVC, MV-HEVC, is adopted. Finally, the Second Layer represents 

the additional information necessary to support immersive LF content visualization. This Second Layer is then encoded 

with the proposed LF enhancement layer encoder depicted in Figure 2, which is also based on the HEVC coding 

framework. 

The basic blocks (emphasized in bold in Figure 2) of the proposed scalable light field codec (SLFC) are explained in the 

following subsections. 

 
Figure 2 Block diagram of the proposed scalable LF image codec. The Second Layer is coded with the proposed LF 

enhancement layer encoder 
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3.1 Hierarchical Layer Generation 

Several algorithms to generate 2D view images from a LF image have been proposed in the literature, mainly in the context 

of richer 2D image capturing systems4,34–36. In this paper, the algorithm referred to as Basic Rendering4 is considered to 

generate the content for the first two hierarchical layers. 

Briefly, since each micro-image can be seen as a low resolution view of the scene, the idea behind the Basic Rendering 

algorithm is to choose suitable portions (patches) from each micro-image which can be stitched to properly compose a 2D 

view image. Then, as explained by Georgiev and Lumsdaine4, the process of generating a 2D view image can be controlled 

by the following two main parameters: 

 Size of the patch: It is possible to control the plane of focus in the generated 2D view image (i.e., which objects 

will appear in sharp focus) by choosing a suitable patch size to be extract from each MI. Therefore, by varying 

the patch size, different content will be generated for the first two hierarchical layers; 

 Position of the patch: By varying the relative position of the patch in the MI, it is possible to generate multiple 

2D views with different horizontal and vertical viewing angles (i.e., different scene perspectives). 

3.2 Intra Prediction 

HEVC Intra prediction is available as an alternative prediction when selecting the most efficient mode for encoding a 

coding block in the Second Layer (i.e., in the LF picture). The decision between the different available prediction modes 

is made in a rate-distortion (RD) optimization manner, as in conventional HEVC. 

3.3 SS Prediction 

Since the Second Layer contains the full LF image, the SS compensated prediction19 can be also used to exploit the existing 

redundancy and to improve coding efficiency within the Second Layer. For this, a block matching estimation is used to 

find the best prediction for a coding block within the previously coded and reconstructed area of the current frame. As a 

result, the residual information and a displacement vector are coded and sent to the decoder. 

3.4 Inter Layer Prediction 

This prediction mode is used to further improve the Second Layer coding efficiency by removing redundancy between the 

multiview and the LF content. For this, two ILR are constructed, which can be then used as new reference pictures for 

employing a compensated prediction when encoding the LF image. These are the previously proposed MI refilling based 

ILR15 and the new exemplar-based ILR, as further explained in the following. 

3.5 MI Refilling Based ILR 

As previously proposed by the authors15, the MI refilling based ILR picture is built by using the following two steps. 

Patch Remapping 

The input for this step is the coded and reconstructed views from the two lower layers as well as the parameters used for 

acquiring these views (such as the resolution of micro-images, patch sizes, and positions). 

Although most of the LF information is discarded when rendering each view in the hierarchical layer generation block 

(see Figure 2), it is still possible to re-organize the reconstructed texture information into its original positions in the LF 

image. Therefore, the patch remapping simply corresponds to an inverse process of the Basic Rendering algorithm4. More 

 

 

(a) (b) 

Figure 3 Inter-Layer Prediction using the previously proposed MI refilling based ILR construction15: Patch Remapping step; 

and (b) MI Refilling step 
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specifically, it corresponds to an inverse mapping (referred to as remapping) of the patches from all rendered and 

reconstructed views to their original positions in the LF image, as illustrated in Figure 3a. A template for the LF image 

assembles all patches, and the output is then the sparse ILR picture, as illustrated Figure 3. 

MI Refilling 

The input for this step is the sparse ILR picture generated by the Patch Remapping. Basically, the MI refilling aims at 

emulating the significant cross-correlation existing between neighboring MIs so as to fill the holes in the sparse ILR picture 

(see Figure 3a) as much as possible. 

Since there is no information about the disparity/depth between objects in neighboring MIs, the disparity is defined in a 

patch-based manner. Then, for each MI in the sparse ILR picture, an available set of pixels (a patch) is copied to a suitable 

position in a neighboring micro-image that is shifted by the size of the patch, as illustrated in Figure 3b. Additionally, the 

number of neighboring micro-images where the patch may be copied to depends on the size of the micro-image and the 

size of the patch. 

3.6 Exemplar-based ILR 

A characteristic of the MI refilling process is that the constructed ILR picture is considerably more accurate in areas where 

the generated 2D views are in focus compared to out of focus areas. This is illustrated in Figure 4, and happens since the 

actual disparity is not known in the out of focus areas and, consequently, is assumed to be given by the patch size. 

Motivated by this fact, an improved ILR picture construction process, referred to as exemplar-based ILR, is proposed in 

this paper to further improve the Inter-Layer Prediction efficiency. Details are given in Section 4.1. 

3.7 Exemplar-Based Direct Prediction 

This new prediction mode aims at exploiting the redundancy between the First and Second Layers to find a prediction 

block and, then, to implicitly derive an inter-layer vector for encoding the current block in the Second Layer picture. As a 

result, no vector needs to be transmitted and the decoder can simply use the same process for inferring the vectors to carry 

out the compensated prediction using the decoded residual samples. Similarly to the conventional HEVC merge mode37, 

an index is transmitted (together with the coded residual information), which is used to distinguish the Exemplar-based 

Direct Prediction from the conventional HEVC merge mode. The process to derive the implicit inter-layer vector is 

presented with further detail in Section 4.2. 

3.8 Header formatting & Context-Adaptive Binary Arithmetic Coding (CABAC) 

Additional high level syntax elements are carried through the HEVC bitstream to support this type of scalability. These 

are basically acquisition information (e.g., MI resolution, patch sizes and positions) and dependency information (for 

signaling the use of novel reference pictures). Finally, residual and prediction mode signaling are entropy coded using 

CABAC. 

In Focus Areas 

  

Out of Focus Areas 

  

 (a) (b) 

Figure 4 Comparison of the original LF image (a) and the resulting MI refilling based ILR picture (b) for a particular patch 

size. The reconstruction is much more accurate for areas of the rendered image where the selected patch size is focused (top) 



 

 
 

 

4 NOVEL EXEMPLAR-BASED INTER-LAYER CODING TOOLS 

Two exemplar-based coding tools are proposed in this section to improve the coding performance in the Second Layer. 

These are: i) the exemplar-based ILR picture construction; and ii) the exemplar-based direct prediction. 

4.1 Exemplar-based ILR Picture Construction 

This section describes the process that is carried out in the exemplar-based ILR block depicted in Figure 2. 

Input Information 

Similarly to the previously proposed MI refilling, the input information for this process is the sparse ILR picture that is 

built by using the Patch Remapping shown in Figure 3a. 

Problem Formulation 

The basic idea for constructing the improved ILR picture is to find a good estimation to fill in the unknown data in the 

sparse ILR picture. This is clearly an ill-posed problem; however, it is still possible to obtain a realistic approximate 

solution by imposing additional constraints coming from the physics of the problem. This is done here by using the prior 

knowledge that neighboring MI samples present significant cross-correlation, and for this reason, it is likely to find the 

unknown region of a particular MI in an area of neighboring MIs. 

In the given problem, the unknown pixels are initially set to zero. Hence, given the sparse ILR picture shown in Figure 3a, 

divide it into blocks with 𝑛-pixels. Each block 𝜙𝑃 is formed by a 𝑛𝑠-pixel set of known samples – referred to as the support 

region – and a (𝑛 − 𝑛𝑠)-pixel set of unknown samples to be predicted as shown in Figure 5. Hence, each block can be 

represented as the product of a texture column vector, 𝐲, by a binary mask, 𝐒, in which all but (𝑛 − 𝑛𝑠) samples have value 

equal to one. The mask 𝐒 is here represented as an 𝑛 × 𝑛 identity matrix with the respective (𝑛 − 𝑛𝑠) unknown diagonal 

samples set to zero. 

To fill in the unknown region of 𝜙𝑃 the first step is to find a candidate block that best agrees with the support samples of 

𝜙𝑃. Thus, let 𝜙𝑐 be a 𝑛-pixel candidate block that is inside a neighborhood area, 𝛀, comprising samples from 𝐾 neighbor 

MIs (i.e.,  𝛀 = {MI𝑘}𝑘=1…𝐾). The candidate block 𝜙𝑐 might be also formed by known and unknown samples. Considering 

that 𝜙𝑐 comprises a 𝑛𝑒-pixel region of known samples, the candidate block can be similarly represented as the product of 

a texture column vector, 𝐱, by an identity matrix, 𝐄, with (𝑛 − 𝑛𝑒) diagonal samples set to zero. 

Therefore, let 𝐀 be a binary diagonal matrix that represents the samples from 𝜙𝑝 and 𝜙𝑐 that overlap, simply given by 

𝐀 = 𝐒𝐄. The best candidate block, 𝜙𝑐
𝑏𝑒𝑠𝑡, can then be found by solving the optimization problem in (1), which comprises, 

respectively, a data-fitting term and a sparseness prior function. The former term tries to find the best match within the 

region where 𝜙𝑝 and 𝜙𝑐 overlap, while the latter term penalizes candidate blocks whose 𝑛𝑒-pixel region is too small (note 

that 𝐈𝑛 corresponds to a 𝑛 × 𝑛 identity matrix). 

 min
𝐱,𝐀

‖𝐀(𝐲 − 𝐱)‖1 + 𝜆 × ‖𝑑𝑖𝑎𝑔(𝐈𝑛 − 𝐀)‖0 (1)  

Since the border of the MIs typically exhibits high intensity variations (mainly due to vignetting), a further constraint is 

imposed to the problem formulated in (1) to guarantee that these high frequency samples from the borders of an MI sample, 

MIk ⊂ 𝛀, do not affect negatively the synthesized patterns, which is to solve the problem in (1), subjected to: 𝐱 ∈  MIk ∧

 
Figure 5 Exemplar-based ILR Picture Construction: For each block 𝜙𝑃 in the sparse ILR picture, the best candidate block, 

𝜙𝑐
𝑏𝑒𝑠𝑡 , is derived by solving the optimization problem in (1). 
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 𝐱 ∉ MIm≠k. In the experimental results presented in this paper (Section 5), the λ value is selected empirically and the 𝜙𝑝 

and 𝜙𝑐  blocks size is selected to be a quarter of the size of an MI size. 

Texture synthesis algorithm 

Once the best patch sample 𝜙𝑐
𝑏𝑒𝑠𝑡 is obtained by solving (1), the synthesized region is derived by simply copying the 

samples of the region defined by 𝐄 − 𝐀. If there are still patches with unknown samples, the optimization process is 

iteratively repeated until all unknown samples are filled in or until the number of unknown samples stabilizes. Thus, at 

each iteration, the values of 𝐱 and 𝐀 are updated with the found values. If there are still unknown samples at the end of the 

algorithm, the MI refilling process may be used to fill the remainder holes. 

The presented exemplar-based solution is chosen due to its simplicity and effectiveness for tackling the proposed problem. 

However, it should be noticed that, since the size of the exemplar blocks affects the ill-posedness of the problem, the more 

information of the LF image is discarded when generating the content for the Base and First Layers, the worst the quality 

of the built ILR picture will be. As an illustrative example of this fact, Figure 6 presents the resulting ILR picture when 

varying the amount of information which is discarded from 50 % (see Figure 6b) up to more than 90 % (see Figure 6d), 

compared with the original LF image (see Figure 6a). Better solutions for dealing with the case in Figure 6d might still be 

formulated, for instance, by adding an edge-preserving regularizer in (1). However, it will be left for future work. 

4.2 Exemplar-based Direct Prediction 

This section describes the process to implicitly derive an inter-layer vector when encoding the Second Layer by using the 

texture information from the previously encoded layers, as illustrated in Figure 7. This process can be divided in the 

following two steps. 

Co-located Block Derivation 

The input for this step is also the sparse ILR picture comprising a sparse set of known samples, referred to as exemplar 

blocks in Figure 7. Therefore, the block from the sparse ILR picture with the same size and co-located position to the 

current block being coded is derived and referred to as co-located block in Figure 7. 

Inter-Layer Vector Estimation 

Similarly to the template matching algorithm38, a matching algorithm is used to find the ‘best’ candidate predictor for the 

current block. For this, the candidate block that best agrees with the co-located block determined in the previous step is 

chosen in the previously coded and reconstructed area of the LF picture being coded. More specifically, the best candidate 

block is chosen by matching only the known exemplar samples of the co-located block over a causal search window in the 

LF picture, as shown in Figure 7, since these are the only samples available at the decoder at the corresponding decoding 

time. 

Therefore, let 𝐲 be a column vector containing the 𝑝-pixel samples of the co-located block in the sparse ILR picture, where 

only the 𝑝𝑒-pixel samples, i.e., the exemplar samples, are known at decoding time (see Figure 7). Also, let 𝐖 be the search 

In Focus Areas 

    

Out of Focus Areas 

    

 (a) (b) (c) (d) 

Figure 6 Comparison of the original LF image (a) and the resulting exemplar-based ILR picture when: (b) 50 %, (c) 80 %, 

and (d) more than 90 % of the LF information is discarded when generating the content for the two lower hierarchical layers. 

The reconstruction is also shown for in focus and out of focus areas just for comparison with the ILR picture in Figure 4 



 

 
 

 

window, and let 𝐱 ⊂ 𝐖 be a column vector containing the 𝑝-pixel samples of a candidate predictor block in the current 

layer. Since 𝐲 contains (𝑝 − 𝑝𝑒) unknown samples, it can be modeled as 𝐲 = 𝐀𝐱, where 𝐀 is a binary mask in which only 

the corresponding known 𝑝𝑒 sample positions are non-zero. Thus, 𝐀 can be represented as an 𝑝 × 𝑝  identity matrix whose 

(𝑝 − 𝑝𝑒) unknown diagonal samples are set to zero. Finally, since the mask 𝐀 is known a priori, the best candidate block, 

𝐱𝑏𝑒𝑠𝑡, can be simply found by the matching algorithm in (2), where the sum of absolute differences has been used as the 

matching criteria. 

 𝐱𝑏𝑒𝑠𝑡 = argmin
𝐱⊂𝐖

‖𝐲 − 𝐀𝐱‖1 (2)  

Finally, once 𝐱𝑏𝑒𝑠𝑡 is obtained, the displacement vector between 𝐱𝑏𝑒𝑠𝑡 and the current block is derived, which is the output 

of this process. 

5 PERFORMANCE ASSESSMENT 

This section assesses the performance of the proposed SLFC codec. For this purpose, the test conditions and tested coding 

solutions are firstly introduced and, then, the obtained results are presented and discussed. 

5.1 Experimental Setup 

To evaluate the performance of the proposed SLFC codec, six light field images with different spatial and micro-image 

resolutions are considered so as to achieve representative RD results. These are (see Figure 8): Fredo39, Seagull39, Laura39, 

Demichelis Spark40 (first frame of a video sequence with identical name), Robot 3D40, and Plane and Toy40 (frame number 

123 from a video sequence with identical name). The original tested images were rectified so as to have all micro-images 

with integer number of pixels, and they were then converted to the YCbCr 4:2:0 color format. 

To generate the content for the 2D, stereo and multiview layers, the six test images were processed with the Basic 

Rendering algorithm4. In this process, a set of regular spaced 2D view images were generated – one for the Base Layer 

and the remainder for the First Layer. In addition, the patch size is selected to represent the case where the main object of 

the scene is in focus. This way, the chosen patch sizes and positions for each LF test image are summarized in Table 1. As 

can be seen (Table 1), two sets with a different number of views are considered for each LF image, one with 9×1 views 

(only in horizontal positions) and another one with 9×3 views. 

For these tests, the reference software for the multiview extension of HEVC (MV-HEVC) version 12.041 was used as the 

benchmark, as well as the base software for implementing the proposed SLFC codec. Each of the abovementioned test 

image was thus encoded using four different quantization parameter (QP) values: 22, 27, 32, and 37, according to the 

common test conditions defined in42. The same QP value was used for coding all hierarchical layers. 

For evaluating the RD performance of the proposed LF enhancement layer encoder, the distortion, in terms of PSNR, of 

only the Second Layer is considered. The rate is presented in bits per pixel (bpp), which is calculated as the total number 

of bits needed for encoding all scalable layers divided by the number of pixels in the LF raw image. 

 
Figure 7 Exemplar-based direct prediction. The best match between the co-located block and a candidate block (within the 

causal search Window W in the LF Picture) allows finding an implicit inter-layer vector for the current coding block. 
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Alternatively, to analyze the performance in terms of the quality for additional views synthesized from the reconstructed 

LF content in the Second Layer, the distortion is also measured in terms of the average PSNR and the average SSIM values 

over a set of views rendered from the reconstructed and from the original LF image. These two quality metrics are referred 

to as, respectively, Rendering-dependent PSNR and Rendering-dependent SSIM. To have a representative number of 

rendered views, a set of 9 views were rendered from viewpoint positions equally distributed horizontal and vertical 

directions. The standard deviation for each result was also used to measure the confidence of the presented average values. 

For rendering the views, the same algorithm used for generating content for each hierarchical layer was used (i.e., Basic 

Rendering4). 

5.2 Benchmark Coding Solutions 

The next subsections present and analyze the performance of the SLFC (proposed) codec against the following benchmark 

solutions: 

 MV-based (HEVC Inter P): In this case, a multiview-based coding approach is considered, where all viewpoint 

images are extracted from the light field image and, then, are encoded as a pseudo video sequence26. In this case, 

HEVC is used with the “Low delay P, main” configuration42 and the largest coding unit size was set to 16×16, 

since the resolution of each viewpoint image is considerably smaller than what is typically encoded with HEVC. 

After testing various orders for scanning the viewpoint images (i.e., raster, parallel, zigzag, and spiral), the spiral 

order is presented as it achieved the best performance among the ones that were tested. 

 MV-based (HEVC Inter B): The pseudo video sequence of viewpoint images (scanned in spiral order) is also 

encoded using HEVC with “Random Access, main” configuration42. 

 SLFC (Simulcast): This scalable codec corresponds to the benchmark for the simulcast case of the proposed SLFC 

coding architecture. Hence, all pictures from each hierarchical layer are coded independently as Intra frames with 

standard MV-HEVC solution, using “All Intra, Main” configuration42. 

 SLFC (Previous Solution): In this case, the picture from each hierarchical layer is coded with the previously 

proposed SLFC codec proposed31 where only the conventional HEVC Intra, SS and the previous Inter-Layer 

prediction with MI refilling are enabled. In this case, the Base and First Layers are encoded as Intra Frames and 

the Second Layer is encoded as an Inter P frame. 

For the SLFC (Proposed Solution), all the views are encoded as Intra frames and the Second Layer is encoded as an Inter 

B frame. Notice that, other configurations for encoding the content in the First Layer are still possible, notably, by enabling 

inter-view prediction (coding as P or B frames). However, due to the large number of possible test condition combinations, 

these additional results will be left for future work, Furthermore, a study of the influence of varying the coding 

configuration in the lower layer on the performance of the proposed solution will be also performed in the future. 

   

Fredo – 7104 × 5328 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74, 96 × 72 MI-grid 

Seagull – 7104 × 5328 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74, 96 × 72 MI-grid 

Laura – 7104 × 5328 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 74 × 74, 96 × 72 MI-grid 

   

Demichelis Spark –  2850 × 1558 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 38 × 38, 75 × 41 MI-grid 

Robot 3D – 1904 × 1064 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 28 × 28, 68 × 38 MI-grid 

Plane and Toy – 1904 × 1064 

𝑀𝐼𝑟𝑒𝑠𝑜𝑙 = 28 × 28, 68 × 38 MI-grid 

Figure 8 Example of a central view rendered from each LF test image (with the corresponding characteristics below each 

image) 

 



 

 
 

 

5.3 Overall Rate-Distortion Performance 

Tables 2 and 3 present the RD performance in terms of the Bjøntegaard Delta43 in PSNR (BD-PSNR) and rate (BD-BR) 

with respect to the benchmarks solutions for all test images in Figure 8. 

From these results, the following conclusions can be derived: 

 Comparison with MV-based approaches: It can be seen (Tables 2 and 3) that the proposed SLFC solution 

architecture presents significantly better RD performance than the multiview arrangement of the viewpoint 

images, for both tested MV-based configurations (HEVC Inter P and HEVC Inter B) and view arrangements (9×1 

and 9×3 views). The BD gains of the SLFC (Proposed Solution) go up to 8.68 dB (PSNR) and -79.69 % (BR) 

when compared to the MV-based (HEVC Inter P), and 8.46 dB (PSNR) and -77.89 % (BD) when compared to 

MV-based (HEVC Inter B). For the test image Demichelis Spark with 9×3 views in the lower layers (see Table 

3), the MV-based (HEVC Inter B) performs better than the SLFC (Proposed Solution). However, it should be 

noticed that the worse performance of the SLFC (Proposed Solution) in this case is due to the larger set of views 

(9×3) that are independently encoded as Intra Frames, instead of enabling the inter-view prediction to improve 

the performance as in the MV-based (HEVC Inter B) (in this case, the viewpoint images are coded as B frames). 

 Comparison with SLFC (Simulcast): The proposed SLFC RD performance is significantly better than the SLFC 

(Simulcast) independently of the used view arrangements in the lower layers (see Tables 2 and 3). The gains are 

much more expressive for test images with higher MI resolution, where the BD-PSNR gain goes up to 3.00 dB 

and the BD-BR to -44.54 % (for Seagull). These gains are justified by the efficiency in exploiting the redundancy 

between the layers (using the proposed inter-layer coding tools), as well as the efficiency in exploiting the 

correlations within the Second Layer (using the SS prediction). 

Table 1 Tested Conditions: Patch Sizes and Patch Positions (related to the MI center) for generating views for the lower 

hierarchical layers 

Images 
Patch Size 

(Focus Plane)s 

Views 

Grid 
Patch Positions (Views Perspective) 

Fredo 10 

9×1 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

9×3 

{(-24,-10), (-18,-10), (-12,-10), (-6, -10), (0, -10), (6, -10), (12, -10), (18, -10), (24, -10)} 

{(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

{(-24,10), (-18,10), (-12,10), (-6,10), (0,10), (6,10), (12,10), (18,10), (24,10)} 

Seagull 9 

9×1 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

9×3 

{(-24,-10), (-18,-10), (-12,-10), (-6, -10), (0, -10), (6, -10), (12, -10), (18, -10), (24, -10)} 

{(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

{(-24,10), (-18,10), (-12,10), (-6,10), (0,10), (6,10), (12,10), (18,10), (24,10)} 

Laura 10 

9×1 {(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

9×3 

{(-24,-10), (-18,-10), (-12,-10), (-6, -10), (0, -10), (6, -10), (12, -10), (18, -10), (24, -10)} 

{(-24,0), (-18,0), (-12,0), (-6,0), (0,0), (6,0), (12,0), (18,0), (24,0)} 

{(-24,10), (-18,10), (-12,10), (-6,10), (0,10), (6,10), (12,10), (18,10), (24,10)} 

Demichelis 

Spark 
12 

9×1 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

9×3 

{(-8,-10), (-6, -10), (-4, -10), (-2, -10), (0, -10), (2, -10), (4, -10), (6, -10), (8, -10)} 

{(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

{(-8,10), (-6,10), (-4,10), (-2,10), (0,10), (2,10), (4,10), (6,10), (8,10)} 

Robot 3D 4 

9×1 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

9×3 

{(-8,-4), (-6, -4), (-4, -4), (-2, -4), (0, -4), (2, -4), (4, -4), (6, -4), (8, -4)} 

{(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

{(-8,4), (-6,4), (-4,4), (-2,4), (0,4), (2,4), (4,4), (6,4), (8,4)} 

Plane and 

Toy 
4 

9×1 {(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

9×3 

{(-8,-4), (-6, -4), (-4, -4), (-2, -4), (0, -4), (2, -4), (4, -4), (6, -4), (8, -4)} 

{(-8,0), (-6,0), (-4,0), (-2,0), (0,0), (2,0), (4,0), (6,0), (8,0)} 

{(-8,4), (-6,4), (-4,4), (-2,4), (0,4), (2,4), (4,4), (6,4), (8,4)} 

 



 

 
 

 

 Comparison with SLFC (Previous Solution): Comparing this solution with the complete SLFC (Proposed 

Solution), it can be seen that improved RD performance can be attained by making use of the proposed exemplar-

based coding tools. In this case, the BD gains of the SLFC (Proposed Solution) go up to 0.45 dB (PSNR) 

and -9.47 % (BR). 

5.4 Quality of Additional Rendered Views 

In order to assess the performance of the proposed scalable coding architecture regarding the quality of rendered views, 

the RD performance of the SLFC (Proposed Solution) is here presented in terms of the Rendering-dependent PSNR and 

SSIM metrics (as explained in Section 5.1) and compared to the SLFC (Simulcast) and SLFC (Previous Solution). Since 

similar results were observed independently of considering the 9×1 or the 9×3 views in the lower layers, the results are 

shown in Figure 9 (in terms of PSNR) and Figure 10 (in terms of SSIM) for the 9×1 arrangement only. 

From these results, it can be seen that the SLFC (Proposed Solution) outperforms the benchmark solutions and there is a 

similar trend in terms of coding performance using the different quality metrics. Regarding the standard deviation values 

presented in Figures 9 and 10, it can be observed that light field images with smaller MI resolution (i.e., Demichelis Spark, 

Robot 3D and Plane and Toy) present slightly higher variation in PSNR and SSIM values for the three compared solutions. 

In addition, it was observed that there is no significant discrepancy between the quality of the compressed views in the 

lower layers and the quality of rendered views from the compressed Second Layer. 

5.5 Further ILR Performance Analysis for Bi-Prediction 

This section further analyzes the performance of the proposed improved Inter-Layer prediction (by using exemplar-based 

ILR picture construction) for the specific case where bi-prediction is allowed when encoding the Second Layer. For this, 

an alternative SLFC solution is compared with the complete SLFC (Proposed Solution): 

Table 2 BD-PSNR and BD-BR performance of the proposed SLFC codec against the benchmarks when considering 9×1 

views in the lower hierarchical layers 

Test Image 

MV-based 

(HEVC Inter P) 

MV-based 

(HEVC Inter B) 
SLFC (Simulcast). 

SLFC 

(Previous Solution)31 

BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR 

Fredo 8.68 dB -79.69 % 8.46 dB -77.89 % 2.91 dB -41.30 % 0.23 dB -4.40 % 

Seagull 5.66 dB -72.13 % 5.43 dB -71.52 % 3.00 dB -44.54 % 0.45 dB -9.47 % 

Laura 6.32 dB -63.45 % 5.70 dB -63.60 % 2.51 dB -33.12 % 0.22 dB -3.78 % 

Demichelis Spark 4.15 dB -69.33 % 2.78 dB -53.88 % 1.17 dB -28.90 % 0.39 dB -10.48 % 

Robot 3D  6.90 dB -56.39 % 5.45 dB -52.40 % 1.07 dB -12.62 % 0.08 dB -1.04 % 

Plane and Toy  5.75 dB -58.15 % 4.02 dB -48.54 % 1.46 dB -20.53 % 0.21 dB -3.32 % 

Average 6.24 dB -66.52 % 5.30 dB -61.31 % 2.02 dB -30.17 % 0.26 dB -5.42 % 

 
Table 3 BD-PSNR and BD-BR performance of the proposed SLFC codec against the benchmarks when considering 9×3 

views in the lower hierarchical layers 

Test Image 

MV-based 

(HEVC Inter P) 

MV-based 

(HEVC Inter B) 
SLFC (Simulcast). 

SLFC 

(Previous Solution)31 

BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR BD-PSNR BD-BR 

Fredo 7.42 dB -73.22 % 7.10 dB -70.79 % 2.85 dB -39.50 % 0.41 dB -7.36 % 

Seagull 4.60 dB -63.01 % 4.37 dB -62.10 % 2.74 dB -40.60 % 0.40 dB -7.83 % 

Laura 5.05 dB -52.94 % 4.47 dB -52.92 % 2.75 dB -34.76 % 0.33 dB -5.17 % 

Demichelis Spark 0.47 dB -11.41 % -1.05 dB 33.33 % 0.77 dB -17.87 % 0.27 dB -6.16 % 

Robot 3D  4.73 dB -41.38 % 3.40 dB -35.49 % 1.60 dB -17.18 % 0.14 dB -1.65 % 

Plane and Toy  4.05 dB -43.79 % 2.32 dB -30.54 % 1.64 dB -21.33 % 0.17 dB -2.46 % 

Average 4.39 dB -47.63 % 3.44 dB -36.42 % 2.06 dB -28.54 % 0.29 dB -5.10 % 

 



 

 
 

 

 SLFC (Restricted IL): In this case, the Second Layer is encoded with the proposed LF enhancement encoder 

where bi-prediction is allowed (coded as an Inter B frame). However, Inter-Layer prediction with only the 

previous MI refilling ILR is enabled. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9 Rate distortion performance (in terms of PSNR against bpp) for a set of 9 views rendered from the compressed light 

field layer for: (a) Fredo, (b) Seagull, (c) Laura, (d) Demichelis Spark, (e) Robot 3D, and (f) Plane and Toy 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 10 Rate distortion performance (in terms of SSIM against bpp) for a set of 9 views rendered from the compressed light 

field layer for: (a) Fredo, (b) Seagull, (c) Laura, (d) Demichelis Spark, (e) Robot 3D, and (f) Plane and Toy 
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Therefore, Tables 4 and 5 illustrate the BD performance of the complete SLFC (Proposed Solution) against the SLFC 

(Restricted IL) when considering, respectively 9×1 and 9×3 view arrangements. It can be observed that, when considering 

a smaller number of views in lower hierarchical layers (i.e., in the 9×1 arrangement), there is no significant difference 

between the performance of both these solutions. On the other hand, the complete SLFC (Proposed Solution) presents a 

slightly better performance when a larger set of views is considered in the lower layers (i.e., in the 9×3 arrangement). 

Moreover, Tables 4 and 5 also illustrate the percentage of usage of each reference frame (i.e. the percentage of uni-

prediction using only the SS reference, the MI refilling based ILR, or the exemplar-based ILR) when encoding with the 

complete SLFC (Proposed Solution) compared with the percentage of usage of a combination of these different references 

(by using bi-prediction). It can be observed that, in the case of the 9×1 arrangement, the largest percentage of the coding 

blocks (half of them) are encoded by using bi-prediction, and the exemplar-based ILR is hardly ever used (when using 

uni-prediction). This result is consistent with what has been shown in Section 4.1 (see Figure 6) regarding the accuracy of 

the exemplar-based ILR picture when more or less LF information is discarded when generating the content for the lower 

layers. Notably, the less accurate ILR picture is, the less used it will be in a RD manner. Nevertheless, as the amount of 

information in the lower layer increases (seeTable 5), a better exemplar-based ILR is constructed, which may then be used 

as an alternative to the bi-prediction to improve the coding performance. This is illustrated in Table 5 by the increased 

percentage of usage of the exemplar based ILR, and consequent decreased percentage of usage of the bi-prediction. 

6 FINAL REMARKS 

This paper has proposed to improve the performance of the authors’ previous display scalable light field coding solution 

by using two new exemplar-based inter-layer coding tools. Notably, an inter-layer compensated prediction using a 

reference picture that was constructed relying on an exemplar-based algorithm for texture synthesis, and a direct prediction 

Table 4 Analysis of the proposed improved inter-layer prediction when considering 9×1 views in the lower hierarchical layers. 

Prediction usage statistics when encoding each test images with the proposed SLFC solution and comparison of the 

performance of the improved inter-layer prediction when bi-prediction is used 

Images 

SLFC(Proposed Solution) vs. 

SLFC(Restricted ILR) 
SLFC (Proposed Solution) Prediction Usage 

BD-PSNR BD-BR 
SS 

Reference 

MI Refilling 

based ILR 

Exemplar-based 

ILR 
Bi-prediction 

Fredo -0.02 dB 0.33 % 36.40 % 13.53 % 0.32 % 49.75 % 

Seagull -0.01 dB 0.21 % 29.86 % 6.92 % 0.32 % 62.90 % 

Laura -0.01 dB 0.11 % 35.71 % 12.13 % 0.49 % 51.67 % 

Demichelis Spark 0.01 dB -0.31 % 18.11 % 17.56 % 1.62 % 62.71 % 

Robot 3D -0.01 dB 0.13 % 53.24 % 25.52 % 0.84 % 20.40 % 

Plane and Toy 0.00 dB -0.02 % 41.01 % 23.37 % 0.33 % 35.29 % 

Average -0.01 dB 0.08 % 35.72 % 16.50 % 0.65 % 47.12 % 
 

Table 5 Analysis of the proposed improved inter-layer prediction when considering 9×3 views in the lower hierarchical layers. 

Prediction usage statistics when encoding each test images with the proposed SLFC solution and comparison of the 

performance of the improved inter-layer prediction when bi-prediction is used 

Images 

SLFC(Proposed Solution) vs. 

SLFC(Restricted ILR) 
SLFC (Proposed Solution) Prediction Usage 

BD-PSNR BD-BR 
SS 

Reference 

MI Refilling 

based ILR 

Exemplar-based 

ILR 
Bi-prediction 

Fredo 0.21 dB -3.95 % 32.12 % 8.01 % 10.26 % 49.61 % 

Seagull 0.07 dB -1.46 % 31.13 % 9.68 % 3.59 % 55.60 % 

Laura 0.18 dB -2.95 % 31.74 % 9.78 % 9.44 % 49.04 % 

Demichelis Spark 0.01 dB -0.27 % 24.05 % 23.11 % 8.24 % 44.60 % 

Robot 3D 0.08 dB -0.95 % 39.05 % 25.37 % 13.84 % 21.74 % 

Plane and Toy 0.02 dB -0.36 % 37.61 % 24.89 % 8.09 % 29.41 % 

Average 0.10 dB -1.66 % 32.62 % 16.81 % 8.91 % 41.67 % 
 



 

 
 

 

based on exemplar texture samples from lower layers. Experimental results confirmed the advantage of the proposed 

scalable architecture compared to various benchmark solutions, and showed that the performance of the proposed 

exemplar-based inter-layer prediction improves as the number of views in the Base and First Layers increases. 

Finally, in terms of future work, the authors plan to investigate opportunities to enhance the proposed exemplar-based 

Inter-layer prediction and to enlarge the applicability of the proposed solution by incorporating supplementary data (such 

as depth, ray-space, and 3D model) into the scalable bitstream. 
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