413 research outputs found

    A max-plus approach to incomplete Cholesky factorization preconditioners

    Get PDF
    We present a new method for constructing incomplete Cholesky factorization preconditioners for use in solving large sparse symmetric positive-definite linear systems. This method uses max-plus algebra to predict the positions of the largest entries in the Cholesky factor and then uses these positions as the sparsity pattern for the preconditioner. Our method builds on the max-plus incomplete LU factorization preconditioner recently proposed in [J. Hook and F. Tisseur, Incomplete LU preconditioner based on max-plus approximation of LU factorization, MIMS Eprint 2016.47, Manchester, 2016] but applied to symmetric positive-definite matrices, which comprise an important special case for the method and its application. An attractive feature of our approach is that the sparsity pattern of each column of the preconditioner can be computed in parallel. Numerical comparisons are made with other incomplete Cholesky factorization preconditioners using problems from a range of practical applications. We demonstrate that the new preconditioner can outperform traditional level-based preconditioners and offer a parallel alternative to a serial limited-memory based approach

    A class of nonsymmetric preconditioners for saddle point problems

    Get PDF
    For iterative solution of saddle point problems, a nonsymmetric preconditioning is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant of SSOR. An idealized situation where the SSOR is taken with respect to the skew-symmetric part plus the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner involves solution of a Schur complement system, an inexact form of the preconditioner can be of interest. This results in an inner-outer iterative process. Numerical experiments with solution of linearized Navier-Stokes equations demonstrate efficiency of the new preconditioner, especially when the left-upper block is far from symmetric

    A multilevel Schur complement preconditioner with ILU factorization for complex symmetric matrices

    Get PDF
    This paper describes a multilevel preconditioning technique for solving complex symmetric sparse linear systems. The coefficient matrix is first decoupled by domain decomposition and then an approximate inverse of the original matrix is computed level by level. This approximate inverse is based on low rank approximations of the local Schur complements. For this, a symmetric singular value decomposition of a complex symmetric matix is used. The block-diagonal matrices are decomposed by an incomplete LDLT factorization with the Bunch-Kaufman pivoting method. Using the example of Maxwell's equations the generality of the approach is demonstrated

    Using GPU to Accelerate Linear Computations in Power System Applications

    Get PDF
    With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based on power flow computation, such as optimal power flow, contingency analysis, etc. This dissertation focuses on the exploration of iterative linear solvers and applicable preconditioners, with graphic processing unit (GPU) implementations to achieve performance improvement on the linear computations in power flow computations. An iterative conjugate gradient solver with Chebyshev preconditioner is studied first, and then the preconditioner is extended to a two-step preconditioner. At last, the conjugate gradient solver and the two-step preconditioner are integrated with MATPOWER to solve the practical fast decoupled load flow (FDPF), and an inexact linear solution method is proposed to further save the runtime of FDPF. Performance improvement is reported by applying these methods and GPU-implementation. The final complete GPU-based FDPF with inexact linear solving can achieve nearly 3x performance improvement over the MATPOWER implementation for a test system with 11,624 buses. A supporting study including a quick estimation of the largest eigenvalue of the linear system which is required by the Chebyshev preconditioner is presented as well. This dissertation demonstrates the potential of using GPU with scalable methods in power flow computation

    On Updating Preconditioners for the Iterative Solution of Linear Systems

    Full text link
    El tema principal de esta tesis es el desarrollo de técnicas de actualización de precondicionadores para resolver sistemas lineales de gran tamaño y dispersos Ax=b mediante el uso de métodos iterativos de Krylov. Se consideran dos tipos interesantes de problemas. En el primero se estudia la solución iterativa de sistemas lineales no singulares y antisimétricos, donde la matriz de coeficientes A tiene parte antisimétrica de rango bajo o puede aproximarse bien con una matriz antisimétrica de rango bajo. Sistemas como este surgen de la discretización de PDEs con ciertas condiciones de frontera de Neumann, la discretización de ecuaciones integrales y métodos de puntos interiores, por ejemplo, el problema de Bratu y la ecuación integral de Love. El segundo tipo de sistemas lineales considerados son problemas de mínimos cuadrados (LS) que se resuelven considerando la solución del sistema equivalente de ecuaciones normales. Concretamente, consideramos la solución de problemas LS modificados y de rango incompleto. Por problema LS modificado se entiende que el conjunto de ecuaciones lineales se actualiza con alguna información nueva, se agrega una nueva variable o, por el contrario, se elimina alguna información o variable del conjunto. En los problemas LS de rango deficiente, la matriz de coeficientes no tiene rango completo, lo que dificulta el cálculo de una factorización incompleta de las ecuaciones normales. Los problemas LS surgen en muchas aplicaciones a gran escala de la ciencia y la ingeniería como, por ejemplo, redes neuronales, programación lineal, sismología de exploración o procesamiento de imágenes. Los precondicionadores directos para métodos iterativos usados habitualmente son las factorizaciones incompletas LU, o de Cholesky cuando la matriz es simétrica definida positiva. La principal contribución de esta tesis es el desarrollo de técnicas de actualización de precondicionadores. Básicamente, el método consiste en el cálculo de una descomposición incompleta para un sistema lineal aumentado equivalente, que se utiliza como precondicionador para el problema original. El estudio teórico y los resultados numéricos presentados en esta tesis muestran el rendimiento de la técnica de precondicionamiento propuesta y su competitividad en comparación con otros métodos disponibles en la literatura para calcular precondicionadores para los problemas estudiados.The main topic of this thesis is updating preconditioners for solving large sparse linear systems Ax=b by using Krylov iterative methods. Two interesting types of problems are considered. In the first one is studied the iterative solution of non-singular, non-symmetric linear systems where the coefficient matrix A has a skew-symmetric part of low-rank or can be well approximated with a skew-symmetric low-rank matrix. Systems like this arise from the discretization of PDEs with certain Neumann boundary conditions, the discretization of integral equations as well as path following methods, for example, the Bratu problem and the Love's integral equation. The second type of linear systems considered are least squares (LS) problems that are solved by considering the solution of the equivalent normal equations system. More precisely, we consider the solution of modified and rank deficient LS problems. By modified LS problem, it is understood that the set of linear relations is updated with some new information, a new variable is added or, contrarily, some information or variable is removed from the set. Rank deficient LS problems are characterized by a coefficient matrix that has not full rank, which makes difficult the computation of an incomplete factorization of the normal equations. LS problems arise in many large-scale applications of the science and engineering as for instance neural networks, linear programming, exploration seismology or image processing. Usually, incomplete LU or incomplete Cholesky factorization are used as preconditioners for iterative methods. The main contribution of this thesis is the development of a technique for updating preconditioners by bordering. It consists in the computation of an approximate decomposition for an equivalent augmented linear system, that is used as preconditioner for the original problem. The theoretical study and the results of the numerical experiments presented in this thesis show the performance of the preconditioner technique proposed and its competitiveness compared with other methods available in the literature for computing preconditioners for the problems studied.El tema principal d'esta tesi és actualitzar precondicionadors per a resoldre sistemes lineals grans i buits Ax=b per mitjà de l'ús de mètodes iteratius de Krylov. Es consideren dos tipus interessants de problemes. En el primer s'estudia la solució iterativa de sistemes lineals no singulars i antisimètrics, on la matriu de coeficients A té una part antisimètrica de baix rang, o bé pot aproximar-se amb una matriu antisimètrica de baix rang. Sistemes com este sorgixen de la discretització de PDEs amb certes condicions de frontera de Neumann, la discretització d'equacions integrals i mètodes de punts interiors, per exemple, el problema de Bratu i l'equació integral de Love. El segon tipus de sistemes lineals considerats, són problemes de mínims quadrats (LS) que es resolen considerant la solució del sistema equivalent d'equacions normals. Concretament, considerem la solució de problemes de LS modificats i de rang incomplet. Per problema LS modificat, s'entén que el conjunt d'equacions lineals s'actualitza amb alguna informació nova, s'agrega una nova variable o, al contrari, s'elimina alguna informació o variable del conjunt. En els problemes LS de rang deficient, la matriu de coeficients no té rang complet, la qual cosa dificultata el calcul d'una factorització incompleta de les equacions normals. Els problemes LS sorgixen en moltes aplicacions a gran escala de la ciència i l'enginyeria com, per exemple, xarxes neuronals, programació lineal, sismologia d'exploració o processament d'imatges. Els precondicionadors directes per a mètodes iteratius utilitzats més a sovint són les factoritzacions incompletes tipus ILU, o la factorització incompleta de Cholesky quan la matriu és simètrica definida positiva. La principal contribució d'esta tesi és el desenvolupament de tècniques d'actualització de precondicionadors. Bàsicament, el mètode consistix en el càlcul d'una descomposició incompleta per a un sistema lineal augmentat equivalent, que s'utilitza com a precondicionador pel problema original. L'estudi teòric i els resultats numèrics presentats en esta tesi mostren el rendiment de la tècnica de precondicionament proposta i la seua competitivitat en comparació amb altres mètodes disponibles en la literatura per a calcular precondicionadors per als problemes considerats.Guerrero Flores, DJ. (2018). On Updating Preconditioners for the Iterative Solution of Linear Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10492
    corecore