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Abstract

With the development of advanced power system controls, the industrial and research

community is becoming more interested in simulating larger interconnected power

grids. It is always critical to incorporate advanced computing technologies to

accelerate these power system computations. Power flow, one of the most fundamental

computations in power system analysis, converts the solution of non-linear systems

to that of a set of linear systems via the Newton method or one of its variants. An

efficient solution to these linear equations is the key to improving the performance of

power flow computation, and hence to accelerating other power system applications

based on power flow computation, such as optimal power flow, contingency analysis,

etc.

This dissertation focuses on the exploration of iterative linear solvers and

applicable preconditioners, with graphic processing unit (GPU) implementations

to achieve performance improvement on the linear computations in power flow

computations. An iterative conjugate gradient solver with Chebyshev preconditioner

is studied first, and then the preconditioner is extended to a two-step preconditioner.

At last, the conjugate gradient solver and the two-step preconditioner are integrated

with MATPOWER to solve the practical fast decoupled load flow (FDPF), and

an inexact linear solution method is proposed to further save the runtime of

FDPF. Performance improvement is reported by applying these methods and GPU-

implementation. The final complete GPU-based FDPF with inexact linear solving can

achieve nearly 3x performance improvement over the MATPOWER implementation

iv



for a test system with 11,624 buses. A supporting study including a quick estimation

of the largest eigenvalue of the linear system which is required by the Chebyshev

preconditioner is presented as well. This dissertation demonstrates the potential of

using GPU with scalable methods in power flow computation.
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Chapter 1

Introduction

1.1 General introduction

The North American transmission grid is one of the largest engineering systems

Crow (2002). There are many applications in modern power system analysis that

are computationally intensive. Some examples of this are, simulation, optimization,

contingency analysis, etc. With the further development of the smart grid, the

power system model will become even more complex, and hence, the corresponding

computational implementations are facing more challenges. At the same time, the

penetration of renewable resources, application of distributed generators, and demand

for energy storage make the existing models even more complex and also necessitate

real time analysis and response. Powerful and efficient software and hardware are

necessary to accommodate such computational needs.

Power flow, as one of the most fundamental computations in power system analysis

and simulation, is usually modeled as a nonlinear system and solved iteratively

through linearization. For instance, the Newton-Raphson method converts the

nonlinear system to a set of linear equations with the introduction of Jacobian matrix.

Solving these nonlinear systems takes a significant portion of time in the overall

power flow solution. Therefore, it is of great importance to improve the efficiency of
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the linear system solution in order to enhance the power flow analysis computation

efficiency.

Traditionally, the linear equation system is solved by a direct method with sparse

matrix techniques, such as LU decomposition (Tinney and Walker (1967), Tinney and

Hart (1967)). The process is carried out in O(n3) basic floating point operations Crow

(2002). Direct solvers usually have a high memory requirement due to the reordering

step and the inevitable fill-ins during factorization. Because of the potential scalability

issue of direct solvers and the development of parallel computing platform, iterative

solvers can be considered as an alternative to traditional LU-based direct methods.

The classic iterative methods to solve linear systems include the Jacobi method

(Golub and van Van Loan (1996)), the Gauss-Seidel method (Golub and van Van Loan

(1996)), the relaxation method (Axelsson (1972), Chazan and Miranker (1969)) as

well as others. All of these have a similar form as Mxk+1 = Nxk+b, where A = M−N

is called a splitting of matrix A. Since this method involves a solving process every

iteration, it usually requires that the matrix M should be much more easier to solve

than A, such as diagonal matrix or triangular matrix. To make the method converge,

the spectrum radius of M−1N should be smaller than 1.

However, except in the case that matrix A is well structured, it will not be easy

to find a proper M , that is, firstly, simple enough to solve, and secondly, has a

good convergence rate. Therefore another category of iterative method called Krylov

space method has emerged. Conjugate gradient method works on symmetric positive

definite matrix (Dennis Jr and Turner (1987), Stewart (1973)). Minimum residual

method (MINRES) can be applied to systems which are symmetric but not necessarily

positive definite (Paige and Saunders (1975)). Generalized minimal residual method

(GMRES) (Saad and Schultz (1986)), Arnoldi method (Arnoldi (1951) Saad (1981))

and Biconjugate Stabilized method (BiCG-STAB) Van der Vorst (1992) extend the

iterative solvers to asymmetric systems. All of these methods can be termed as the

projection methods on different Krylov subspaces.

2



Although iterative solver doesn’t require reordering as the direct solver does, a

preconditioner is usually necessary to improve the convergence rate of the system.

A preconditioner is also a matrix which transforms the original linear system into

another one with clustered eigenvalue spectrum, or smaller condition number. This

process is called preconditioning. Incomplete LU (ILU) factorization de Leon and

Semlyen (2002), approximated inverse preconditioner Benzi and Tuma (1998) and

polynomial-based preconditioner such as Chebyshev preconditioner Dag and Semlyen

(2003) are several examples of preconditioners.

On the other hand, the development of a parallel computation hardware platform

also makes revolutionary changes. Recently, graphic processing unit (GPU) has been

enabled to carry general purpose computations, although it was originally designed

for a graphic processing purpose. GPU has massive parallel computational units

on board, and therefore it is now being used as a co-processor to accelerate specific

types of computations. As a peripheral equipment, GPU, which communicates with

CPU by PCI-E, has its own features. From the perspective of CPU, GPU is its

peripheral equipment, therefore it won’t be efficient if CPU communicates with GPU

as frequently as with its own memory like what happens when computation is carried

out on a single desktop or server. However, the communication between CPU and

GPU does not like that between several independent servers either. There is no

shared network which may get congested and delay the work. The communication

delay between GPU and CPU will be much shorter than that of several servers.

Such difference in communication delay calls for different algorithms with different

granularity of parallelism. Therefore, the parallel algorithm on GPU requires specific

considerations to efficiently perform.

With the development of the software support of GPU, the example cases in

computational finance, computational fluid dynamics, computational structural me-

chanics, electronic design automation, numerical analysis, computational chemistry

and biology have already been successfully accelerated NVIDIA (2014).
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There are also works attempting to use GPU in power system applications. Gopal

et al. (2007) employed GPU to simulate DC power flow. Newton-Raphson and Gauss-

Jacobi were mapped to GPU to solve the linearized power flow. Garcia (2010) used

a GPU version of biconjugate gradient to solve Newton power flow and achieved

approximately 2 times speedup. Guo et al. (2012) implemented the Gauss-Seidel

power flow, Newton-Raphson power flow and PQ decoupled power flow with CUDA on

GPU. Jalili-Marandi and Dinavahi (2010) Jalili-Marandi et al. (2012) Jalili-Marandi

and Dinavahi (2009) explored the possibility of solving transient stability simulation

of large-scale system on a single GPU. Jalili-Marandi et al. (2012) investigated the

potential for transient stability simulation by the use of multiple GPUs. A Gauss-

Jacobi instantaneous relaxation (GJ-IR) method was proposed and a GPU-based

sparse linear LU solver was employed. A 10 times speedup of linear solving was

reported for a synthetic system with size of 22,000. Liu et al. (2013) used a GPU-

based GMRES iterative solver with incomplete LU as its preconditioner for large

scale transient analysis. The results shown that GPU-GMRES can yield about 3

to 10 times speedup over the corresponding implementations on CPU. Yu et al.

(2014) used the Jacobian-free Newton-Raphson method for the transient dynamic

simulations. Karimipour and Dinavahi (2013) implemented a weighted least squared

(WLS) state estimation for large-scale power system. Rakai and Rosehart (2014)

extended the discussion to optimal power flow (OPF). Predictor-corrector (PC)

interior-point method was employed to solve the OPF. The most computationally

intensive part of it was a matrix factorization, which was mapped to GPU. A speedup

over 4 was reported for single-precision floating point computation for system with

3120 buses. Li et al. (2014) discussed using GPU to accelerate the optimization

problem in a commercial power system simulation and analysis software. The authors

profiled the most computationally intensive parts of their software tool and used GPU

to accelerate them. The results showed the great potential of acceleration that GPU

can bring, especially for realistic power systems. However, the authors also pointed

out that to use a fully GPU-based implementation may incur a total re-architecture of
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the whole existing software, which may be too expensive for the industries. Ablakovic

et al. (2012) used OpenCL and GPU to perform a real time three-phase distribution

power flow.

These aforementioned works proved that the integration of GPU-based imple-

mentation aiming at accelerating the power system computation have been widely

accepted and deployed in different fields of research and practice.

1.2 Dissertation outline

This work will focus on applying parallel methods with GPU-based implementation

to accelerate the linear computations in power flow analysis, and integrate such linear

solving method into power flow computation.

Chapter 2 reviews the literature related to parallel computations in power system

applications, iterative solver, commonly used preconditioner, and the integra-

tion of GPU in linear system solving.

Chapter 3 introduces the computational needs in power system applications, and

then introduces the background of linear system solving. A brief introduction

of GPU is followed.

Chapter 4 uses GPU-accelerated conjugate gradient method and Chebyshev pre-

conditioner to solve power flow. The Chebyshev preconditioner is a polynomial

preconditioner, which can reduce the condition number significantly and can

be parallel. The results are conducted with several practical bus systems. The

maximum speedup for Chebyshev preconditioner and conjugate gradient solver

can reach up to 46 and 4 times for the largest test system, respectively.

Chapter 5 proposes a method to estimate the largest eigenvalue for the use of

Chebyshev preconditioner. The calculation of eigenvalues are usually too time-

consuming to be deployed practically. Therefore, an estimation of it using the
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features of power grid is proposed and discussed in this Chapter. The precision

and performance improvement of using an estimated value are presented too.

Chapter 6 utilizes two GPU-based preconditioners to precondition the linear com-

putations. The two-step preconditioner Jach integrates a Jacobi-like and a

Chebyshev preconditioner. The results show that the two-step preconditioner

can always perform the best compared with using each preconditioner alone.

The implementation on GPU brings up to 8.9x performance improvement for

the largest test system over corresponding CPU implementation.

Chapter 7 studies a complete fast decoupled power flow (FDPF) by the integration

of the GPU-based conjugate gradient solver and the two-step preconditioner

JaCh with MATPOWER, a Matlab-based open source software package for

solving power flow and optimal power flow. The results show that GPU-

based FDPF performs better when the system size is approaching 9000-bus

scale. With an inexact linear solution strategy, the performance improvement

is around 2 times compared with MATPOWER for the several test system

around 10000-bus scale. At the same time, the computation precision is well

maintained too.

Chapter 8 concludes this work and provides suggestions for future work in applying

GPU-based parallel computational methods for power system applications.

1.3 Contributions

The contributions of this work are listed as followed.

• This work discusses the numerical attributes, such as symmetric/asymmetric

and positive definiteness, of the linearized systems from commonly applied

power system computations.
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• GPU-based Chebyshev preconditioner is developed with the integration of an

iterative conjugate gradient solver to solve power flow. With the goal of

improving the computation efficiency of linear solution, this work considers

the Chebyshev preconditioner and conjugate gradient together to choose the

proper degree for Chebyshev preconditioner so that the overall computation is

accelerated.

• The speedup with the GPU implementation can reach 46x for Chebyshev

preconditioner and 4x for the conjugate gradient solver among the test matrices

from practical power systems.

• A two-step preconditioner is implemented with GPU and provides up to 8.9x

speedup for the whole solving process compared with its corresponding CPU

implementation.

• In order to construct Chebyshev preconditioner, the largest eigenvalue is

required. An estimation of the largest eigenvalue is proposed and verified. The

estimation accuracy is precise enough to well keep the preconditioning effects

of the preconditioner, and the overhead is negligible.

• A complete software architecture for fast decoupled power flow on GPU is

proposed and implemented for the first time. The GPU-FDPF works as

precisely as the original CPU-based FDPF with MATPOWER, the Matlab-

based open source tool. The GPU-FDPF begins to achieve performance

improvement for systems around 10,000 buses.

• The integration of GPU-FDPF with inexact inner linear solution is proposed.

GPU-FDPF with inexact linear solution well maintains the FDPF precision and

further improves the performance for systems larger than 9,000 buses to around

2 times over MATPOWER implementation on CPU.
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Chapter 2

Literature Review

This chapter reviews related literature on high performance computation in power

system, iterative methods, and preconditioner. A review of GPU’s integration in

linear system solving is followed.

2.1 Parallel computations in power system appli-

cations

The computations involved in power system analysis, simulation, control and

optimization are getting more and more intense in modern electrical power systems.

This is because the renewable resources, distributed energy generation and storage,

etc. are penetrated rapidly into an already complicated system. At the same

time, more information about real-time system states and the prediction of future

system activities are always critical to the power industry. Therefore, the interests of

improving computation efficiency never fade in the research of power systems.

2.1.1 Power flow

Power flow is the most fundamental computation in power system applications. There

are many works focusing on improving its computation efficiency.
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Amano et al. (1996) used an epsilon decomposition method to eliminate the weak

coupling elements so as to decompose the algebraic equations in power flow and then

applied block-parallel Newton method to solve power flow concurrently. However,

they used a constant Jacobian matrix, which tended to show a slower convergence

rate.

Chen and Chen (2000) proposed a novel factorization tree with the consideration

of maximum number of fill-in and degree of every node so as to balance the workload

on each core of a multiprocessor architecture. Their work was demonstrated with

IEEE-57 and IEEE-118 systems. Wang et al. (2007) presented a partitioning scheme

so that the Jacobian matrix could be presented in doubly-bordered block diagonal

(DBBD) LU factorization form, and implemented the algorithm on hardware, an

SOPC (system-on-a-programmable-chip) containing a FPGA (field-programmable-

gate-array). Their experiments with IEEE-57, IEEE-118, IEEE-300 bus systems and

one 1648-bus, one 7917-bus system showed up to 7x speedup compared with a single

processor. Koester et al. (1993) presented a reordering scheme to generate block-

diagonal-bordered form matrices and, at the same time, minimize the fill-in and

number of coupling equations. With such a decoupling scheme, many diagonal block

matrices could be factorized simultaneously so as to save the runtime, and the existing

techniques based on dense matrix could be applied.

Applying the direct method in power systems is more about reordering the

Jacobian matrix so as to decouple the original matrix and reduce potential fill-ins.

Another trend is to apply iterative solvers to get the solution of load flow equations.

Conjugate gradient (CG) method can be used for symmetric positive definite linear

systems. Wallach (1968) reformulated the load flow problem as an optimization

problem and then deployed the steepest descent and conjugate gradient methods to

solve it. It brought up advantages of CG methods such as no matrix inversion required

and no additional storage space needed, and it guaranteed to converge within n (size

of the matrix) steps. Galiana et al. (1994) applied a conjugate gradient solver with

incomplete Cholesky as preconditioner to solve fast decoupled power flow and DC load

9



flow. Their method had been tested on randomly generated 5000-bus to 10000-bus

systems. A computation efficiency comparison between iterative method and direct

method was given for DC load flow and fast decoupled power flow when the size of

the largest block was varied. It showed that the CPU time for preconditioned CG

method varies as O(n1.5), whereas the direct method varies as O(n2). The advantage

of iterative method over direct method becomes significant when system size is larger

than 3000.

For asymmetric cases such as AC power flow or power system dynamics, conjugate

gradient variants can be applied. de Leon and Semlyen (2002) compared different

conjugate gradient-based methods which were applicable for asymmetric systems,

such as bi-conjugate stabilized (BiCG), conjugate gradient square (CGS), general

minimized residual (GMRES), bi-conjugate (BiCG), quasi-minimal residual (QMR)

to solve the AC power flow of 118-, 354-, 1062-, 3186- and 6372-bus systems. Their

work also tested preconditioners such as scaling, ILU(m), FD preconditioner (Flueck

and Hsiao-Dong (1998)). Partial Jacobian updates and inexact solutions had been

integrated as well. Their work demonstrated that FLOPS saving compared with

direct LU solution as great as 35% could be reached for larger systems that were

3000 buses and more. Garcia (2010) implemented a preconditioned BiCG with the

Newton method on GPU to solve power flow. The experiment on IEEE-118 showed

2.47x speedup. Li et al. (2011) applied a GPU-based CG with Jacobi preconditioner

and conjugate gradient normal residual (CGNR) with Jacobi preconditioner for power

system state estimation and power flow computation. The experiment with synthetic

large scale power system examples (22K by 22K buses) showed a significant speedup

of about 49x.

The convergence rate of an iterative solver is usually tightly related to an effective

preconditioner. Dag and Alvarado (1997) proposed a preconditioner called the XD

method. Firstly, it reordered the whole matrix with the purpose of reducing fill-

ins and then it did a complete LDU factorization instead of an incomplete one.

Finally it discarded some elements with different levels. While standard ILU(0),
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ILU(1), ILU(2) were based on incomplete LDU decomposition with different fill-

ins, XD methods such as ILU(0), ILU(1), and ILU(2) etc did the complete LDU

decomposition first and then discarded elements according to the non-zero pattern

of corresponding levels. The advantage of the XD method was that it kept all the

XD methods with different levels always positive definite, which avoided the problem

of conjugate gradient method diverging due to the preconditioner. The disadvantage

was the high computation cost which included a reordering process and a complete

LDU decomposition. The experiments on gain matrices of state estimation from

six different systems with sizes 14, 57, 68, 118, 300 and 414 buses proved that XD

preconditioned gain matrix worked better than ordinary ILU(0), ILU(1) and ILU(2)

methods.

2.1.2 Power system dynamics

Power system dynamics are usually formulated as a set of algebraic equations,

which will be transformed to a set of linear equations via methods such as

simultaneous implicit approaches. The numerical characteristics of such linear system

is asymmetric.

Decker et al. (1996) presented using Bi-conjugate gradient (Bi-CG) method and

a stabilized Bi-CG called BiCG-Stab method to solve power system dynamics. It

implemented the proposed method on a cluster that had 8 processing nodes connected

with a hypercubic topology and demonstrated the CG-based variants’ robustness

and accuracy when applied to power system dynamics computations. Pai et al.

(1995) tested an traditional ILU(m) preconditioner for GMRES method to solve

power system dynamics, and they also proposed a dishonest preconditioner which

used the ILU(m) preconditioner from last Newton iteration for the current Newton

iteration so as to avoid repeated factorization of the preconditioner of each Jacobian

matrix. This was based on the observation that the Jacobian matrix would not

significantly change every Newton iteration. Khaitan and McCalley (2010) applied
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GMRES to solve long-term time domain simulations with ILU and multifrontal as

preconditioner. The results tested with 6-, 32-, 194- and 385-generator test systems

showed that, firstly, GMRES with multifrontal preconditioner constantly had the best

performance among GMRES with ILU and direct multifrontal solver, and secondly,

that direct multifrontal solver could provide close performance to GMRES with

multifrontal preconditioner for small scale systems. However when system scale was

large, for example a 385-generator system, the direct solver was much slower than the

proposed GMRES with multifrontal preconditioner. The amount of time saving and

speed-up of GMRES with multifrontal preconditioner increased significantly with the

increase of system size.

2.1.3 Contingency

Contingency analysis in a power system security assessment will detect and evaluate

the limited violations of the system operating. It will usually carry out a set

of specifically designed contingency cases. Theoretically, the complete system

status should be evaluated for each contingency case. The rank of the effects

of those violation will be given. With such advisory results, the operational

planner can make corresponding control decisions to eliminate the influence from

the violations. The evaluation of each contingency case is normally carried

out as a load flow. As expected, the contingency analysis will involve many

load flow computations which make the contingency screening process extremely

computationally expensive. Therefore the improvement of such computational

efficiency will be of great importance to power system security assessment.

As discussed, the most computationally intensive section in contingency analysis

is solving load flow. Therefore, the methods discussed here have their common

points discussed in DC or FDPF in section 2.1.1. The difference would be that

the contingency analysis will have more repeated similar load flow computations. As

a result, the data reuse among different contingency cases could be explored. Alves
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et al. (1999) compared sparse Gaussian elimination and preconditioned conjugate

gradient method for contingency analysis of IEEE-30, 57, 118, 300 bus systems

and two Brazilian 810- and 1663-bus systems. They compared the impact from

different reordering schemes to the final iterations that CG needed to converge, the

difference was actually insignificant. They also pointed out that a complete Cholesky

preconditioner could produce good preconditioning effects. However, if a complete

Cholesky decomposition was available, a forward/backward substitution would make

a better overall runtime result. Mori et al. (1995) utilized Tchebyshev iteration (TI)

methods as the iterative solver and incomplete Cholesky (IC) as the preconditioner

to solve the fast decoupled power flow of contingency screening. The proposed ICTI

method for fast decoupled power flow could gain 22.7x speedup for a 2107-node

system.

2.1.4 State estimation

Practical power systems are very complex. Analytical functions can hardly be

available for every variable. As a result, the system status can be achieved by

measurements. However, firstly, some measurements are too difficult or too expensive

to get due to factors such as high temperature or moving parts. Secondly, there

are inevitable errors during measurement. Therefore, redundant measurements are

usually deployed to estimate the unavailable variables and to resolve the conflicting

measured results. State estimation will eliminate the random measurement errors,

correct the measure faults, and estimate those unavailable measurements. This

process minimizes the error between all the measurements and the system states.

Weighted least square (WLS) is the most common optimization method to do this.

With the increase of system size and complexity, faster state estimation is needed.

Nieplocha et al. (2006) compared a parallel LU solver and a conjugate gradient-

based parallel solver with Jacobi preconditioner for WLS state estimation on a

1177-bus system with 1770 lines and 6144 measurements. The results showed that
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CG-based solver was about 4.75 times faster than the state-of-the-art parallel LU

solver. Chen et al. (2013) proposed two methods to solve WLS state estimation: gain

matrix factorization and QR factorization. A preconditioner called ParaSail from

a software library Hyper was integrated with conjugate gradient method to solve

the gain matrix factorization. Another software package PETSc were used to solve

the QR factorization. Both methods were implemented parallel. A speedup around

5x for both cases was reported with the practical system with 7500 buss and 9300

branches from Bonneville Power Administration (BPA). Karimipour and Dinavahi

(2013) implemented parallel WLS state estimation on a GPU simulator and reached

38 times speedup compared with CPU for a 4992-bus system.

2.2 Iterative linear solvers

Iterative solver is an alternative to those well known direct solvers. With the

development and availability of parallel computation in terms of both hardware

and software, iterative solver gradually gets more attention for its scalability and

inherited parallelism. This section will introduce some iterative solvers in engineering

computation.

One of the most successful and popular methods to solve positive definite

symmetric (SPD) linear systems is the conjugate gradient method. Shewchuk (1994)

introduced the essential concepts for conjugate gradient methods and its convergence

analysis. It stated and proved that the conjugate gradient method would converge and

give an exact solution after n iterations, and that CG would be quicker if there were

repeated eigenvalues. Practically, clustered eigenvalues could give better convergence

properties.

Jennings (1977) discussed the influence of eigenvalue spectrum to the convergence

rate of CG method. The rule of thumb was that clustered eigenvalue would yield

better performance and using the close-to-minimum and close-to-maximum eigenvalue

in CG instead of the actual minimum and maximum eigenvalue would lead to a
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better convergence. This work also presented an estimated upper bound for iterations

required for CG methods to converge based on the spectrum of eigenvalues, which

was much tighter than the commonly accepted upper bound n. However, there are

no analytical functions available for the relationship between the eigenvalue spectrum

and the convergence rate.

2.3 Preconditioner

To make an iterative solver work efficiently, a good preconditioner is indispensable.

A preconditioner is used to improve the spectrum of the original matrix; the closer

the better. The ideal preconditioner of matrix A would be its inverse, A−1. Then, the

preconditioned matrix A ∗ A−1 would be the identity matrix I, which theoretically

will have the iterative solver converge in only one iteration. However, it is well known

that the precise inverse of a matrix is generally too difficult or too expensive to

obtain, and usually much more costly than solving the matrix directly. Therefore

an approximation of A−1 would be a usual form of the preconditioner. A good

preconditioner should be evaluated in two ways. First, it should make a good

approximation of A−1. Second, it should not be too expensive to form. This section

will introduce some commonly deployed preconditioners.

Meijerink and Van der Vorst (1977) introduced the general incomplete LU (ILU)

factorization. It stated that using ILU and conjugate gradient method together can

produce a stable and fast convergence for M-matrix ∗. Incomplete Cholesky conjugate

gradient (ICCG) as a special case of ILU was also proposed. Results showed that

ICCG(0) and ICCG(3) were preferred for large scale linear systems. The authors also

had a followed up work Meijerink and Van der Vorst (1981) which demonstrated the

method using practical examples, such as systems that arose from periodic boundary

conditions, M-matrix with an arbitrary structure etc. Gustafsson (1978) proposed

a modified ILU factorization (MILU) which employed an elimination error matrix

∗M-matrix: Off-diagonal elements Aij ≤ 0, and diagonal elements Aii > 0.
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R to compensate the error generated in incomplete factorization. Gallivan et al.

(1990) proposed to construct approximate LU and QR factorization preconditioner by

ignoring the small elements during the decomposition of matrix A, and use a heuristic

scheme to find a proper threshold τ to keep or discard each element. Results suggested

that the dropping strategy based on such numerical dropping was often better than

the dropping strategy based on position such as ILU or IC. However, the heuristic

process to find the proper threshold τ was time-consuming.

It was discovered that incomplete factorization may suffer instability issues. El-

man (1989) discussed the instability problem of incomplete factorization precondition-

ers for asymmetric linear systems and proposed stabilized incomplete factorizations in

order to construct numerically stabled factorization and preconditioning. Therefore,

there were some works that focused on constructing an approximate inverse of

the original matrix A. This category was usually discussed together with parallel

computation techniques to serve as the preconditioner. Chow and Saad (1998)

presented several algorithms to construct approximated inverse by converting the

preconditioner construction problem to a minimization process, which minimized the

Frobenius norm for its inherited parallelism. Since it was highly possible that the

inverse of a sparse matrix can be a dense matrix, this work also proposed several

numerical dropping strategies so that the inverse preconditioner could stay sparse.

Benzi and Tuma (1998) discussed a preconditioner construction based on the inversion

of the LU factorization, and the corresponding algorithm of eliminating fill-ins was

presented as well. Dehnavi et al. (2013) targeted at the minimization of ||AG− I||F ,

too. However, they had their whole set of implementation on GPU to boost the

computation efficiency of construction of the preconditioner. The performance of

their GPU implementation could compete with the main stream open source linear

computation package ParaSail.

Another category of preconditioner is polynomial preconditioner. Polynomial

preconditioner is based on the approximation theory. As a result, there were two

major methods to approximate the inverse of the original matrix. First category
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is based on Chebyshev polynomial to uniformly approximate the inverse of A.

For hermitian positive definite matrix, the Chebyshev polynomial could be applied

Ashby et al. (1989). Dag and Semlyen (2003) introduced conjugate gradient with

Chebyshev preconditioner into power system application. The second category is

based on the least square minimization approximation which minimizes the norm of

the difference between the preconditioned matrix and the unitary matrix. Johnson

et al. (1983) discussed a generalized optimal polynomial preconditioner based on the

quadratic norm of the residual polynomial. They presented a large class of weight

functions which were positive definite. Recurrence relations for both the Chebyshev

polynomial and the least square polynomial were given. Saad (1985) and Ashby

et al. (1992) discussed polynomial preconditioner based on least square polynomials

for symmetric positive definite matrices and also presented a comparison between

Chebyshev polynomial preconditioner and least square preconditioner. Ashby et al.

(1989) extended the work to hermitian indefinite matrices, and proposed an adaptive

method to construct the preconditioner. Their experiments showed at best a 50%

performance improvement over original conjugate gradient method. Liang et al.

(2002) proposed a generalized least square polynomial preconditioning for symmetric

indefinite system. The preconditioner was applied with flexible generalized minimized

residual (FGMRES) solver. Zhang and Zhang (2013) implemented a least square

polynomial preconditioner on GPU for the practical linear systems that arose from

elasticity finite element equations. Results shown GPU-based LS preconditioned CG

outperformed the CPU implementation 7-9 times speedup.

2.4 Integration of GPU in linear system solving

GPU as an efficient accelerator in scientific computation has been applied to both

power system applications and other engineering applications. This section will

present the works integrating GPU and related algorithms to accelerate the linear

computations.

17



Helfenstein and Koko (2012) proposed a GPU-based parallel implementation of

preconditioned conjugate gradient method to solve the generalized Poisson equation.

The preconditioner used in this work was an approximated inverse matrix from

a symmetric successive order-relaxation (SSOR) preconditioner and was named as

SSOR-AI. The experiment showed that the proposed preconditioner implemented on

GPU could gain a speedup between 8 and 10 over the corresponding implementation

on CPU with test matrices sized from 26,000 to 2,100,000. Buatois et al. (2009)

implemented a general sparse linear system solver using the conjugate gradient

method and Jacobi preconditioner to perform mesh smoothing in image processing.

It also presented the results of BLAS computation on CPU, AMD-ATI and NVIDIA

GPU. The results shown that every processor had its own strength.

The most computationally intensive computation in CG method is sparse matrix-

vector multiplication (SpMV). Gui and Zhang (2012) proposed a novel storage

format for SpMV named modified diagonal storage format (mDIA) to access the

elements more efficiently. The Jacobi iterative method with incomplete Cholesky

was implemented to explore the parallelism. A speedup more than 7 was reported

for matrices sized from 22,000 to 304,000 and generated from the practical Poisson

equation. Zhang and Zhang (2013) employed a least-squares polynomial method as

the preconditioner and solved the finite element computation with conjugate gradient

solver. This work also proposed a sliced block ELLPACK storage format to store the

sparse matrix more efficiently. Based on the storage, an efficient sparse matrix vector

multiplication kernel was implemented. Results showed that it can solve their specific

application more efficiently than the standard libraries. This implemented a mixed

precision polynomial preconditioned conjugate gradient solve as well. The SBELL

sparse storage and mixed precision conjugate gradient could reach over 7x speedup

over CPU implementation for different meshes.
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Chapter 3

Fundamentals of Power Flows and

GPU Computations

Power flow is a fundamental computation for power system analysis. Many power

system applications such as optimal power flow, contingency, operation and planing

will first need to perform power flow computation. To solve power flow, Newton-

Raphson method will be deployed first to transform the system from non-linear

to linear. GPU as a newly developed hardware platform can help to enhance the

computation efficiency of linear systems. This chapter starts with the introduction of

background of power flow computations, and is followed by the introduction of solving

a linear system. Finally, GPU for general purpose computation will be introduced.

3.1 Power system computations

Power system is modeled as a large set of non-linear equations. Other than some

non-linear systems in very specific form which can be solved directly, most non-

linear equations will be transformed into a set of linear equations to gradually get

the numerical solution of the original non-linear system. The most common method

used to convert the non-linear to linear systems is the Newton-Raphson method (also
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known as Newton’s method). At this point, power flow computations such as power

flow analysis and fast decoupled power flow can be solved by solving a sequence

of linear equations. This section will introduce the computations in power system

analysis and the involved linear system computations.

3.1.1 AC power flow

Given the loads and the generation and transmission network, a power flow problem

solves the system bus voltage and line flows. For each bus in the system, based

on Kirchoff’s law, the sum of the power entering a bus should be equal to the

power leaving the same bus. In other words, the injection should be equal to the

consumption. Each bus has two equations, one for active power, and one for reactive

power. Therefore, the power flow for bus i can be formulated as equation 3.1 shows.

P inj
i − Vi

Nbus∑
j=1

VjYijcos(δi − δj − φij) = ∆P = 0

Qinj
i − Vi

Nbus∑
j=1

VjYijsin(δi − δj − φij) = ∆Q = 0

i = 1, 2, ..., Nbus

(3.1)

Nbus is the number of buses in the system. P inj and Qinj are the active and

reactive injections for bus i, respectively. Vi is the load voltage magnitude on bus i.

δi is the phase angle at bus i. Yij and φij come from admittance matrix Ybus. Yij is

the magnitude and φij is the angle of the admittance between bus i and bus j. The

mismatch ∆P and ∆Q measure the difference between the injection and calculated

power values, which should be 0. The unknowns in equation 3.1 are the phase angle

δ and the voltage magnitude V . Ybus, and injections Pinj and Qinj are already given.

To solve the nonlinear model in equation 3.1, Newton-Raphson method is applied

to transform them into linear equations and then to iteratively solve a sequence of
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linear equations with similar form as equation 3.2 to get the solution of the original

nonlinear equations.

Jx = −F ;x =

∆δ

∆V

 (3.2)

The Jacobian matrix can be rewritten as J1, J2, J3 and J4 four parts, listed from

equation 3.4 to 3.11.

J =

J1 J2

J3 J4

 =

∂∆P
∂δ

∂∆P
∂V

∂∆Q
∂δ

∂∆Q
∂V

 (3.3)

J1


∂∆Pi
∂δi

= Vi

Nbus∑
j=1

VjYijsin(δi − δj − φij) + V 2
i Yiisinφii (3.4)

∂∆Pi
∂δj

= −ViVjYijsin(δi − δj − φij) (3.5)

J2


∂∆Pi
∂Vi

= −
Nbus∑
j=1

VjYijcos(δi − δj − φij)− ViYiicosφii (3.6)

∂∆Pi
∂Vj

= −ViYijcos(δi − δj − φij) (3.7)

J3


∂∆Qi

∂δi
= −Vi

Nbus∑
j=1

VjYijcos(δi − δj − φij) + V 2
i Yiicosφii (3.8)

∂∆Qi

∂δj
= ViVjYijcos(δi − δj − φij) (3.9)

J4


∂∆Qi

∂Vi
= −

Nbus∑
j=1

VjYijsin(δi − δj − φij) + ViYiisinφij (3.10)

∂∆Qi

∂Vj
= −ViYijsin(δi − δj − φij) (3.11)
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After solving equation 3.2, the mismatch ∆δ and ∆V will be added to the value

from last iteration as equation 3.12 shows.

δk = δk−1 + ∆δ

V k = V k−1 + ∆V
(3.12)

The Jacobian matrix J is the linear system that we will solve. It has the following

characteristics: 1) very sparse; 2) symbolic symmetric; 3) numerically asymmetric.

Sparsity is determined by how the power transmission network is connected. Symbolic

symmetry is derived from how power flow equation is formulated. Numerical

asymmetry can be concluded from the equations above.

The Jacobian matrix and the right hand side ∆δ and ∆V will be updated every

Newton-Raphson iteration until the largest magnitude of mismatch vector x is smaller

than a predefined value.

Solving power flow take up a significant part of power system analysis execution

time. In order to improve the analysis computation efficiency, power flow computa-

tions should be considered first.

3.1.2 Fast decoupled power flow

Power flow, as the most computationally intensive part in power system analysis, has

its various methods used to simplify the computation.

Since transmission networks usually have very small resistance value (r), φij is

usually close to ±90o. Also, the buses close to each other tend to have smaller phase

angle difference, which leads to small (δi−δj). Then cos(δi−δj−φij) ≈ 0. With such

approximation, J2 and J4 can be ignored as zero matrices. Then, the power flow can

be simplified to equation 3.13, which is named as decoupled newtown method Stott

and Alsac (1974). The power flow equation could be solved by solving equation 3.13.
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Jk1 0

0 Jk4


∆δk

∆V k

V

 =

∆P k

∆Qk

 (3.13)

Equation 3.13 has different J1 and J4 every Newton-Raphson iteration. It can be

further simplified to equation 3.14 with fixed iteration matrix B′ and B′′. To get to

this formulation, we assume that 1) the real part of admittance matrix is close to 0,

which means that gij ≈ 0; 2) all voltage magnitudes are equal to 1 p.u.

B′ 0

0 B′′


∆δk

∆V k

 =

∆P k

∆Qk

 (3.14)

The matrix B′ and matrix B′′ are defined in equation 3.15 to 3.18. xij is the

reactance of each bus and bij gives the susceptance between bus i and bus j. Please

note that the formulation in equation 3.15 to 3.18 is based on XB version of fast

decoupled power flow Stott and Alsac (1974).

B′ij = − 1

xij
(3.15)

B′ii = −
∑
j 6=i

B′ij (3.16)

B′′ij = −bij (3.17)

B′′ii = −bi −
∑
j 6=i

B′′ij (3.18)

3.1.3 Linearized power flow

Linearized power flow is a linear model used to describe the power system. It can

generate a power flow result faster than AC power flow, but it is usually less accurate.

It ignores the reactive power and line conductance, and assumes that all the voltages

are 1 p.u.. With these assumptions, the equation describing linearized power flow is

given in equation 3.19.

Bδ = −P (3.19)
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Equation 3.20 and 3.21 give definitions for linearized power flow. xij is the

reactance between bus i and bus j.

Bij = − 1

xij
(3.20)

Bii = −
∑
j 6=i

Bij (3.21)

3.1.4 Positive definiteness of FDPF and DCPF

The Jacobian matrix in equation 3.3 from AC power flow is symbolic symmetric,

numerically asymmetric. However, the B′ and B′′ (equation 3.14) from fast decoupled

power flow and matrix B (equation 3.19) are all symmetric. This section will discuss

the positive definiteness of matrix B′, B′′ and B.

We will start with discussions on the positive definiteness of B from linearized

power flow. Except for very rare cases, xij will usually be positive, xij > 0, when

i 6= j. Therefore, all of the off-diagonal elements Bij < 0. The diagonal elements

Bii is equal to the negative sum of all off-diagonal elements of row i, which implies

equation 3.22. From equation 3.21, we have equation 3.23.

Bii > 0 (3.22)

|Bii|=
Nbus∑

j=1,j 6=i

|Bij| (3.23)

Equation 3.22 and 3.23 give the formulation before the elimination of reference bus.

Assume bus k is the reference bus, then row k will be eliminated during computation

or the matrix will be singular. Without loss of generality, we assume bus l is one of
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the buses connected to bus k. Then the row for bus l is shown in equation 3.24.

Bll = −
Nbus∑

j=1,j 6=l

Blj


> −

Nbus∑
j=1,j 6=l,j 6=k

Blj if Blk 6= 0 (3.24a)

= −
Nbus∑

j=1,j 6=l,j 6=k

Blj if Blk = 0 (3.24b)

Then, for bus l we have:

|Bll|≥
Nbus∑

j=1,j 6=l,j 6=k

|Blj| (3.25)

There exists as least one reference bus l in each system so that the equation 3.23

after reference bus elimination will be as equation 3.26 shows. Please note that this

conclusion still holds when there are several reference buses in the system. Since

matrix B is symmetric, the conclusion also automatically holds for any column.

|Bii|≥
Nbus∑

j=1,j 6=i

|Bij| (3.26)

Equation 3.22 and 3.26 qualify the matrix B to a diagonally dominant matrix,

which is always positive semidefinite. Since our discussion is based on stable system

status, singular case is not within the scope of this work. Therefore we will consider

matrix B to not have a zero eigenvalue. As a result, matrix B is positive definite as

equation 3.27 shows. The notation “>” with a matrix will be used to mark that the

matrix is positive definite throughout this work.

B > 0 (3.27)

Matrix B′ from fast decoupled power flow is defined in equation 3.15 and 3.16,

which has exactly the same formulation as equation 3.20 and 3.21. Therefore, with

similar deduction as above, we can conclude that matrix B′ from FDPF is positive
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definite if all the reactance is positive.

B′ > 0 (3.28)

Matrix B′′ from fast decoupled power flow is slightly different from matrix B and

matrix B′ because of the influence of susceptance. The susceptance bij in equation

3.17 and equation 3.18 is typically positive, bij > 0. bi is the shunt susceptance of

all the shunt branches connected to bus i Crow (2002). Please note that bi is usually

much smaller than
∑

j 6=i bij.

Assume that the reference buses and PQ buses are in set R. Soff is the sum of the

absolute value of all the off-diagonal elements after the reduction of reference buses

and PQ buses, or in other words, the absolute value of all of the off-diagonal elements

in the set of PV buses, then

|B′′ii| =
∑
j 6=i

|B′′ij|−bi

=
∑

j 6=i,j /∈R

|B′′ij|+
∑
j∈R

|B′′ij|−bi

= Soff + (
∑
j∈R

|B′′ij|−bi)

(3.29)

Since bi << Bij ∑
j∈R

|B′′ij|−bi > 0 (3.30)

From equation 3.29 and equation 3.30 :

|B′′ii|> Soff > 0 (3.31)

Therefore, the absolute value of diagonal elements of B′′ is greater than the sum

of the absolute value of all off-diagonal elements. Hence, matrix B′′ is a diagonally

dominant matrix. Besides, ∀i ∈ Nbus, B
′′
ii > 0. Matrix B′′ is a positive semidefinite

matrix too if there is no negative reactance in the system. If we don’t consider the
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cases that system is singular, then

B′′ > 0 (3.32)

As a short conclusion for this subsection, Jacobian matrix J from AC power flow

is a numerically asymmetric, but is a symbolic symmetric matrix; matrix B from

linearized power flow, matrix B′ and matrix B′′ from fast decoupled power flow are

all positive definite (B > 0, B′ > 0, B′′ > 0) if ∀j ∈ Nbus, xij > 0.

3.2 Solving linear systems

Including power system applications, many engineering problems are nonlinear.

However, most of them could be solved in linear forms. The discussions in this

section will be built on a general linear system formulated as equation 3.33. The size

of the linear system A is n× n, and the size of right hand side vector b is n× 1. The

vector x is the unknown to be solved.

Ax = b (3.33)

Generally, there are two categories of method to solve linear systems: direct

methods and iterative methods. The direct methods will get to the precise solution

through a finite number of arithmetic operations. Once a component in the solution

vector is computed in direct method, it will be a part of the final solution. There will

not be any further refinement of it. However, iterative methods will generate a set of

solutions (for example, x0, x1, x2, ..., xk, please note that each xk is a vector), and

each set of the solution is expected to get closer to the real solution x∗. Therefore

the solution given in every iteration is an approximation to the precise solution. The

iterative methods will stop with respect to a predefined error threshold if they can

converge, or they will reach the maximum iteration and then quit the iterations.
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This section will briefly introduce the common direct methods and iterative methods.

Please note that the discussions in this work are all based on full rank matrix.

The choice between direct methods and iterative methods, along with which direct

method or which iterative method to use, is varied among the system to be solved.

Some methods are more favorable to some systems than the others. However, the

general rule is to use iterative methods for large scale sparse systems, and to use

direct methods for the rest.

3.2.1 Direct method

Gaussian elimination is the first branch in this category. It will include using

the right hand side to form a augmented matrix (Figure 3.1b), then arithmetic

operations will follow to transform the original general matrix A (Figure 3.1a) to

a upper triangular matrix (Figure 3.1c), named the forward elimination, and at last

a backward substitution to reach the solution for the linear system Ax = b.

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 b1

b2

b3


(a) Original linear system

 a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3


(b) Augmented system

 t11 t12 t13 b′1
0 t22 t23 b′2
0 0 t33 b′3


(c) Triangular format

Figure 3.1: Gaussian elimination

In many practical engineering problems, the common case used to solve equations

leaves with matrix part unchanged, however the right hand side keeps updating.

Methods based on decomposition isolate the right hand side and have gradually

become the most widely used methods. LU decomposition is the most immediately

development from Gaussian elimination. It will decompose the matrix A into two

triangular matrices: the lower triangular part L and the upper triangular part U ,

then A = LU . With the introduction of a dummy vector y, the original equation

can be solved by one forward substitution to get Ly = b and then one backward

substitution to get solution x by solving Ux = y.

28



There are other forms of decomposition that can solve the equations, but they

usually have other focuses with the price of increased computation complexity. For

example, QR decomposition will factorize the matrix A into matrix Q and R, where

Q is a orthogonal matrix while R is an upper triangular matrix. This can be used to

solve the system, but it is considered more as a procedure to calculate the eigenvalue

and eigenvector of the matrix. Similarly, singular value decomposition (SVD) will give

much more information of the matrix such as singular values, a set of the matrix’s

regular basis, and it can be used for non-square matrix. Cholesky decomposition will

factorize the matrix into two identical triangular matrices L that A = LTL, but it

can only be used for symmetric positive definite (SPD) matrix.

When the matrix under discussion is sparse, which all the power system

applications are, direct methods such as LU and Cholesky usually require a reordering

step to reduce the potential fill-ins during the decomposition procedure.

Generally, the computation complexity for direct method is O(n3) while the

memory requirement would be O(n2) due to the storage needs for permutation matrix

P , and decomposed matrix L and U etc. The quadratic increasing rate of memory

requirement of direct method is its major drawback. Additionally, the algorithm itself

is intrinsically serial. These two points together make direct methods less ideal for

large scale systems.

3.2.2 Iterative method

Instead of getting the solution directly, another direction is to generate a set of

solutions and the set from each iteration is expected to get closer to the actual

solution; hence the name iterative methods. Conjugate gradient method is one of

the most prominent one if can be applied Crow (2002).
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Conjugate Gradient Method

The linear system Ax = b can be solved either directly by using LU decomposition,

or indirectly by finding out the minimum value for a quadratic form as equation 3.34

shows:

f(x) =
1

2
x′Ax− b′x+ c (3.34)

In equation 3.34, A is a symmetric positive definite matrix and b is a vector.

The derivative of equation (2) is f(x) = Ax − b. Therefore the x which provides

the minimum value of equation 3.34 satisfies Ax − b = 0. Thus, it is the solution of

Ax = b as well.

An intuitive way to find out the minimum value of equation 3.34 is to use the

steepest descent method. The method will choose the direction that has the greatest

change in a small range as the update direction. Steepest descent is straightforward

and easy to implement. However, since it picks this direction leading to a local

minimum instead of a global minimum in each iteration, there is no guarantee on the

convergence rate.

Conjugate gradient, instead, guarantees that the method will converge within

n (the size of the system) steps. It is an orthogonal method. Each residual and

each newly generated direction vector is A-orthogonal to all the previous selected

direction vectors. The A-orthogonality guarantees that the update of current direction

is only related to the last step information. Therefore the first advantage of conjugate

gradient method is the iterations for convergence is bounded to n.

The convergence rate of CG is shown in equation 3.35. Assume that x∗, x0 and

xm are the precise solution, the starting and the current solution vector, respectively.

κ is the condition number. Therefore, the upper bound of error between current

and the precise solution after m iteration is reduced superlinearly from the initial

error. Equation 3.35 shows that smaller condition numbers could lead to a tighter

boundary for the current error. As a result, a narrow eigenvalue range can have the
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1: Initialization

2: r = b− Ax0;x = x0, p1 = r0;

3: while ||rk|| >tolerance do

4: αk = rTk−1rk−1/p
T
kApk (4n+ nnz × n) FLOPS

5: xk = xk−1 + αkpk (2n) FLOPS

6: rk = rk−1 − αkApk (2n) FLOPS

7: βk+1 = rTk rk/r
T
k−1rk−1 (2n) FLOPS

8: pk+1 = rk + βk+1pk (2n) FLOPS

9: end while

Program 3.1: Algorithm of general conjugate gradient method

error dropped faster and hence improve the convergence rate to make the CG iterative

solver more efficient. Transforming the eigenvalue spectrum calls for a preconditioner.

||x∗ − xm||A ≤ 2(

√
κ+ 1√
κ− 1

)m||x∗ − x0||A (3.35)

The other advantage of conjugate gradient solver is its low memory requirement.

A detailed algorithm is in Program 3.1. It shows that the storage of conjugate gradient

method requires only the matrix A itself and four vectors (xk, rk, pk and Apk). Since

matrix A is commonly stored as sparse format, the total memory requirement of

conjugate gradient is O(n). In this case, the memory requirement will not increase

dramatically when the system size becomes large. In other words, the conjugate

gradient method is quite scalable.

Other than the low memory requirement, the FLOPS of every steps needs are

shown in Program 3.1. The computation complexity of each iteration as Program 3.1

shows is (12n+nnz×n). Also, assume that the number of iterations for the algorithm

to converge is c, then the total computation complexity would be (12n+nnz×n)×c.

Assume nnz = τn, τ is usually a small integer and much less than n. Then the total

computation complexity is (12n+ τn×n)c = O(τn2)c = O(cτn2). Since CG method
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is guaranteed to converge with in n iterations, the worst case of c is n. However, when

matrix A is sparse, it is common that c � n. Then the computation complexity of

CG method could be estimated to be O(n2) for sparse matrix. According to section

3.2.1, the computation complexity of LUD is usually estimated to be O(n3). This

discussion states that the conjugate gradient method is scalable from both space and

time complexity.

3.2.3 Preconditioner

Preconditioner transforms the original matrix A to unitary matrix by linear trans-

formations. However, it is well known that the calculation of the precise inverse of a

matrix, especially large scale matrix, is quite time-consuming. Therefore the practical

preconditioner is usually an approximation of A−1 so that G can be constructed

without too much computational overhead but can serve the purpose of transforming

the preconditioned matrix close to an unitary matrix. A brief introduction of different

preconditioners is followed.

Jacobi preconditioner

Jacobi preconditioner has the simplest form among all the widely used precondition-

ers. If we assume M is the matrix to approximate original matrix A, equation 3.36

shows how matrix M is formulated. It is mainly applied for matrices with diagonal

dominance.

M =

 Aij if i = j

0 if i 6= j
(3.36)

Naturally, the preconditioner G could be constructed as followed.

G =


1
Aij

if i = j

0 if i 6= j
(3.37)
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Incomplete factorization

Incomplete factorization will decompose the matrix A to two triangular matrices

which share similar non-zero patterns as the original matrix. Incomplete LU (ILU)

and incomplete Cholesky (IC) factorization are two common methods of incomplete

factorization. Since IC can be considered as a special case of ILU, we will take ILU

as the example for discussion.

ILU will decompose the original matrix A into two matrices: LI and UI , and then

M = LIUI . Matrix M will be close to A that M ≈ A. Assume that the complete

decomposition of A is A = LU , then LI and UI from incomplete factorization are

much sparser than L and U from complete factorization, and hence take much less

memory space. If the factorization of LI and UI follows exactly the same non-zero

pattern of matrix A without introduction of any extra storage, it is named ILU(0). If

the factorization of LI and UI follows the sparsity pattern of A2, it is named ILU(1).

Generally, ILU(k) follows the non-zero pattern of A(k+1). If Cholesky factorization

is deployed instead of LU factorization following the same method above, they are

named as IC(0), IC(1) and IC(k) accordingly. IC can be considered as a special case

of ILU when L = U , which needs only half of the storage of ILU methods. However,

IC requires that matrix A to be symmetric positive definite.

The deeper degree of ILU or IC can lead to a more accurate approximation of

A. However, the memory required to store the triangular matrices will increase

accordingly.

Other than the commonly seen ILU(k) and IC(k), there are also some other

variants of incomplete factorization, please refer to section 2.3 or following references

for more information. Meijerink and Van der Vorst (1977), Gustafsson (1978),

Meijerink and Van der Vorst (1981), Axelsson and Lindskog (1986), Elman (1989),

Notay (1994) Gallivan et al. (1990) etc.
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Sparse approximate inverse

ILU methods have an major issue; it may yield very ill-conditioned factorization

Van der Vorst (1981) Elman (1986) Chow and Saad (1997). This shortcoming

coupled with its sequential essence prevents its popularity in solving large scale sparse

matrices. Since the goal of preconditioner is to approximate the inverse of matrix A,

developing an approximate inverse matrix is intuitive.

To define the closeness of matrix G to A−1, equation 3.38 is applied. r measures

how close the product of A and G is to the unitary matrix I. Ideally, if G = A−1,

r would be 0. The norm could be 2-norm, F-norm or infinity norm, decided by

computational overhead or availability. Naturally, the construction of matrix G turns

into a minimization process of r.

r = ||AG− I|| (3.38)

Another advantage of sparse approximate inverse is that it can be applied to cases

that can not be associated. Factorization-based preconditioners usually require the

association of the factorization matrices with the original matrix at some point during

the computation, while approximate inverse can be plugged in directly with the form

GAx = Gb and then solve it. One example of computation scenario is interval power

flow. Chow and Saad (1998) Benzi and Tuma (1998) provided detailed discussion on

how to generate approximate inverse matrix parallel.

Polynomial preconditioner

Polynomial preconditioner has several advantages. First is that a polynomial of a

matrix commutes with the matrix itself. Therefore, P (A)A is still hermitian matrix

if the original matrix A is hermitian. In our discussion, matrix A is real, therefore

P (A)A will always be symmetric if A is symmetric. Second is that it requires only

matrix vector multiplications and vector additions which are easier to parallelize.
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If A can be normalized to the form A = I − B and spectrum radius of B is less

than 1 (||B|| ≤ 1). The Neumann series is a power series of G with unit coefficient

as equation 3.39 shows.

A−1 = (I −B)−1 = I +B +B2 +B3 + · · · = Pn(B) (3.39)

Equation 3.39 can be considered as a special case of equation 3.40. The

preconditioner G is a polynomial form of B, therefor is a polynomial form of A

too. d in equation 3.40 is the degree of the polynomials for truncating the polynomial

purpose or there will be infinite factors in the polynomial.

G =
d∑
j=0

γjA
j ≡ s(A) (3.40)

To this point, the purpose of polynomial preconditioning has been to minimize

||I−GA||. Equation 3.41 turns the matrix norm to polynomial formulation based on

eigenvalues λ of matrix A.

||I −GA|| = ||I − s(A)A|| = max |1− λs(λ)| (3.41)

From the polynomial perspective, minimization of ||I − GA|| is equivalent to

making polynomial G approximate A as close as possible. Therefore, approximation

theory can be applied here. The first type of method is to minimize the upper bound

of ||I−GA||∞, called min-max approximation, and the second type of method is least

squared approximation, which minimize ||I −GA||2.

Chebyshev polynomial of the first kind gives an approximation that is close to the

polynomial of the best approximation to a continuous function under infinity norm.

Therefore, Chebyshev polynomial can be applied to solve the min-max problem of

||1− λs(λ)|| to get the uniform approximation.

The second category minimizes the L2 norm of ||1−λs(λ)||. In order to intervene

in the influence of some small or unfavored eigenvalues, a weight function w(λ) is
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introduced. Least squared approximation is defined in equation 3.42.

||1− λs(λ)||w =

∫
(1− λs(λ))2w(λ) dλ (3.42)

The polynomial s(A) will be constructed either by Chebyshev polynomial or by

L2 norm minimization. Then s(A)A forms the preconditioned matrix of A.

3.3 GPU computation

3.3.1 GPU and CUDA

Graphic Processing Unit (GPU) for general purpose computations has been recently

widely deployed. GPU was originally designed for graphic processing, which requires

intensive floating point computations. Before the release of CUDA, there were some

general purpose computations that could run on GPU. However they have to be

done through graphic application programming interface (API). The higher learning

cost for using graphic API limits the development of general purpose computation

on GPU. CUDA introduces a C-like programming interface for users. The C-like

programming interface significantly reduces the learning cost of conducting general

computations like matrix operations on GPU. With such software developments, more

computing units have been added to the GPU chip to accommodate the needs for

large scale general purpose computations. The evolution of software and hardware on

GPU together has popularized the GPU for general purpose computation. Different

GPU architecture has different hardware and software designs. The discussions in

this work will use Fermi architecture as an example.

GPU and CPU play different roles in computations. The Fermi GPU architecture

from NVIDIA has 448 to 512 cores, while the mainstream CPU has 12 to 16 cores on

chip due to the power and cooling limitations. GPU inherits the parallel computing

advantage it has as a graphi CUDAc processor, and CPU is designed to be more

versatile and flexible. These differences together make the modern hybrid system
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architecture: parallelized computation work is offloaded to GPU, and CPU processes

the rest computations, usually the code parts with heavily data dependence or

intensive logical operations. After 2010 when CUDA was more widely accepted, the

fastest supercomputers around the world equipped with Intel CPU all chose NVIDIA

GPU as co-processor to boost computational throughput Top500.org (2014). This

trend of adopting GPU in the computation system shows great acceptance of this

hybrid architecture in academia and industry.

CUDA cores on GPU are organized as Streaming Multiprocessors (SM). Each

SM has 32 CUDA cores and 4 special function units for sin, cos, square root etc.

operations. Each CUDA core has one floating point processing unit, and one integer

processing unit. Threads on GPU are grouped together as a warp. The Fermi

architecture has 32 threads as a warp. A warp is the minimum scheduling unit on

GPU. All the threads in one warp will perform exactly the same work, which is named

as single instruction multithread (SIMT) technology. There are two warps executing

concurrently on each SM, and up to 48 warps can be kept active to do fast context

switching to compensate for the latency brought by memory related operations.

The SIMT brings massive parallelism in a GPU system. However, the other side

of the story is that, since the hardware executes the exact same instruction for all

the 32 threads, a conditional statement may happen, and the whole warp may have

to run multiple times to finish all the branches. Such situation may harm the overall

performance severely. Therefore, parallelization of programs with a large number of

conditional statements may not be a good choice.

These give us the design consideration of a promising parallelized implementation

or algorithm: it should have a large portion of parallelized code; less logical

statements; and plenty of data to fully drive the GPU’s computation ability and

hide the memory latency.
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3.3.2 CUBLAS and CUSPARSE

Basic Linear Algebra Subroutine (BLAS) Anderson et al. (1987) is a commonly

used linear algebra library. CUDA Basic Linear Algebra Subroutines (CUBLAS)

is a CUDA implementation of BLAS. CUBLAS can provide single, double floating

precisions, and complex numbers based dense matrix computations. CUBLAS makes

calling algebra functions based on GPU implementation as easy as calling a BLAS

function from CPU. CUBLAS hides implementation details of threads, blocks and

grids inside each computation kernel.

Other than the support of dense matrix operations, NVIDIA also introduces

CUDA Sparse Matrix Library (CUSPARSE) for sparse matrix operations. Sparse

matrix functions are different from dense matrix operations: the storage of matrices

and sparsity of two operands have to be considered. The matrix computations

involved in power system application are usually very sparse. With support from

CUSPARSE, users do not have to worry about special operations for sparse matrix.

CUSPARSE has provided a set of functions like matrix format conversion, sparse

matrix and dense vector operations, sparse matrix and sparse matrix operations.

Same as CUBLAS, CUSPARSE has encapsulated the implementation details, so that

users can call CUSPARSE functions directly without the effort of optimizing details

like threads, block, and grid allocation. The standard interface such as CUBLAS and

CUSPARSE further reduces the learning cost and development cost.

3.3.3 Sparse matrix storage

Computations based on sparse matrix usually utilize the sparse matrix storage

format. Different storage formats will yield different memory access pattern and

hence influence the performance.

Coordinate Format (COO) is a commonly used storage format. Each non-zero

element in sparse matrix will be represented by three entries: the row number, the

column number, and the non-zero element value. Each entry itself forms an array
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with the number of non-zero elements as the length. Compressed sparse row format

(CSR) compresses the row indices array compared with COO. Blocked compressed

sparse row (BSR) is another storage format. It stores non-zero blocks of elements

with their row and column indices. Assume the block dimension is blockDim, the

original matrix will be split into (m/blockDim) + 1 by (n/blockDim) + 1 subblocks.

The indices of these sub-blocks will be stored in row-majored order. The advantage

of BSR is that it provides a chance for reusing the vector data while performing

matrix-vector multiplication. One vector data can be reused for blockDim times

for the multiplication between the corresponding sub-blocks and the vector. The

disadvantage of BSR is that it introduces more fill-ins. Not every element inside a

non-zero block is actually non-zero, and then zero elements inside this block now are

considered as non-zero elements and participate in the computations.

CUSPARSE has a better support for CSR based operations since it is more

widely used. Matrix-vector multiplication has been supported in both CSR and BSR.

However, sparse matrix-dense matrix multiplication, sparse matrix-sparse matrix

multiplication are supported in CSR only for now.
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Chapter 4

Using Conjugate Gradient Method

and Chebyshev Preconditioner in

Power System Applications

To solve a linear system, one can either use direct method based on decomposition

such as LU or Cholesky, or apply iterative solvers with considerations of scalability

and parallelism. This chapter will discuss solving positive definite systems, such

as the linearized DC power flow, and fast decoupled power flow. In this chapter,

a polynomial preconditioner Chebyshev preconditioner will be implemented with

graphic processing unit (GPU) and integrated with a GPU-based conjugate gradient

solver for linearized DC power flows.

As Section 3.1 introduced, each iteration in Newton Raphson method requires

solving a set of sparse linear equations. We measured the linear equation solving time

and total run time for the power flow of large systems in MATPOWER. The results

show that about 40% to 50% of the total time is spent on solving linear equations.

Therefore improving the efficiency of solving linear system is of great importance for

accelerating power flow analysis. On one hand, iterative methods have been adapted

to power system computation in various aspects. Pai et al. (1992) have implemented

40



the Generalized Minimal Residual (GMRES) method on a Cray machine for dynamic

power system simulation. Pai and Dag (1997) further applied several iterative solvers

including conjugate gradient and GMRES to dynamic power flow simulation and

state estimation. On the other hand, the GPU has been widely adopted in high

performance computing recently as a parallel hardware architecture. The GPU was

originally designed for graphic displaying and processing. It has massive parallel

computing units on board to perform graphic computations. GPU as a co-processor

helps a commodity server deliver more computational throughput.

Section 4.1 takes a closer look at the polynomial preconditioner Chebyshev

preconditioner. Section 4.2 presents the algorithm that this work uses and the

corresponding GPU-based implementation. Computational experiments are shown

in Section 4.3. A further discussion is extended in Section 4.5. Section 4.6 closes this

chapter.

4.1 Iterative solver and preconditioner

4.1.1 Iterative solver

Iterative solver is getting more attention in processing large scale power system models

because of its scalability and low memory requirement as section 3.2.2 discussed.

Conjugate gradient method is one of the iterative solvers with promising convergence

property. The algorithm of iterative solver can be found in Table 3.1. Conjugate

gradient method require symmetric positive definite systems, therefore based on

the power system application discussions in Section 3.1.2, 3.1.3 and their positive

definiteness discussion in 3.1.4, linearized DC power flow and fast decoupled power

flow can be solved by conjugate gradient solvers.
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4.1.2 Chebyshev preconditioner

To improve the convergence rate of iterative solver, preconditioner is commonly

deployed. A left preconditioner is a matrix that can be left-multiplied to matrix

A, and also to vector b correspondingly to reduce the condition number of A. The

condition number of symmetric positive definite matrix is defined as the ratio of the

largest eigenvalue and the smallest eigenvalue. The larger the condition number is, the

more iterations the solver requires to converge. Ideally, the preconditioning matrix G

would be the inverse of matrix A. However, the cost of computing the inverse of A is

usually very high. The goal of a preconditioner is two folds: close approximation of

A inverse; and easiness to obtain.

Chebyshev preconditioner is a polynomial based preconditioner. The inverse of

matrix A is shown by equation 4.1 in Chebyshev polynomial pattern. Assume α

is the smallest eigenvalue of A, and β is the largest eigenvalue, then matrix A has

the spectrum of [α, β]. Z transforms A’s spectrum from [α, β] to [−1, 1], defined as

equation 4.2. Tk is the recurrence formulation of Chebyshev polynomial as equation

4.3 shows. These polynomials are orthogonal. ck and constant q are defined as

equation 4.4 and equation 4.5, respectively. ck is the decay rate for the entries of A−1

decaying away from main diagonal of the matrix A. This decay rate can be estimated

using constant number q, which is a function of the condition number of A. Detailed

discussions of these parameters can be found in Dag and Semlyen (2003).

The definitions of these parameters show that the calculation of the preconditioner

requires mostly matrix and vector multiplications, which fits characteristics of parallel

computation platforms.

A−1 =
c0

2
I +

k=∞∑
k=1

ckTk(Z) (4.1)

Z =
2

β − α
[A− β + α

2
I] (4.2)
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1: Initialization:

2: β=max(eig(A));

3: α = β
ratio

;

4: Z = 2
β−αA− β+α

β+α
I;

5: q = (1−
√

α
β
)/(1 +

√
α
β
);

6: c0 = (−q)0√
αβ

; c1 = (−q)1√
αβ

7: Tp0 = I;Tp1 = Z;

8: G = 1
2
c0I + c1Tp1;;

9: for i = 2 to r do

10: T = 2ZTp1 − Tp0;

11: c = (−q)i√
αβ

;

12: G = G+ cT ;

13: Tp0 = Tp1;Tp1 = T ;

14: end for

Figure 4.1: Algorithm of Chebyshev preconditioner


T0 = I

T1 = Z

Tk = 2ZTk−1(Z)− Tk−2(Z)

(4.3)

ck =
1√
αβ

(−q)k (4.4)

q =
1−

√
α
β

1 +
√

α
β

(4.5)
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4.2 Implementation

4.2.1 Chebyshev preconditioner algorithm

Chebyshev preconditioner algorithm is presented in Figure 4.1. β is the largest

eigenvalue of matrix A. α is the smallest eigenvalue of matrix A. ratio is used

to estimate the value of α. Z transforms A’s spectrum to [−1, 1]. The decay rate ck

is related to α and β. r is the degree of Chebyshev preconditioner. Dag and Semlyen

discussed how to choose ratio and r in detail Dag and Semlyen (2003). Matrix G is

the approximation of A′s inverse. The output of Chebyshev preconditioner algorithm

is matrix G. Bold lines (line 4, 8, 10, 12) are implemented by either CUBLAS or

CUSPARSE on GPU, since they are all matrix related computations. Left multiplying

G to A will generate the preconditioned matrix with smaller condition numbers so

that the system can converge faster in the iterative solver step.

4.2.2 Conjugate gradient algorithm

Figure 4.2 shows the algorithm of the conjugate gradient method. x0 is the initial

value of the solution of Ax = b. If there is no preknowledge of x0, it can be set to all

0. If there is, a cultivated x0 it can help conjugate gradient method converge in less

iterations. r is the residual, which measures the error between b and Axk. If r is less

than user-defined error tolerance, or the iteration has exceeded the allowed maximum

iterations, the algorithm will stop.

Same as above, bold lines (line 4, 8, 10, 11, 13, 14, 16) are implemented either by

CUBLAS or CUSPARSE. It can be seen that a majority of the computations can be

ported to GPU for computation.

4.2.3 Hardware platform

The experiments are carried out on a server equipped with NVIDIA GPU Tesla

M2070. M2070 is a Fermi architecture product. It has 14 stream multiprocessors and
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1: Initialization:

2: r = b− Ax0;x = x0;

3: p = r; k = 1;

4: r1 = r′ ∗ r;
5: while r1 > tolerance and iteration < max iter do

6: if k > 1 then

7: β = r1/r0;

8: p = r + β ∗ p;

9: end if

10: Ap = A ∗ p;

11: temp = p′ ∗Ap;

12: α = r1
temp

;

13: x = x+ α ∗ p;

14: r = r − α ∗ p;

15: r0 = r1;

16: r1 = r′ ∗ r;
17: end while

Figure 4.2: Algorithm of conjugate gradient method

each processor has 32 CUDA cores, which makes the total CUDA cores on the chip

be 448. The CUDA driver version is 5.0. The server has an 8-core Intel Xeon E5607

2.27 GHz CPU and 24 GB memory. Operation system is Ubuntu 11.10 with Linux

Kernel version 3.0.0.

4.2.4 Software implementation

The test cases are power system examples from Matrix Market Boisvert et al. (1997),

MATPOWER Zimmerman et al. (2011), and a sample case from UCTE Zhou and

Bialek (2005). Test matrices from Matrix Market are 494-bus, 662-bus, 685-bus, 1138-

bus. Test matrices from MATPOWER are case2383wp, case2736sp, case2737sop. The
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maximum allowed error is 1× 10−3. The upper limit for iteration is 1000 iterations.

The sample case from UCTE in summer 2002 has 1253 buses.

The bold lines in Figure 4.1 and Figure 4.2 are implemented either with

CUSPARSE or CUBLAS. If there is sparse matrix in the computation, corresponding

functions from CUSPARSE will be called. If the linear computation involves only

two vectors, CUBLAS functions will be called for speedup purpose. We implement

Chebyshev preconditioner based on Figure 4.1 and integrated the conjugate gradient

implementation adapted from NVIDIA CUDA computing SDK 5.0 Samples. Artificial

condition number ratio used in the Chebyshev preconditioning is 5 for all the

experiments based on Dag’s discussion Dag and Semlyen (2003).

4.3 Experiment

This section will present experiment results begining with selecting the degree

for the Chebyshev Preconditioner, and then the performance comparison between

Matlab implementation and our GPU implementation. Finally further performance

improvement is discussed. Since Matlab’s default floating point processing precision is

double precision, our GPU implementations are all based on double precision floating

point numbers for fair comparison purpose.

Note, throughout the computational experiments, the linearized DC power flow

results are always verified with commercial software so the accuracy is ensured. The

performance comparison is solely on the computational performance.

4.3.1 Degree of Chebyshev preconditioner

Chebyshev preconditioner can effectively reduce condition number. Condition number

is generally considered as a good indicator of matrix attribute. The smaller the

condition number, the less iterations the matrix needs to converge. A larger degree

of Chebyshev preconditioning can further reduce the condition number. 30-bus
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Table 4.1: Condition number comparison of practical systems

Degree IEEE30 IEEE118 494-bus 662-bus 1138-bus

0 961.534 4.85E+03 3.89E+06 8.27E+05 1.23E+07

2 168.637 941.108 6.49E+05 1.82E+05 2.07E+06

3 114.248 708.869 4.75E+05 1.39E+05 1.43E+06

5 78.962 483.311 3.25E+05 1.01E+05 9.69E+05

8 53.999 334.441 2.21E+05 7.02E+04 7.22E+05

10 44.773 277.241 1.87E+05 5.84E+04 6.11E+05

and 118-bus from IEEE standard bus system, 494-bus, 662-bus and 1138-bus from

MatrixMarket, are selected as examples of small scale computation, medium scale

computation and large scale computation, respectively. Table 4.1 shows the condition

number of these systems with different degrees of Chebyshev preconditioner. Degree

0 is the condition number of the original system without any preconditioning. The

condition number is clearly dropped when the larger degree is set to Chebyshev

preconditioner as Table 4.1 indicates.

Figure 4.3 shows the conjugate gradient iteration comparison using Chebyshev

preconditioner of different degrees. The first bar of each system, marked as Degree=0

in the figure, is the iteration number that is needed for the original system to be solved

by the conjugate gradient method without the plugin of Chebyshev preconditioner.

The rest of the bars in each group are the iteration number needed for solving the

system by the conjugate gradient method with Chebyshev preconditioner, and the

degree is set to different numbers for comparison. The original systems without any

precondition require many more iterations for most cases. Figure 4.3 shows that

deeper degrees can always lead to a significant iteration number reduction in iterative

solving.

Figure 4.4 compares the performance of Chebyshev preconditioner C/CUDA

implementation with GPU and with Matlab on CPU. The IEEE 30-bus and the IEEE

118-bus systems are the smallest test cases. The GPU implementation is less efficient
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Figure 4.3: Iteration comparison of Chebyshev preconditioner with various degrees.

than the Matlab computations for the IEEE 30-bus system, no matter what degree

of Chebyshev preconditioner is. The reason is that data involved in computations

with small scale cannot fully drive the computational ability of the GPU card. The

speedup gained in small systems can hardly offset the data copy overhead inherited

in GPU computing. For the IEEE 118-bus system, as the degree increases, more data

and computations will emerge and advantage of GPU’s massive parallel computation

ability begin to benefit the computation efficiency. For the medium scale systems,

494-bus and 662-bus, and the large scale system 1138-bus, speedup can be achieved

for all degrees. The maximum speedup is 12.54, reached by the 1138-bus system when

the degree is 2 for these five example systems.

Table 4.1 shows that a larger degree can lead to a better preconditioning in terms

of condition number. However, it comes with the price that the number of non-

zero elements will increase. Figure 4.5 shows the exponential increase of nonzero

elements when the degree is deeper. An increase of non-zero elements will affect

not only the efficiency of Chebyshev preconditioner, but also the conjugate gradient
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Figure 4.4: Speedup comparison of Chebyshev preconditioner on GPU over Matlab.

method solving process. From the five example cases, choosing degree as 2 offers best

performance improvement. Therefore 2 is selected as the Chebyshev preconditioner

degree for the rest experiments based on the consideration of the trade-off between

the condition number reduction and the non-zero element increase.

4.3.2 Chebyshev preconditioner and conjugate gradient method

This section presents the performance result of the conjugate gradient method with

Chebyshev preconditioner. The test matrices are from IEEE standard bus systems

(IEEE30, IEEE57, IEEE 118, and IEEE300), MatrixMarket (494-bus, 662-bus, 685-

bus, and 1138-bus), UCTE (1253 buses), and MATPOWER sample cases (case2383wp

and case2736sp). The stop criterion for conjugate gradient method is 1× 10−3.

Table 4.2 shows the runtime of Matlab implementation on CPU and our GPU

implementation of Chebyshev preconditioner. Speedup of GPU implementation over

Matlab implementation is shown in the fifth column. The runtime of Chebyshev
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Figure 4.5: Non-zero elements increase with deeper degree.

preconditioner on Matlab increases significantly when the size of test matrices grows.

However, the runtime of Chebyshev preconditioner on GPU is in a stable range due

to GPU’s capability of handling large scale data.

GPU implementation of Chebyshev preconditioner begins to gain performance

speedup when the system is larger than the standard IEEE 300-bus system. When the

system scale is larger than 1000 by 1000, the performance improvement is significant.

GPU implementation can gain about 46x speedup and almost 200 ms absolute runtime

saving for the largest system case2736sp. Table 4.2 shows consistent results as Figure

4.4. Chebyshev preconditioner on GPU can hardly improve computation performance

for smaller systems, but it is able to gain significant runtime saving when the test

systems are larger. The reason is that there is enough data to better utilize the

computation capability of the GPU and offset computation overhead like data copy.

Table 4.3 shows the runtime of Matlab implementation and GPU implementation

of the conjugate gradient method. Corresponding speedup in the fifth column

shows GPU’s advantages in a large system. The runtime of conjugate gradient
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Table 4.2: Chebyshev preconditioner performance (TCP ) comparison between CPU
and GPU implementation of practical systems

System Size CPU(ms) GPU(ms) SpeedUp Time Saved(ms)

IEEE30 29 by 29 0.737 1.537 0.48 -0.800

IEEE57 56 by 56 0.530 1.538 0.34 -1.008

IEEE118 117 by 117 0.914 1.579 0.58 -0.665

IEEE300 299 by 299 3.472 3.254 1.07 0.218

494-bus 494 by 494 8.273 3.338 2.48 4.935

662-bus 662 by 662 15.328 3.407 4.50 11.921

685-bus 685 by 685 16.652 3.350 4.97 13.302

1138-bus 1138 by 1138 42.885 3.419 12.54 39.466

UCTE 1253 by 1253 52.565 3.389 15.51 49.176

case2383wp 2382 by 2382 152.813 4.117 37.12 148.696

case2736sp 2735 by 2735 199.502 4.263 46.80 195.238

Table 4.3: Conjugate gradient performance (TCH) comparison between CPU and
GPU implementation of practical systems

System Size CPU(ms) GPU(ms) SpeedUp Time Saved (ms)

IEEE30 29 by 29 1.259 1.781 0.71 -0.522

IEEE57 56 by 56 2.100 2.966 0.71 -0.866

IEEE118 117 by 117 6.058 7.844 0.77 -1.786

IEEE300 299 by 299 12.522 13.075 0.96 -0.553

494-bus 494 by 494 52.705 47.757 1.10 4.948

662-bus 662 by 662 36.449 28.106 1.30 8.343

685-bus 685 by 685 35.601 24.925 1.43 10.676

1138-bus 1138 by 1138 128.215 75.054 1.71 53.161

UCTE 1253 by 1253 8.554 4.600 1.86 3.954

case2383wp 2382 by 2382 202.052 71.539 2.82 130.513

case2736sp 2735 by 2735 124.189 25.727 4.83 98.462
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is related to the data of each system. System size, matrix condition number and

sparsity, have their influences on the performance of conjugate gradient method. The

runtime is no longer monotonically increasing when the system size is larger. The

conditioner number of 662-bus is less than 494-bus as Table 1 indicates. In Table

4.3, it is shown that the runtime of 662-bus is shorter than 494-bus. The maximum

GPU implementation speedup of conjugate gradient is 4.83x for case2736sp in our

experiments. The absolute runtime saving is around 100 ms for one solving in the

same case.

Table 4.4 shows the total runtime, including Chebyshev preconditioner and

conjugate gradient method, and the corresponding speedup of GPU implementation

over Matlab implementation. GPU implementation begins to improve performance

at 494-bus, because of the performance improvement in the Chebyshev preconditioner

part. The total time speedup is better than the conjugate gradient only results. The

fastest speedup reaches 10.79x. Last column shows the absolute time saving. The

absolute runtime saving for the two largest systems are almost 300 ms for case2736sp

for one solution.

4.3.3 Improvement on Chebyshev preconditioner and conju-

gate gradient method

The runtime breakdown of Chebyshev preconditioner and conjugate gradient is shown

in Figure 4.6. Chebyshev preconditioner can help to reduce the iterations needed in

the conjugate gradient method. However, for most cases, it consumes less than 20% of

the total runtime; for some other cases it only reaches 50% of the total runtime. The

Chebyshev preconditioner computation time never occupies more than 50% of the

total execution time. Therefore, in order to further improve the overall performance,

the conjugate gradient computation needs to be enhanced, too.

Computations involved in conjugate gradient contain a lot of matrix vector

multiplications. Blocked Compressed Sparse Row (BSR) provides data reuse for
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Table 4.4: Conjugate gradient with Chebyshev preconditioner performance (TCP +
TCH) comparison between Matlab and GPU implementation

System Size CPU(ms) GPU(ms) SpeedUp Time Saved(ms)

IEEE30 29 by 29 1.996 3.318 0.60 -1.322

IEEE57 56 by 56 2.630 4.504 0.58 -1.874

IEEE118 117 by 117 6.972 9.423 0.74 -2.451

IEEE300 299 by 299 15.994 16.329 0.98 -0.335

494-bus 494 by 494 60.978 51.095 1.19 9.883

662-bus 662 by 662 51.777 31.513 1.64 20.264

685-bus 685 by 685 52.253 28.275 1.85 23.978

1138-bus 1138 by 1138 171.100 78.473 2.18 92.627

UCTE 1253 by 1253 61.119 7.989 7.65 53.13

case2383wp 2382 by 2382 354.685 75.656 4.69 279.029

case2736sp 2735 by 2735 323.690 29.990 10.79 293.700
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Figure 4.6: Runtime breakdown of conjugate gradient method with Chebyshev
Preconditioner.
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Table 4.5: Conjugate Gradient Performance Comparison Between CPU, CSR and
BSR Based GPU Implementation of Vairous Systems

System Size
CPU GCSR GBSR

CG SpeedUp Total SpeedUp

GBSR GBSR vs GBSR GBSR vs

(ms) (ms) (ms) vs CPU GCSR vs CPU GCSR

IEEE30 29 1.259 1.781 1.567 0.71 0.80 0.60 0.64

IEEE57 56 2.100 2.966 2.536 0.71 0.83 0.58 0.64

IEEE118 117 6.058 7.844 6.681 0.77 0.91 0.74 0.84

IEEE300 299 12.522 13.075 11.429 0.96 1.10 0.98 1.09

494-bus 494 52.705 47.757 41.116 1.10 1.28 1.19 1.37

662-bus 662 36.449 28.106 26.026 1.30 1.40 1.64 1.76

685-bus 685 35.601 24.925 21.331 1.43 1.67 1.85 2.12

1138-bus 1138 128.215 75.054 68.201 1.71 1.88 2.18 2.39

UCTE 1253 8.554 4.600 4.411 1.86 1.94 7.65 7.82

case2383wp 2382 202.052 71.539 73.438 2.82 2.75 4.69 4.57

case2736sp 2735 124.189 25.727 26.774 4.83 4.64 10.79 10.45

matrix vector multiplication. Our improved conjugate gradient implementation uses

BSR based GPU matrix-vector multiplication. The result is shown in Table 4.5. The

block size we choose based on empirical experience is 3. The BSR-based conjugate

gradient implementation shows greater improvement when system is relatively small.

It makes GPU implementation run faster than the CPU version when the system is

only around a 300 by 300 scale.

4.4 Convergence and eigenvalue discussions

This section will firstly demonstrate the CG solver with Chebyshev preconditioner

and then discuss the changes that a preconditioner brings to the system. The

following figures show the relative residual from each iteration when CG iterative

solver is applied to the IEEE-118 system (figure 4.7), 685-bus system (figure 4.8)

and UCTE system (1254 buses) (figure 4.9). The convergence criterion of the CG

solver in this and the following sections is that the relative residual is smaller than
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Figure 4.7: Relative residual of IEEE-118 system
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Figure 4.8: Relative residual of 685-bus system
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Figure 4.9: Relative residual of 1254-bus UCTE system

10−1. The original system with CG method without preconditioner always take more

iterations to converge in 91 iterations for IEEE-118, 431 iterations for 685-bus, and 613

iterations for the 1254-bus UCTE, while the preconditioned system with Chebyshev

preconditioner degree as 2 needs less iterations to converge, 64 iterations for IEEE-

118, 348 iterations for 685-bus and 568 iterations for the 1254-bus UCTE, respectively.

These figures show that the relative residual drops more sharply when the Chebyshev

preconditioner is applied, and hence lead to a fast convergence if compared with the

case without preconditioner. It should be noted that such trend exists for all the

test systems examined, but only three of them are selected to represent the small,

medium and large systems due to the space limitation.

The eigenvalue spectrum has a significant influence on the convergence rate of

iterative solution such as CG Jennings (1977). Figure 4.10 shows the eigenvalue

spectrum shifting of the IEEE-118 bus system as an example. From top to bottom,

each subfigure shows the eigenvalue distribution of the normalized linearized DC
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Figure 4.10: Preconditioning shifts the eigenvalue spectrum and hence reduces
required iterations

power flow matrix with deeper degree of Chebyshev preconditioner. The figure shows

clearly that from no preconditioner to preconditioner with degree 20, the iteration

required for the iterative solver to converge is significantly reduced. When the degree

is 20, the right part of the spectrum is packed very close, and the largest eigenvalue

is kept being shifted towards a smaller value. The left parts have already shown

clustering effects, and the smallest eigenvalue is also obviously shifted away from 0.

Such shifting and clustering effects make it take only 25 iterations for the CG solver

to converge when the degree is 20. This observation validates equation 3.35 that

the closer the eigenvalues are packed, the less iteration the iterative solver needs to

converge. This is a significant performance enhancement if compared with the top

subfigure which requires 94 iterations without preconditioner for the same system.

The number of iterations in Figure 4.10 demonstrates that a narrow eigenvalue

spectrum will lead to a faster convergence. Our simulation experiments with other

systems show the same trend as well.
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4.5 Discussion

Our work discusses the GPU-based implementation of an iterative solver: conjugate

gradient solver, and a polynomial preconditioner: the Chebyshev preconditioner.

Because of its potential in parallelism and scalability, iterative linear solvers have

been adapted to power system applications Pai and Dag (1997) Dag and Semlyen

(2003) Idema et al. (2012). Preconditioner plays an important role in iterative solver.

Previously, preconditioner like ILU was widely used to precondition the matrix.

However, they suffer a tight data dependency issue and hence are difficult to parallel.

The Chebyshev preconditioner, a polynomial preconditioner, is a parallel method.

The conjugate gradient method is one of the iterative solvers. It has been introduced

to power system applications for its potential parallelism to speedup the power flow

Garcia (2010).

The limitation of the conjugate gradient method is that it requires a symmetric

positive definite linear system. This fits the model of linearized DC power flow as used

in this paper. For linear systems that are not symmetric, a transition can be used to

accommodate the computational needs: left multiply the matrix’s transpose to both

of left hand side and right hand side to eliminate the undesired matrix characteristics

while guaranteeing that no extra work is required for solving the system. Solving

Ax = b can be alternatively turned into solving ATAx = AT b.

Chebyshev preconditioner can provide a major condition number reduction with

deeper preconditioner degree. However, a deeper degree will lead to significant

increase of non-zero elements. Such increase of non-zero elements will cause severe

performance degradation in the conjugate gradient step. The degree for Chebyshev

preconditioner should not be chosen without the consideration of iterative solver step.

The proper degree should be chose based on a trade-off between reducing condition

number and inhibiting the growth of non-zero elements.
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4.6 Conclusion

Power system applications such as power system optimization, control and analysis

require intensive computational ability Green et al. (2011). Solving sparse linear

systems is a critical computation element involved in these applications. Our

work presents a GPU-based Chebyshev preconditioner, and integrates the iterative

conjugate gradient solver for a whole iterative solving chain. Our implementation

uses native functions from CUSPARSE and CUBLAS libraries which are already

optimized. Implementations based CUSPARSE and CUBLAS libraries require

minimum modifications when there are updates for either GPU, the hardware

platform, or CUDA, the software platform.

Our work targets at solving the fundamental computation of power system and

sparse linear systems. Table 4.5 shows that the maximum overall speedup can reach

10.79% with the case2736sp system; Table 4.2 shows that the maximum Chebyshev

preconditioner speedup can reach 46.80% with the same system. This work will be

not only for solving DC power flow in power system, but also for any sparse linear

systems that are symmetric positive definite.

Our work considers Chebyshev preconditioner and conjugate gradient method

together to choose the proper degree for Chebyshev preconditioner. Figure 4.6 shows

the runtime breakdown of the iterative solver and the preconditioner. The iterative

solver actually consumes more runtime. Thus, we can conclude that to improve

the overall linear equations solving capability, besides improving the performance of

Chebyshev preconditioner, one must take the performance improvement of iterative

solver into consideration as well. Further improvement on the iterative solver

implementation is critical for the overall performance improvement of iterative

solutions of linear systems.
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Chapter 5

Estimation of the Largest

Eigenvalue for Chebyshev

Preconditioner

The discussion in Chapter 4 reveals that the maximum and minimum eigenvalues of

a linear system are required in order to shift the spectrum of the original matrix to

the [-1, 1] interval to construct the Chebyshev preconditioner. Solving characteristic

equation to obtain eigenvalues is a time-consuming process Larson (2012), which

limits the possibility to apply Chebyshev preconditioner practically. Iterative solvers

such as CG require the system to be symmetric positive definite. Therefore, this

work will focus on the B matrix in linearized DC power flow, as well as the B′ and B′′

matrices in fast decoupled power flow (FDPF), since they are all symmetric positive

definite linear systems Van Amerongen (1989) Stott and Alsac (1974).

This Chapter will first discuss an estimation method for the largest eigenvalue

(β) for equation 4.2 using the B matrix in DC power flow as an example. Then, the

conclusion will be extended to matrix B′ and B′′ in fast decoupled power flow.
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5.1 Range of eigenvalues

In this section, the matrix B from linearized DC power flow will be analyzed for

estimating the maximum eigenvalue β. Here, the pre-estimation step will normalize

the matrix first. The maximum value bmax of the matrix B will be selected, and then

the entire matrix will be divided by bmax element-wise, such that the value range of

the matrix will be shifted to (−1, 1]. Note, the maximum value of the linear system

can only appear in diagonal elements for the power flow calculations discussed in

this work. Finding the maximum element of a system requires only one traverse of

the diagonal elements, so the complexity of this step is O(n). It is not related to

the off-diagonal, non-zero elements of the system, which is typically 3 to 4 times

more than the system size in power system applications due to the sparsity of power

systems. Thus, even with the increase of the system scale, the overhead of finding

the maximum element will be increased only linearly.

It should be noted that the B matrix discussed in solving linearized power flow has

its reference buses eliminated. We will name B̃ as the matrix before the elimination

of the reference bus. Assume that the set including all the system buses is Φ, and

Ψ is the set for PQ and PV buses. We assume that there is only one reference bus

throughout the paper. If there are n non-reference buses (PQ and PV buses) in the

system, the total bus number of the system is (n + 1). Therefore, the size of set Ψ

is n and the size of set Ψ is (n + 1). The indices i and j are the numberings for

the B matrix after the reference bus is eliminated, while the indices k and l are the

numberings for the B̃ matrix, we have

B̃kl ∈ (−1, 0]; l 6= k, l, k ∈ Φ (5.1)

B̃kk = −
(n+1)∑
l=1,l 6=k

B̃kl =

(n+1)∑
l=1,l 6=k

|B̃kl| (5.2)

Besides, we have

0 < B̃kk ≤ 1; k ∈ Φ (5.3)
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If we assume the off-diagonal element B̃kl in the B̃ matrix corresponds to element

Bij which is the corresponding element after the reference bus elimination, we have

equations 5.4 and 5.5. Note that B̃kl to Bij represents a one-to-one mapping as

equation 5.6 shows. q is the index of the reference bus.

Bij = B̃kl ∈ (−1, 0]; j 6= i; k 6= l; i, j ∈ Ψ, k, l ∈ Φ (5.4)

Bii = B̃kk; i ∈ Ψ, k ∈ Φ (5.5)

k =


i; i < q

i− 1; i > q
l =


j; j < q

j − 1; j > q
(5.6)

To simplify the derivation, we may define

γi =
n∑

j=1,j 6=i

|Bij| (5.7)

We will use the row and column information in the B̃ matrix to perform further

calculations for every element in the B matrix. If we change the numbering to B̃

matrix-based, equation 5.7 could be given by

γi =
n∑

j=1,j 6=i

|Bij| =
(n+1)∑

l=1,l 6=k,l 6=q

|B̃kl| (5.8)

Based on Gershgorin circle theorem Stewart (2001), all the eigenvalues of the B

matrix lies in the union of the discs centered at Bii with radius γi.

|λ−Bii| ≤ γi (5.9)
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Substituting the B̃ matrix numberings to B matrix, we have

|λ− B̃ii| ≤ γi (5.10)

This can be rewritten as:

− γi ≤ λ− B̃kk ≤ γi (5.11)

− γi + B̃kk ≤ λ ≤ γi+kk (5.12)

Substitute equation 5.2 and 5.8 to equation 5.12, we have

−
(n+1)∑

l=1,l 6=k,l 6=q

|B̃kl|+ (

(n+1)∑
l=1,l 6=k

|B̃kl|) ≤ λ ≤
(n+1)∑

l=1,l 6=k,l 6=q

|B̃kl|+ (

(n+1)∑
l=1,l 6=k

|B̃kl|) (5.13)

The left hand side can be written as

−
(n+1)∑

l=1,l 6=k,l 6=q

|B̃kl|+ (

(n+1)∑
l=1,l 6=k

|B̃kl|) = |B̃kq| ≥ 0 (5.14)

The right hand side can be written as equation 5.15 considering equation 5.3.

(n+1)∑
l=1,l 6=k,l 6=q

|B̃kl|+ (

(n+1)∑
l=1,l 6=k

|B̃kl|) ≤ 2(

(n+1)∑
l=1,l 6=k

|B̃kl|) = 2B̃kk ∈ (0, 2] (5.15)

Therefore, equation 5.13 will be

0 ≤ λ ≤ 2 (5.16)

Since the no-solution case of power flow is not within the scope of this work, the

B matrix is not singular. That is, in this work, we discuss only the systems which

are power flow solvable. Therefore, there will be no zero eigenvalue. Thus, equation

5.16 can be further simplified to equation 5.17, i.e., the range of eigenvalues of the B
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matrix is (0, 2].

0 < λ ≤ 2 (5.17)

5.2 Estimation of the largest and the smallest

eigenvalues

With the range (0, 2] of eigenvalues, the maximum eigenvalue will be estimated in

this section. Since each matrix has been normalized to the largest elements, the value

range of each element is (−1, 1]. For power flow matrices, the diagonal elements

are special since their absolute values are much larger than off-diagonal elements.

Although we can hardly build a direct correlation between the larger elements and the

largest eigenvalue, they can still serve as guidance on estimating the largest eigenvalue.

The value of 1 exists for every matrix after normalization; hence, the largest element

must always be 1. The second largest element will be employed to fit a linear function

to estimate the largest eigenvalue β.

In order to study the relationship between the second largest element in the system

(namely, η) and the largest eigenvalue λm, we started with six test systems: the IEEE

30-bus system, the IEEE 57-bus system, and the IEEE 118-bus system from standard

IEEE test systems; case2383wp and case2736sp from MATPOWER Zimmerman et al.

(2011); and a UCTE system with 1253 buses Zhou and Bialek (2005). Then, we

modified each of the original systems to create a large amount of new test systems.

The modification is performed by randomly scaling up/down, but within the range of

[75%, 125%] of the original value, for one of the three values (r, x or b) of the branch

Π model for a specific branch, and this process is repeated for 20% branches for each

of the six test systems. Also, each system will go through the experiment for 1000

times to create 1000 new systems to better study the underlying rules. Therefore,

there are 6000 data sets shown in Figure 5.1. The second largest element η in each

matrix is shown in the x axis, and the largest eigenvalue λm is shown in the y axis
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Figure 5.1: Second largest element (η) and the largest eigenvalue (λm) of each
randomly generated systems in blue stars. Green circles show the fitted results

in Figure 5.1. The green circles form a bold green line which represents the fitted

function based on the minimum least square estimation.

Since the estimated eigenvalue β is used to construct precondition matrix to reduce

the iterations needed in the iterative solving process only, it does not have to be

as precise as the actual largest eigenvalue λm, as long as β can be estimated in a

short time and does not lead to a significant iteration increase. With the fitted

function given in equation 5.18, the most computational intensive part is to find the

second largest element, η, in the matrix. Since the formulation of the linearized DC

power flow and FDPF ensures that the diagonal elements are the largest elements

in each row or column, traversing the diagonal elements only will be enough to find

the second largest element of the system. Therefore, β can be reached with the

computation complexity O(n), which is very scalable. Equation 5.18 below shows the

fitted function for β.

β = 1.5660× η + 0.3234 (5.18)
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After obtaining the estimated β, the smallest eigenvalue α can be estimated.

Here, the artificial conditioner number is used to estimate the smallest eigenvalue (α)

based on the largest eigenvalue. Since the condition number can be defined as the

ratio between the largest eigenvalue and the smallest eigenvalue, this ratio that is

used to estimate the smallest eigenvalue α based on the largest eigenvalue β is called

the artificial condition number. The artificial condition number ω is suggested in Dag

and Semlyen (2003) to be 5 for power system applications. With the estimated value

of β and equation 5.19, the estimated value of α can be achieved.

α = β/ω (5.19)

5.3 Extension to fast decoupled power flow cases

Chapter 5.1 and 5.2 discuss the proposed method to estimate the largest eigenvalue of

B matrix in linearized DC power flow. In this subsection the FDPF will be discussed.

Here, the matrices B′ and B′′ in FDPF are slightly different from the B matrix in

DC power flow because of the branch susceptance. It should be noted that although

there are various version of FDPF with minor difference, our discussion is based on

the MATPOWER?s XB version of FDPF Zimmerman and Murillo-Sanchez (2014).

Consider the matrix B′ first. We still assume bus q is the reference bus. In FDPF,

for the B̃′ matrix before reference bus elimination and with the renumbering defined

as in equation 5.20, since rij � xij is commonly assumed for FDPF, we have

B̃′kl = − 1

xkl
; B̃′kk =

(n+1)∑
l=1,l 6=k,l 6=q

1

xkl
(5.20)

The construction of B′ is similar to that of the B matrix in DC power flow.

Therefore, we have

B̃′kl ∈ (−1, 0]; i 6= j (5.21)
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B̃′kk = −
(n+1)∑
l=1,l 6=k

B̃′kl and 0 < B̃′kk ≤ 1 (5.22)

Following the similar deductions in equations 5.4 to 5.17, we can reach the

following conclusion:

0 < λB′ ≤ 2 (5.23)

Therefore, the estimation process for the B matrix in Chapter 5.2 still holds for the

B′ matrix in FDPF.

Next, regarding the B′′ matrix, we assume that there are npv PV buses. The B̃′′

matrix before reference bus elimination is constructed as

B̃′′kl = −bkl; l 6= k (5.24)

B̃′′kk = −bk −
(npv+1)∑
l=1,l 6=k

B̃′′kl +

npv+1∑
l=1,l 6=k

bkl (5.25)

where bkl is the susceptance between bus i and bus j and bkl > 0; and bi is the

shunt susceptance at bus i, i.e., the sum of susceptance of all the shunt branches

connected to bus i Crow (2002). It should be noted that bi is usually smaller than∑
j 6=i bij. Since B̃′′kk is the diagonal element, the following equation still holds:

0 < B̃′′kk ≤ 1 (5.26)

For the B′′ matrix after reference bus elimination, similar to equation 5.4, if we

assume that Ψ is the bus set after elimination, i.e., all the PV buses, Φ is the set

including all the buses, we have

B′′ij = B̃′′kl ∈ (−1, 0]; j 6= i; k 6= l; i, j ∈ Ψ, k, l ∈ Φ (5.27)

B′′ii = B̃′′kk; i ∈ Ψ, k ∈ Φ (5.28)
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γi =

npv∑
j 6=i

|B′′ij| =
npv+1∑

l=1,l 6=k,l 6=q

|B̃′′kl| (5.29)

If we assume ε = min(bi) and ξ = max(bi), then

ε ≤ bi ≤ ξ (5.30)

With Gershgorin circle theorem, we have equation 5.31, and with equation 5.28 we

have equation 5.32.

|λB′′ −B′′ii| ≤ γi (5.31)

− γr + B̃′′kk ≤ λB′′ ≤ γi + B̃′′kk (5.32)

Substitute equations 5.29 and 5.25 into equation 5.32, we have

−
npv+1∑

l=1,l 6=k,l 6=q

|B̃′′kl|+ (−bi +

npv+1∑
l=1,l 6=k

|B̃′′kl|) ≤ λB′′ ≤
npv+1∑

l=1,l 6=k,l 6=q

|B̃′′kl|+ (−bi +

npv+1∑
l=1,l 6=k

|B̃′′kl|)

(5.33)

The left side of equation 5.33 can be written as

−
npv+1∑

l=1,l 6=k,l 6=q

|B̃′′kl|+ (−bi +

npv+1∑
l=1,l 6=k

|B̃′′kl|) = |B̃′′kq| − bi (5.34)

Since bi is usually a small value if compared with B̃′′kq, equation 5.34 can be simplified

to

|B̃′′kq| − bi > 0 (5.35)

The right side of equation 5.33 can be written as

npv+1∑
l=1,l 6=k,l 6=q

|B̃′′kl|+ (−bi +

npv+1∑
l=1,l 6=k

|B̃′′kl|) ≤ 2

npv+1∑
l=1,l 6=k

|B̃′′kl| − bi

= 2(−bi +

npv+1∑
l=1,l 6=k

|B̃′′kl|) + bi = 2B̃′′kk + bi

(5.36)
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Based on equation 5.26 and 5.30, equation 5.36 can be further deducted to

2B̃′′kk + bi ≤ 2 + ξ (5.37)

Therefore equation 5.32 can be written as

0 < λB′′ ≤ 2 + ξ (5.38)

Back to our assumption that ξ is a small value, we can consider that λB′′ is still

in the range of (0, 2], approximately. Once again, the largest eigenvalue is used to

precondition the matrix for iterative solution, so it does not have to be precise. In

summary, this section concludes that all the eigenvalues in the matrices of linearized

DC power flow or fast decoupled power flow follow equation 5.39 after normalization.

0 < λ ≤ 2 (5.39)

5.4 Computational experiments

In this section, the performance of Chebyshev preconditioner and iterative solver

will be compared using accurately calculated maximum eigenvalue and the estimated

maximum eigenvalue to precondition the matrix. The example cases include IEEE 30-

bus system, IEEE 57-bus system, and IEEE 118-bus system from standard IEEE test

systems; 494-bus, 662-bus, 685-bus and 1138-bus from MatrixMarket Boisvert et al.

(1997); case2383wp and case2736sp from MATPOWER Zimmerman et al. (2011); and

one UCTE system with 1253 buses Zhou and Bialek (2005). All the experiments are

based on their linearized power flow matrices. All experiments are based on Matlab

implementation, but please note that once the estimation equation 5.18 is acquired, it

can be integrated with any implementation (such as parallel implementation in GPU

etc.) in real applications. The convergence or stop criterion for iterative solver is that

the relative residual is smaller than 10−4 of the nodal power mismatch in per unit. The
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degree of Chebyshev preconditioner is selected as 2 based on recommendation from

Chapter 4. Note that there are four systems in this computational experiment, 494-

bus, 662-bus, 685-bus and 1138-bus from MatrixMarket, are not used in the previous

section to obtain the empirical equation 5.18 because the data from MatrixMarket has

only the matrices instead of the full system data (i.e., branches and buses). However,

these four systems are applied here to test the generality and applicability of equation

5.18 and the overall approach.

5.4.1 Demonstration of estimated eigenvalues

The precise maximum eigenvalue should yield close-to-minimum iterations in the

CG iterative solution step. The column βest−max in Table 5.1 is the estimated

largest eigenvalue β based on equation 5.18. The fourth column shows the calculated

largest eigenvalue λm. The iterations the CG solver needs when using the estimated

eigenvalue and the calculated eigenvalue for Chebyshev preconditioner are listed as

well. Table 5.1 shows that although the estimated eigenvalue cannot always precisely

reach the largest eigenvalue, it will not cause a significant iteration increase. Instead

of obtaining the precise largest eigenvalue, our goal here is to quickly estimate a

reasonable large eigenvalue to 1) ensure that the iterative solution converges quickly,

and 2) save the runtime spent on the eigenvalue calculation. Note that there are

cases that using βest−max takes less iteration that using λm to get the iterative solver

converged. The reason is that it has been observed that the iterative solver may

take less iterations to converge when a value slightly smaller than the actual largest

eigenvalue is applied Jennings (1977). However, there is no quantitative formulation

or proof available regarding this observation.

5.4.2 Performance improvement

As previously mentioned, the construction of Chebyshev preconditioner requires the

maximum eigenvalue of the original matrix. However, it is usually time consuming to
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Table 5.1: Iterations Comparison with Estimated and Calculated Largest Eigenvalue
for Various Systems

System βest−max Iterations λm Iterations

IEEE30 1.426 25 1.270 23

IEEE57 1.587 33 1.556 33

IEEE118 1.320 63 1.503 66

494-bus 1.123 690 1.500 698

662-bus 1.877 288 1.988 293

685-bus 0.938 352 1.000 350

1138-bus 1.876 1045 1.494 1008

UCTE 1.889 571 1.998 567

case2383wp 1.883 937 1.831 937

case2736sp 1.889 616 1.976 641

calculate eigenvalues. Using the maximum eigenvalue estimation technique provided

in this paper can save runtime spent on eigenvalue calculation with no significant

iteration increase. This section will compare the execution time including eigenvalue

calculation or estimation, and CG iterative solving process.

The total execution time of Chebyshev preconditioner can be summed as equation

5.40. Tβ est is the time consumed for estimating the largest eigenvalue β. Tβ cal

stands for the runtime if the calculated maximum eigenvalue λm is used for β. TCG

is the runtime of the CG solver. TCP is the execution time spent on Chebyshev

preconditioning.

Tcal = Tβ cal + TCP + TCG

Test = Tβ est + TCP + TCG

(5.40)

Figure 5.2 shows the runtime breakdown of these three parts. The left bar (i.e.,

the Test bar) in each subpanel shows Tβ est, while the right bar (i.e., the Tcal bar)
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Figure 5.2: Runtime breakdown of various systems

shows Tβ cal. Tβ est is negligible if compared to the total runtime for all the cases,

but Tβ cal increases significantly when the system is much larger. The middle section

in each stacked bar shows TCG. Previously, it was discussed that beta-estimation

may cause the number of iterations increase in Chapter 5.4.1. However, the minor

increase of iteration numbers will not lead to a significant runtime delay. If we take

the 1138-bus case as an example, the iteration number increases from 1008 to 1045

if the estimated eigenvalue is used instead of the calculated eigenvalue. Hence, the

time spent on the CG solver is marginally increased, while the significant time saved

on estimating eigenvalues still makes Tβ est less than Tβ cal as Figure 5.2 shows. The

bottom bar in each subpanel shows TCP . Note, there is no significant difference in

TCG and TCP in terms of execution time no matter estimated or precise eigenvalue is

applied for Chebyshev preconditioner.
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Figure 5.3: Runtime saving for eigenvalue estimation and the whole execution.

Figure 5.3 shows the saved execution time in percentage for obtaining β by

estimation as opposed to calculation. The left bar in each subpanel gives Sβ, the run

time saving percentage of Tβ by estimating β over calculating β. Sβ is is calculated

as follows.

Sβ =
Tβ cal

(Tβ cal − Tβ est)
× 100% (5.41)

The right bar in each subpanel shows SOverall, the overall saving percentage

of the total run time which includes the time for obtaining eigenvalue (Tβ est or

Tβ cal), Chebyshev preconditioning (TCP ), and the final CG solution (TCG). SOverall

is calculated by equation 5.42.

SOverall =
Tcal

(Tcal − Test)
× 100% (5.42)

Further, in terms of the overall performance enhancement, the right bars in Figure

5.3 shows that SOverall (the overall running time reduction) is in the range of 10.28%

to 87.32%. The average SOverall is 40.99%, and the SOverall for the two largest systems
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each having 2000-plus buses are 38.84% and 44.66%. Those numbers show that the

proposed approach is very promising for large scale systems.

5.4.3 Discussions

The eigenvalue range (0, 2] proven in Chapter 5.1 is a sufficiently good estimation

of the eigenvalue range for power system applications as linearized DC power flow

(DCPF) and fast decoupled power flow (FDPF) after normalized to the largest

element. With the guidance from the second largest element η in the system,

a straightforward and effective approach for estimating the largest eigenvalue is

proposed. It may not achieve the largest eigenvalue precisely, and may increase the

number of iteration that CG solver needs to converge. However, it well serves the

goal to save the time spent on eigenvalue estimation, meanwhile without a significant

increase of iterations in the CG iterative solving step. The total execution time

including estimating the largest eigenvalue, preconditioning the matrix and iteratively

solving the linear system is significantly reduced as the computational experiment

shows.

5.5 Conclusion

Iterative solvers as alternatives to LU-based direct solvers have gained increasing

interests due to their easy implementation in parallel computation since iterative

solvers such as the Conjugate Gradient (CG) method have weak data dependency and

less memory requirements. A preconditioner is always a must for a successful iterative

solver. Chebyshev preconditioner is a polynomial method popularly discussed in the

literature. However, Chebyshev preconditioner requires the maximum eigenvalue in

order to effectively obtain the approximated inverse of the matrix. The calculation

of eigenvalues is usually time-consuming. This work first proves that the maximum

eigenvalue of many power system applications like linearized DC power flow and
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fast decoupled power flow ranges in (0, 2] after normalization, and then proposes a

maximum eigenvalue estimation method based on those specific features in power

system applications such that a fast and effective estimation of the maximum

eigenvalue can be achieved. The average saving of the execution time for eigenvalue

calculation is 98.92%, and the average saving of overall execution time is 40.99% based

on computational experiment on ten sample power systems with the largest system of

nearly 3000 buses. This makes the CG method and Chebyshev preconditioner more

promising for further performance improvement in power system computation.
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Chapter 6

Using Two-Step Preconditioning

for Conjugate Gradient Method in

Linear Computations in Power

Flow

With aforementioned development of iterative solvers and its preconditioners, as well

as the widely deployment of GPU implementation in power system computations, this

chapter will discuss using GPU-based conjugate gradient method with three precon-

ditioners, a Jacobi-like preconditioner, a polynomial Chebyshev preconditioner, and

a two-step preconditioner with Jacobi-like preconditioner first and then Chebyshev

preconditioner to accelerate the linear system solving in power flow computation,

especially for large scale systems.

6.1 Two-step preconditioning

An iterative solver does not require the reordering as direct solvers to reduce the

potential fill-in elements; however, it does require the preconditioning step to obtain
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a faster convergence in iterative solving. The preconditioner is a matrix, too. It

linearly transforms the original matrix to another one which has a narrow eigenvalue

spectrum. The narrower the eigenvalue spectrum is, the less iteration it needs to

converge in iterative solving step. An ideal preconditioner is the matrix’s inverse, and

then the preconditioned matrix would be unitary matrix which has all the eigenvalue

as 1. However, the precise inverse is too expensive to obtain for most cases. Therefore,

a good preconditioner should consider a trade-off between the easiness to obtain and

close approximation of the matrix inverse.

This work will integrate two preconditioners to precondition the original matrix.

The first of them is a Jacobi-like preconditioner, and the second one is the Chebyshev

polynomial preconditioner. Jacobi preconditioner will take the diagonal elements

of the original matrix first, and then use the inverse of each element to form the

preconditioner as equation 6.1 shown below. This preconditioner usually works for

matrices which the values of diagonal elements are dominant. The linear systems in

power flow computations are within such category. The diagonal elements are larger

or equal to the sum of the absolute value of off-diagonal elements. Therefore, Jacobi

preconditioner is selected as the first preconditioner.

Jii = 1/Aii (6.1)

In order to keep the symmetry of the preconditioned matrix, the final precon-

ditioner will be as equation 6.2 shows. The preconditioned matrix is as equation

6.3 states. After the Jacobi-like preconditioner is applied, the diagonal elements of

would be all 1. In order to simplify the description, we will still call this Jacobi-like

preconditioner as Jacobi preconditioner in this work.

Jii = 1/
√
Aii (6.2)

Ap = JAJ (6.3)
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Chebyshev preconditioner is as section 4.1.2 introduces. In this chapter, we keep

the G notation for Chebyshev preconditioner. The final preconditioned matrix is

shown in equation 6.4. One of the advantages of Chebyshev polynomial is that it will

retain the symmetry of the original matrix. Therefore, only a left-precondition will

be performed. The two-step preconditioner in equation 6.4 is named as JaCh.

App = GAp = GJAJ (6.4)

As a result, the solution of linear equation Ax = b would be alternatively solved

through equation 6.5 and then use equation 6.6 to reach the solution x.

GJAJy = GJb (6.5)

x = Jy (6.6)

6.2 Implementations

The conjugate gradient solver, the Jacobi-like preconditioner and the Chebyshev

preconditioner are all scalable methods, and can be implemented with the parallel

computation platform, graphic processing unit (GPU). As previously mentioned,

the computational kernels in conjugate gradient method, Jacobi-like preconditioner

or Chebyshev preconditioner involve mainly sparse matrix/vector operations. The

implementation in this work will port the matrix and vector related operations

to GPU. The vector related operations use the functions from CUBLAS NVIDIA

(2012a), and sparse matrices operations use CUSPARSE NVIDIA (2012b).

The test systems are 57-bus and 118-bus systems from standard IEEE test

systems; 494-bus, 685-bus, and 1138-bus from MatrixMarket Boisvert et al. (1997);

and case2383wp, case2736sp, case2737wop from MATPOWER Zimmerman et al.
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(2011). We use the matrices from DC power flow to demonstrate our proposed two-

step preconditioner and iterative solver, but the same method can be applied to

the linear matrices in fast decoupled power flow. Please note that the whole set of

implementation can be considered as guidelines to other applications that are also

positive symmetric definite, and have dominant diagonal elements.

The experiments are carried on a server equipped with NVIDIA Tesla M2070 GPU,

which has 14 stream multiprocessors and each multiprocessor has 32 CUDA cores.

The server has 8-core Xeon E5607 2.27GHz CPU and 24 GB memory. The CUDA

driver version is 5.0 and GCC version 4.7.3. Operating system is Ubuntu 12.04. In

order to keep the same precision as Matlab, all C/CUDA implementation are based

on double-precision floating point operations. The stop criterion for iterative solver

is relative residual smaller than 1e−4. The degree for Chebyshev preconditioner is

selected as 2 with the consideration of preconditioning effects and the extra non-zero

fill-ins that a deeper degree of Chebyshev preconditioner could bring as Chapter 4

indicates.

6.3 Computational results

In this section, the computational results will be presented when the proposed

implementation is applied to practical test systems. The condition number reduction

will be shown first, followed by the iteration reduction. The performance comparison

between Matlab implementation on CPU and C/CUDA implementation on GPU will

be provided at last.

6.3.1 Condition number reduction

Condition number is considered as a good indicator of how fast the iterative solver

can converge. Therefore, for a specific system, if the condition number is reduced,

the number of iteration can be expected to decrease. Table 6.1 shows the condition
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Table 6.1: Comparison of Condition Number

System Original W/Jacobi W/Chebyshev W/JaCh

IEEE-57 1.63E+03 5.37E+02 3.32E+02 1.28E+02

IEEE-118 4.85E+03 1.88E+03 9.41E+02 3.70E+02

494-bus 3.89E+06 4.04E+05 6.49E+05 8.47E+04

685-bus 5.31E+05 6.11E+04 8.85E+04 1.49E+04

1138-bus 1.23E+07 2.46E+06 2.07E+06 4.75E+05

Case2383wp 7.51E+05 2.58E+05 1.51E+05 4.88E+04

Case2736sp 1.09E+06 2.31E+05 2.30E+05 4.52E+04

Case2737sop 1.09E+06 2.32E+05 2.30E+05 4.54E+04

number comparison among the original system, system with Jacobi preconditioner,

system with Chebyshev preconditioner, and system with the two-step preconditioner.

The first column of Table 6.1 shows the systems under experiments. The second

column gives the condition number of the original systems. The third and fourth

column show the condition number when the original system is preconditioned by

the Jacobi preconditioner and by the Chebyshev preconditioner, respectively. The

last column shows the condition number when the original matrix is preconditioned

by the Jacobi preconditioner first and then by Chebyshev preconditioner, i.e. the

two-step preconditioner JaCh. The results in Table 6.1 show clearly that the original

systems without any preconditioning have the greatest condition number value. For

most of the systems, Chebyshev preconditioner can result in smaller condition number

than the simple Jacobi preconditioner. However, for 494-bus and 685-bus, the Jacobi

preconditioner can perform better. The two-step preconditioner JaCh can always

provide the smallest condition number.
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Table 6.2: Comparison of Number of Iteration

System Original W/Jacobi W/Chebyshev W/JaCh

IEEE-57 54 40 26 17

IEEE-118 106 68 55 29

494-bus 1083 395 412 166

685-bus 497 205 220 84

1138-bus 2007 900 603 375

Case2383wp 1848 926 449 391

Case2736sp 2580 766 613 316

Case2737sop 2513 725 450 299

6.3.2 Iteration comparison

Table 6.2 shows the number of iteration which the conjugate gradient solver needs with

different preconditioners. For most cases, Chebyshev preconditioner can make the

iterative solver converge faster. But, similar to Table 6.1, 494-bus and 685-bus need

less number of iterations when preconditioned by Jacobi preconditioner. However,

when the two preconditioners are combined together, the number of iteration the

conjugate gradient solver needs is reduced most significantly.

6.3.3 Performance improvement

Conjugate gradient solver, Jacobi preconditioner and Chebyshev preconditioner

all have parallel potentials. Therefore this section will show the performance

improvement if they are implemented with parallel hardware GPU. In an iterative

solving process, the preconditioner will be generated first, and then the preconditioned

iterative solver will achieve the solution of the linear equations. Table 6.3 and Table

6.4 show the computation time including the time of constructing preconditioners

and the time for conjugate gradient iterative solver to converge on CPU and GPU

platform respectively. There are three preconditioners under discussion for each
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Table 6.3: Performance Result of CPU Implementation

System W/Jacobi(s) W/Chebyshev(s) W/Jach(s)

IEEE-57 0.0056 0.0031 0.0033

IEEE-118 0.0098 0.0070 0.0063

494-bus 0.0689 0.0768 0.0460

685-bus 0.0605 0.0674 0.0486

1138-bus 0.2292 0.2050 0.1675

Case2383wp 0.4598 0.3526 0.3935

Case2736sp 0.7297 0.7136 0.5624

Case2737sop 0.7190 0.5898 0.5456

implementation, Jacobi, Chebyshev, and the two-step preconditioner JaCh. It can be

seen from Table 6.3 and Table 6.4 that the time of the CPU implementation increases

more significantly than the time the GPU implementation consumes with the increase

of the system size. This conclusion is true for all the three preconditioners, and proves

the advantage of the parallel implementation of the conjugate gradient solver and the

three preconditioners chosen here.

Table 6.5 gives the performance improvement of GPU implementation over CPU

implementation for each preconditioner. GPU can hardly achieve any performance

improvement for smaller systems, i.e. the IEEE-57 and IEEE-118 systems. The reason

is that the speedup from parallel implementation is not able to offset the time overhead

of data movement between CPU and GPU. For system larger than IEEE-118, the

GPU implementation can always perform better than Matlab implementation on

CPU. The conjugate gradient solver with the two-step preconditioner Jach accelerates

the computation better than the other two preconditioners. The speedup can reach

up to 8.9x for the largest test system here, while the speedup can only reach around

6x if any of the two preconditioners is applied alone.

82



Table 6.4: Performance Result of GPU Implementation

System W/Jacobi(s) W/Chebyshev(s) W/Jach(s)

IEEE-57 0.0064 0.0060 0.0053

IEEE-118 0.0109 0.0111 0.0075

494-bus 0.0658 0.0753 0.0347

685-bus 0.0328 0.0431 0.0203

1138-bus 0.1450 0.1099 0.0728

Case2383wp 0.1518 0.0877 0.0789

Case2736sp 0.1237 0.1181 0.0662

Case2737sop 0.1174 0.0875 0.0613

Table 6.5: Performance Improvement of GPU Implementation Over CPU
Implementation

System W/Jacobi(s) W/Chebyshev(s) W/Jach(s)

IEEE-57 0.88 0.52 0.62

IEEE-118 0.90 0.63 0.84

494-bus 1.05 1.02 1.32

685-bus 1.84 1.56 2.40

1138-bus 1.58 1.87 2.30

Case2383wp 3.03 4.02 4.99

Case2736sp 5.90 6.04 8.50

Case2737sop 6.12 6.74 8.90
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6.4 Conclusion

With the development of computation technology and modern power system, the

ability of simulating or analyzing large scale system will be a trend. The efficiency

of linear computations is critical to the performance of power system applications.

Large scale computations call for scalable algorithms and implementations. This

work discusses using conjugate gradient iterative solver and three preconditioners,

Jacobi, Chebyshev, and the two-step Jach preconditioner to present a scalable method

to solve the linear computations in power flow. The results show that the two-

step preconditioner Jach can significantly improve the convergence rate of conjugate

gradient solvers for power system applications. Besides, this work implements

the iterative solver and preconditioners on the GPU platform, and hence presents

a performance study of the conjugate gradient method with the three different

preconditioners between Matlab implementation on CPU and CUDA implementation

on GPU. Results show that the overall speedup of GPU implementation over

corresponding Matlab implementation can reach up to 8.9x for the largest test

system with the Jach preconditioner. This work demonstrates great potential for

using preconditioned iterative solvers and GPU implementation to accelerate linear

computations in power system applications.
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Chapter 7

Using GPU-based Iterative Solver

and Two-Step Preconditioning

with Inexact Linear Solution in

Fast Decoupled Power Flow

There are many power system applications that rely on the computation of power

flow. For example, contingency screening Huang et al. (2009) Yuan and Li (2015)

Fang et al. (2015) will include many power flow calculations to assess the influence if

one or more system components are lost. Online security assessment asks the power

flow computation to be finished as fast as possible so that there will be sufficient

time left for the control unit or the operator to act. Additionally, the integration

of renewable energy brings uncertainty to the power grid. Multiple power flows may

need to be finished to understand the activities of different expected renewable events

Huang et al. (2015b) Huang et al. (2015a) Angelis-Dimakis et al. (2011). Besides,

there are other power system applications that need to use Monte Carlo method which

may include repeated power flow computation Torquato et al. (2014) Xu et al. (2013).

Therefore, a computationally efficient power flow is of great importance, especially for
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large scale systems. In this situations, the whole electric power grid becomes more

and more complex due to the penetration of renewable energy, the integrations of

distributed energy storage Abbey and Joos (2009) Huang et al. (2011) Xiao et al.

(2014a) Xiao et al. (2014b) Bai et al. (2015), electrical vehicle Kempton et al. (2001)

Cui et al. (2015) and advanced control scheme Amin and Wollenberg (2005) Xu et al.

(2015) etc.

As introduced in Section 3, fast decoupled power flow (FDPF) offers an alternative

way to solve power flow. Chapter 6 discussed that the GPU-based two-step

preconditioner JaCh is effective in improving the performance of the iterative solver.

This chapter will integrate such implementation with fast decoupled power flow to

provide a complete FDPF solver chain. The performance comparison with the original

MATPOWER version of fast decoupled power flow will be followed. An inexact linear

solution method will also be introduced in this Chapter, and related performance

improvement will be presented as well.

7.1 Algorithm level introduction of fast decoupled

power flow

Fast decoupled load flow makes certain simplifications and can provide a simpler

and more reliable solution than Newton’s power flow Stott and Alsac (1974).

Unlike Newton-Raphson method, which keeps updating the Jacobian matrix in every

iteration, FDPF will use the same matrix B′ and B′′. As a result, it has a lower

memory requirement.

Figure 7.1 is the flowchart for how FDPF completes the computation. Compared

with Newton Raphson load flow, fast decoupled load flow decouples the system with

the assumption that buses close to each other tend to have small differences in phase

angle, and does not update the Jacobian matrix every iteration. Such simplifications

bring many advantages especially from computational considerations.
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Figure 7.1: Flowchart of fast decoupled power flow
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• The solution of the original linear system is broken down to the solution of two

independent linear systems. Each of the new linear system is about half the

size of the original one.

• Storage space requirement is reduced because two sub-matrices (namely, J2 and

J3) in the Jacobian matrix are approximated to zero matrices, and hence will

be ignored during computation.

• The use of constant matrix B and B throughout the computation provides

sufficient chances for data reuse.

• The computational time spent on updating Jacobian matrix is saved.

Besides, the algorithm shown in Figure 7.1 also employs partial updates for the

convergence checking. In another word, after the computation of either ∆V a or ∆V m,

the algorithm will check whether the current solution is precise enough. If so, the

algorithm will stop and exit with the valid solution. If it cannot be converged within

a preset maximum number of iterations, it will exit without a valid solution. This

method may reduce one PQ iteration compared with checking mismatch of P and Q

once every PQ iteration.

Please note that since fast decoupled power flow itself is an iterative method as

well, we refer to the Newton iteration in FDPF as PQ iteration, and use iteration

dedicatedly for the iterations of iterative CG solver in this chapter.

7.2 Inexact linear solution in FDPF

Fast decoupled power flow is an iterative method to reach the solution of power flow.

The target of the inner linear solving is to gradually approach the solution of the

non-linear equations through the outer iteration, i.e. PQ iteration for FDPF. Since

the outer iteration itself is an approaching process too, the solution of the inner

equations does not have to be very precise. In this case, the iterative linear solve
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can bring another benefit, controllable precision, while the direct method can only

generate precise solutions.

Therefore, an inexact inner linear solution in fast decoupled load flow is proposed

in this chapter. The iterative solvers will put the vector-to-solve x(i) back into the

linear equation Ax = b to check the norm of Ax(i)−b, which is the relative residual as

defined in equation 7.1. The iterative solver stops when the relative residual is smaller

than a preset threshold (τ). We will use different τ as the stop criterion of the linear

solving loop and compare both the number of iterations and the performance of the

GPU-FDPF with inexact linear solution (ILS).

rr =
||Ax(i)− b||
||b||

(7.1)

The relative residual of conjugate gradient method will generally keep a decreased

trend. In other words, a smaller tolerance will lead to more iterations while a

larger tolerance is expected to use less iteration; a smaller tolerance (τ) will usually

guarantee that the outer loop has no delay to reach, while a larger tolerance may

make the outer loop take more iterations to converge because of the lower precision

of the inner loop. With such features, we can adjust the relative residual (see line 5

of Figure 4.2) to balance the iterations needed by both the outer loop and the inner

loop to improve the overall performance.

7.3 Implementation

7.3.1 Fast decoupled power flow

The proposed GPU-based fast decoupled power flow is integrated with MATPOWER

Zimmerman et al. (2011). Because FDPF does not have to update matrix B′ and

B′′ every iteration as Newton Raphson method updates the Jacobian matrix, and

considering the overhead of GPU memory transferring, our proposed implementation

will move all matrices, including matrix B′, B′′ and their preconditioners to GPU
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Figure 7.2: How GPU works with MATPOWER

before entering the PQ loop. All the matrices will be staying on GPU for the entire

computation. The linear computations (S1) and (S2) in Figure 7.1 are carried out on

GPU. The other parts involve less linear computation and, hence, will still be finished

by MATPOWER on CPU. Therefore, the recurring traffic between GPU and CPU

under such implementation will be limited to the updates of vector ∆V a, ∆V m and

the mismatch, while the copy of matrix B′, B′′, and their preconditioners will be a

one-time copy only.

Figure 7.2 shows how GPU-based linear solvers and preconditioners work with

MATPOWER on CPU. MATPOWER will first read the system case file and prepare

the matrix B′ and matrix B′′. After matrices B′ and B′′ are ready, they will be

sent to GPU directly. Since the construction of Jacobi preconditioner needs the

diagonal elements and hence will involve intensive index comparison work, the Jacobi

preconditioner is formed on CPU and then sent to GPU. After GPU receives B′ and

B′′, it will begin to allocate memory for B′ and B′′, their preconditioners, and some
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recurring intermediate parameters. Because Chebyshev preconditioner needs no other

information but the matrix itself, GPU will formulate the Chebyshev preconditioner

after it receives B′ and B′′. The steps above are one time preparation for one fast

decoupled power flow and can be considered as the initialization. Please note that

once GPU receives B′, B′′ and their preconditioners, all these matrices will not be

transferred around between CPU and GPU. They will be staying on the GPU for the

whole life time of one FDPF computation. The most time-consuming part of GPU

computation is memory-related operations, and such implementation makes sure that

there will be no unnecessary memory movement between CPU and GPU.

MATPOWER on CPU will calculate the mismatch and send current active power

P to GPU so that GPU can solve the equation B′∆Va = P to get ∆Va as step (S1)

shows. The two-step preconditioner discussed in Chapter 6 will be deployed using

the conjugate gradient method to solve the linear equations on GPU. After GPU gets

the solution ∆Va, it will be sent back to CPU, MATPOWER will use this updated

∆Va to calculate current mismatch and get the new value of P and Q. Then new

reactive power Q will be sent to GPU to get the solution of ∆Vm from preconditioned

B′′∆Vm = Q as step (S2) shows. As previously mentioned, the preconditioned system

is solved by JaCh preconditioner and the conjugate gradient iterative solver. With

the new Q value, updated ∆Vm will be sent back to CPU and a new PQ iteration

will begin.

With that all been discussed, it is clear that after entering the loop, all the memory

movement is limited to vector transferring only, i.e. vector P , Q, ∆Va and ∆Vm.

Compared with copying back and forth matrices, the vector copy is a light-weighed

operation. Because of the recurring usage of the copied matrices, the copying overhead

is well offset, too. The elimination of unnecessary data copies and abundant data reuse

(matrix B′, B′′ and their preconditioners) make such implementation promising in

improving the performance.
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7.3.2 GPU-based iterative solver

The conjugate gradient solver is a scalable method and can be implemented with

the parallel computation platform, graphic processing unit (GPU). Its algorithm can

be found in Figure 4.1. The computational kernels in the conjugate gradient method

involve mainly sparse matrix/vector operations. The implementation in this work will

port the matrix and vector related operations to GPU. The vector related operations

use the functions from CUBLAS NVIDIA (2012a), and sparse matrices operations

use CUSPARSE NVIDIA (2012b).

The experiments are carried on a server equipped with NVIDIA Tesla M2070

GPU, which has 14 stream multiprocessors and each multiprocessor has 32 CUDA

cores. The server has 8-core Xeon E5607 2.27GHz CPU and 24 GB memory. The

CUDA driver version is 5.0 and GCC version 4.7.3. The operating system is Ubuntu

12.04. In order to keep the same precision as Matlab, all C/CUDA implementation

are based on double-precision floating point operations. The stop criterion τ for

iterative solver is relative residual smaller than 1e−3. The degree for the Chebyshev

preconditioner is selected as 2 with the consideration of preconditioning effects and

the extra non-zero fill-ins that a deeper degree of Chebyshev preconditioner could

bring as Chapter 4 indicates.

7.3.3 GPU-based preconditioner

As Chapter 6 discussed, the JaCh preconditioner can significantly improve the

performance of conjugate gradient method. Therefore, in this Chapter, GPU-based

JaCh and the iterative solver will be integrated with MATPOWER to implement a

GPU-based fast decoupled load flow. The construction of preconditioner JaCh is as

Chapter 6.1 describes.

The estimation of the largest eigenvalue to construct the preconditioner will use

the method proposed in Chapter 5. The first step preconditioning uses a Jacobi-like

preconditioner as equation 6.2 shows. The matrix preconditioned by a Jacobi-like
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Table 7.1: Test Systems Based on Polish System

System Origins

case2383wp Test system in MATPOWER, Polish system

case3012wp Test system in MATPOWER, Polish system

case10790 case3012wp × 2 and case2383wp × 2

case13173 case3012wp × 2 and case2383wp × 3

Table 7.2: Test Systems Based on Pan-European System

System Origins

case1354pegase Test system in MATPOWER, Pan-European system

case2869pegase Test system in MATPOWER, Pan-European system

case5738 case2869pegase × 2

case9241pegase Test system in MATPOWER, Pan-European System

case11624 case9241pegase and case2383wp

preconditioner will become a symmetric matrix which has all the diagonal elements

equal to 1. Therefore, based on the discussion in Chapter 5.3, if all the elements

in matrix B′ and B′′ are from (−1, 1], then the range of all the eigenvalues will

be 0 < λ ≤ 2. Hence we use the estimated λmax = 2 to construct the second

step preconditioner, the Chebyshev preconditioner. There is no need to spend extra

computational time calculating the largest eigenvalue.

7.3.4 Experiments setup

The test systems are categorized into two groups based on their different adjacent

features. The first group is based on the Polish system from MATPOWER as Table

7.1 shows. We choose case2383wp and case3012wp as the base case, and use them

to construct two synthetic systems, case10790 and case13173. The second group is

based on the Pan-European grid as Table 7.2 shows. Case1354pegase, case2869pegase

and case9241pegase are the original cases from MATPOWER. Two more synthetic
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Figure 7.3: Sparsity pattern of case2383wp and case9241pegase.
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systems case5738 and case11624 are formed to expand the test cases as well. We

choose XB version of FDPF in MATPOWER.

Figure 7.3 shows the sparsity layout of B′ and B′′ of the typical cases from

each category. Case2383 is based on the Polish system which shows several groups

of locally connected subsystems, while the Pan-European system shows a more

tightly coupled large system. Their different connection patterns yield different

computational results, and we therefore categorize them into two groups and will

discuss each separately in following sections. The sparsity pattern of all the test

systems can be found in appendix A.

7.4 Computational results of GPU-Based FDPF

7.4.1 Precision and convergence

Section 6 concludes that CG iterative solver with JaCh can provide the best

performance among no preconditioner and the other two standalone preconditioners.

Therefore CG with JaCh will be used to solve the linear equations in the GPU-based

fast decoupled power flow in this chapter, and then the results will be compared with

the original MATPOWER.

Figure 7.4 and Figure 7.5 show the convergence process of the CPU-based and

GPU-based FDPF from MATPOWER with the two groups of example cases. All of

the convergence traces of GPU-FDPF match that of the CPU-FDPF very well, except

the Q iteration of case9241pegase and case11624. However, even for these two cases,

the deviation only begins when the norm of Q is smaller than 10−6. Additionally,

all of the test cases converge with the same number of PQ iterations as that of the

CPU-FDPF. In other words, the inner linear iterative solver does not influence the

outer PQ iteration at all. Therefore, it can be concluded that our GPU-FDPF has

similar precision and convergence property as the original CPU-based FDPF.
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Figure 7.4: Convergence comparison between GPU-based and CPU-based FDPF
for Polish systems variations
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Figure 7.4: Continued
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Figure 7.5: Convergence comparison between GPU-based and CPU-based FDPF
for Pan-European system variations
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Table 7.3: Performance Comparison

System CPU-FDPF (s) GPU-FDPF (s) Speedup

case2383wp 0.56 2.03 0.28

case3012wp 0.54 2.91 0.19

case10790 1.79 1.93 0.93

case13173 2.25 1.98 1.14

case1354pegase 0.14 0.38 0.38

case2869pegase 0.53 0.79 0.67

case5738 1.05 0.82 1.29

case9241pegase 8.79 8.47 1.04

case11624 9.37 8.37 1.12

7.4.2 Performance

Table 7.3 compares the performance of the CPU-FDPF and the GPU-FDPF. It can

be seen that for the test systems that are around 10000-bus scale, GPU-FDPF can

provide better performance. For Pan-European systems, because they have a denser

connection (Figure 7.3 and appendix A) than the Polish system, the matrices B′ and

B′′ are denser too. Hence, the data and computations involved are enough to better

drive the GPU’s parallel data processing ability. As a result, GPU-FDPF performs

better than CPU-FDPF for Pan-European system starting from system larger than

5000-bus scale.

7.5 Computational results of GPU-based FDPF

with inexact linear solution

7.5.1 Precision and convergence

The results in previous section show that the GPU-FDPF can provide similar

computational results and better performance compared with CPU-FDPF for larger
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Figure 7.6: Conjugate gradient convergence with relative residual as 0.1, 0.01 and
0.001 for the solution of the first ∆Va of FDPF for case1354pegase.

scale systems. This section will discuss applying the inexact linear solution (ILS) into

fast decoupled power flow to further improve the performance. We choose the stop

criterion τ to be 0.01 and 0.1 to relax the precision of the iterative linear solution

inside the PQ iterations. A less precise stop criterion will always lead to a smaller

number of iterations for conjugate gradient method to converge, and hence cost less

runtime. Figure 7.6 shows the convergence process for the first solution of ∆Va

with test system case1354pegase. It shows clearly that when the stop criterion are

set differently, the number of iterations changes significantly. For the GPU-FDPF

discussed in the last section, the tolerance for relative residual is set to 1e−3, and it

takes over 100 iterations to converge to 1e−3. If we set the stop criterion to 0.01, as

the middle subplot shows, the iterative solver will be converged around 20 iterations.

The top subplot even converges within 10 iterations when the stop criterion is set to

0.1. The x-axis of the three subplots is set to the same scale to compare the number

of iteration reduction. Obviously the first subplot can provide more performance
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improvement. We name the stop criterion for relative residual 0.1 and 0.01 as ILS

(inexact linear solution) 0.1 and ILS 0.01 in following discussions for the consideration

of simplicity. We will continue to call the one with stop criterion 1e−3 GPU-FDPF

for consistency.

Figure 7.7 and Figure 7.8 show the convergence process in terms of every half PQ

iteration for two groups of example cases with CPU-FDPF, GPU-FDPF, GPU-FDPF

ILS (0.1) and GPU-FDPF ILS (0.01). GPU-FDPF can track the trace of CPU-FDPF

precisely for most cases as discussed in Chapter 7.4. GPU-FDPF ILS (0.01) keeps

relative similar converge process as CPU-FDPF, but there are some exceptions such

as case2383wp, case1354pegase etc. It still can keep a similar number of PQ iterations

as CPU-FDPF.

GPU-FDPF ILS (0.1) is the one with largest stop criterion (τ = 0.1), i.e. the

most imprecise one. The inner linear solving generally requires less iterations to

converge as Figure 7.6 shows. The loss of precision in the inner loop will cause the

increase of the outer loop as every example case in Figure 7.7 and 7.8 have shown.

Besides, the convergence process of GPU-FDPF ILS(0.1) has an obvious gap from

CPU-FDPF and other implementations of GPU-FDPF. However, GPU-ILS(0.1) can

always manage to converge to the preset tolerance of PQ iteration, and hence solve

the fast decoupled power flow.
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Figure 7.7: Convergence comparison between GPU-based and CPU-based FDPF
for Polish systems variations
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Figure 7.8: Convergence comparison between GPU-based and CPU-based FDPF
for Pan-European system variations
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Table 7.4: Comparison of FDPF Iterations

System
CPU-FDPF GPU-FDPF

GPU-FDPF GPU-FDPF

ILS (0.01) ILS (0.1)

P Q P Q P Q P Q

case2383wp 18 17 18 17 18 17 19 18

case3012wp 9 8 9 8 9 8 10 10

case10790 10 10 10 10 10 10 12 12

case13173 10 10 10 10 10 10 12 12

case1354pegase 8 7 8 7 9 8 11 11

case2869pegase 9 9 9 9 9 9 12 11

case5738 9 9 9 9 9 9 12 11

case9241pegase 14 13 14 13 14 13 15 14

case11624 14 13 14 13 14 13 16 15

7.5.2 Performance

Table 7.4 shows that there are generally two or more PQ iterations for each increase of

GPU-FDPF ILS (0.1) because of the introduction of inexact linear solutions. Figure

7.9 shows the total runtime of the FDPF from MATPOWER with the two groups

of test systems. As mentioned in the last section, GPU-FDPF ILS(0.1) may incur a

larger number of iterations compared with other implementations. However, because

of the inner iteration reduction, although there may be increase of the number of

PQ iteration, the GPU-FDPF ILS(0.1) provides the best performance among all the

three GPU-FDPF. It can perform better than CPU-FDPF for system staring from

3000-bus scale as Figure 7.9 shows.

Table 7.5 provides a comparison of the speedup that different implementations

can bring based on the results from Figure 7.9. It gives a more intuitive way to see

that more speedup can be reached for the inner iterative linear with a less precision.
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Table 7.5: Speedup Comparison

System
CPU-FDPF

GPU-FDPF
GPU-FDPF GPU-FDPF

(Baseline) ILS(0.01) ILS(0.1)

case2383wp 1 0.28 0.40 0.62

case3012wp 1 0.19 0.24 0.36

case10790 1 0.93 1.16 1.55

case13173 1 1.14 1.44 1.87

case1354pegase 1 0.38 0.49 0.55

case2869pegase 1 0.67 0.89 1.22

case5738 1 1.29 1.69 2.43

case9241pegase 1 1.04 1.48 2.68

case11624 1 1.12 1.54 2.86

GPU-FDPF ILS(0.1) can always provide the most speedup compared with GPU-

FDPF ILS(0.01) and GPU-FDPF. The maximum speedup that GPU-FDPF ILS(0.1)

can reach is 2.86 for case11624.

Considering the FDPF iteration results in Table 7.4, more FDPF iterations will

not necessarily lead to more execution time. Although all the inexact iterative linear

solution (GPU-FDPF ILS(0.1) and GPU-FDPF ILS(0.01)) makes FDPF need one or

several extra FDPF iterations, they can provide an overall performance improvement

for systems that are sufficiently large.

Finally, Figure 7.10 shows the runtime comparison between the original MAT-

POWER FDPF on CPU with GPU FDPF with ILS (0.1) and also CPU FDPF

ILS (0.1). CPU-FDPF uses the original back slash solver in Matlab to solve the

linear equations S1 and S2 as in Figure 7.1. GPU-FDPF ILS(0.1) is as we discussed

previously. CPU-FDPF ILS(0.1) uses the exact same algorithm as GPU-FDPF

ILS(0.1), i.e. with two-step preconditioner and conjugate gradient solver, to solve

the linear equations of step S1 and S2 with Matlab, and the ILS threshold is selected

to be 0.1, which has proven to be the most efficient one.
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In Figure 7.10, CPU-FDPF and GPU-FDPF ILS(0.1) take about the same time

to finish the whole fast decoupled power flow. However, CPU-FDPF ILS(0.1) takes

much more time than the first two. For case11624, CPU-FDPF ILS(0.1) takes almost

60,000 seconds to finish, while CPU-FDPF and GPU-FDPF ILS (0.1) take only 9 and

3 seconds to finish the computation respectively. This figure demonstrates that there

is no universal algorithm for every hardware platform. The algorithm has to closely

match the features of the computation hardware to better serve the goal of efficient

computation. CPU itself can finish the FDPF within an acceptable time frame.

However, if an improper algorithm is chosen, the performance will be significantly

degraded.

7.6 Scalability discussion

The background of this work is that LU does not scale well with the increase of

problem size, therefore we try to explore the possibility of iterative solvers, which are
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Figure 7.11: Runtime breakdown of LU decomposition and other operations.

scalable method for solving linear systems. Our experiments demonstrate this point.

Figure 7.11 shows the runtime breakdown of the CPU-FDPF for different systems.

We separate the LU decomposition from all the other operations of one FDPF, and

show the percentage of time that the LU decomposition occupies within one FDPF

calculation. It can be seen from the figure that over half of the total runtime is

used for LU decomposition in all of the cases. For case9241pegase and case11624 in

particular, over 90% of the total runtime is spent on LU decomposition. Therefore,

when system scale is large enough, LU decomposition could be expensive, and the

iterative solver becomes a better choice for solving the linear systems because of its

scalability.
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7.7 Conclusion

This section discusses the GPU-based FDPF with a two-step preconditioner and 1)

iterative linear solution and 2) two inexact linear solution method. The GPU-FDPF

is able to provide performance for several 10000-bus systems and case5738. The GPU-

FDPF with inexact linear solution (τ = 0.01) and stop criterion can provide speedup

for one extra system (case10790).

The maximum speedup with GPU-FDPF ILS(0.1) can reach 2.86x for test

system case11624 compared with the FDPF in MATPOWER. GPU-FDPF ILS(0.1)

can provide performance improvement for case10790, case13173, case2869pegase,

case5738 and case9241pegase, too. The performance improvement comes from several

aspects. The first is that the inexact linear solving is effective in reducing the time

cost for inner loop iterations. The second one comes from the two-step preconditioner,

which sufficiently reduces the number of CG solver iterations. The third improvement

could be contributed to the GPU parallel implementation. The forth is from the

scalability issues direct method can not avoid when a system is exceptionally large,

while the iterative solver and certain preconditioners can provide a scalable solution

that performs well for large scale systems.

Previous GPU integrated power flow computations focus more on the performance

improvement of one step of linear computation. This work integrates the GPU-based

preconditioned iterative linear solver with fast decoupled power flow and demonstrates

the performance improvement over standard Matlab implementations. The power

system applications require intensive power flow solutions, such as N-1 contingency

screen, online security assessment, and simulation with renewable energy, and they

can benefit from this accelerated GPU-based fast decoupled power flow with inexact

linear solution.
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Chapter 8

Conclusions

The tasks for research on power system computations should be two-fold. The first

task is to get more information about the system, which requires the newly developed

method to be scalable enough to process large scale systems. The second task is to

determine how to finish the processing of these information on time, which requires

the newly developed method to be computationally efficient. Both of these require

computation techniques or algorithms that are scalable, especially with penetration of

renewable energy and usage of distributed energy storage, etc, which complicate the

whole system. Power system itself is modeled as a nonlinear system. However, they

will be transfered to a series of linear systems to be solved. How to solve these linear

equations efficiently is critical to accelerating the computations in power systems.

This work tries to integrate parallel computation methods, especially those can be

implemented with the newly developed hardware graphic processing unit (GPU), to

current power system linear computations, with the expectation to improving the

computation ability and capacity of current power system computations.

This work presented a complete study from the basic linear solution to the

whole process of fast decoupled power flow. The discussion about linear solution

included using conjugate gradient method with Chebyshev preconditioner, Jacobi

117



preconditioner and a two-step preconditioner JaCh. The maximum speedup for GPU-

based conjugate gradient solver and Chebyshev preconditioner over corresponding

CPU implementation reaches up to 10.79 times for system case2736sp. The GPU-

based JaCh preconditioner and conjugate gradient solver can achieve 8.9 times

speedup compared with corresponding CPU implementation. Supporting discussion

includes a quick estimation of the largest eigenvalue of the linear system, which is an

essential parameter for the Chebyshev preconditioner. This quick estimation reduces

to negligible the time spend on the computation of the largest eigenvalue.

The discussion about fast decoupled power flow integrates the most computa-

tionally efficient iterative solver and preconditioner from the first part of discussion

into MATPOWER-based fast decoupled power flow. An inexact linear solving with

relaxed stop criterion further improves the performance of the GPU-based iterative

solver. The speedup of the GPU-FDPF with inexact linear solution can be almost 2

times faster than the native MATPOWER implementation for test system case11624.

Another point the author would like to emphasize is the scalability limitation of

the LU-based direct linear solving method. Our discussion on comparison of the GPU-

FDPF and MATPOWER-FDPF gives a figure (Figure 7.11) showing the percentage

of the LU decomposition time out of the total runtime. When the system is getting

larger, say, thousands buses scale, the time spent on LU decomposition rather than

the PQ iterations actually dominates the whole computation. Therefore, the author

would like to suggest considering an iterative linear solver or other scalable method

to do such fundamental computations like linear solving when a large scale power

system or other type of linear system is under discussion.

This dissertation explores the integration of GPU and related scalable algorithms

as well as software implementation to solve the linear equations in power system

applications more efficiently, so as to deal with the rapidly growing complexity of

modern power systems. The experiments for basic linear solving and the integration

of fast decoupled power flow demonstrate great potential for the application of GPU-

based scalable methods into more power system applications.
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Appendix A

Sparsity Patterns
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Figure A.1: Sparsity pattern of case3012wp
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Figure A.2: Sparsity pattern of case10790
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Figure A.3: Sparsity pattern of case13173
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Figure A.4: Sparsity pattern of case1354pegase
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Figure A.5: Sparsity pattern of case2869pegase
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Figure A.6: Sparsity pattern of case5738
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Figure A.7: Sparsity pattern of case11624
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