
Weierstraß-Institut

für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

A multilevel Schur complement preconditioner with ILU

factorization for complex symmetric matrices

Rainer Schlundt

submitted: November 26, 2018

Weierstrass Institute

Mohrenstr. 39

10117 Berlin

Germany

E-Mail: rainer.schlundt@wias-berlin.de

No. 2556

Berlin 2018

2010 Mathematics Subject Classification. 65F08, 65F15, 65N22, 65Y05.

Key words and phrases. Complex symmetric sparse linear system, Schur complement, multilevel preconditioner, incom-

plete LU factorization, Bunch-Kaufman pivoting, domain decomposition, low rank approximation.



Edited by

Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)

Leibniz-Institut im Forschungsverbund Berlin e. V.

Mohrenstraße 39

10117 Berlin

Germany

Fax: +49 30 20372-303

E-Mail: preprint@wias-berlin.de

World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


A multilevel Schur complement preconditioner with ILU

factorization for complex symmetric matrices

Rainer Schlundt

Abstract

This paper describes a multilevel preconditioning technique for solving complex symmetric

sparse linear systems. The coefficient matrix is first decoupled by domain decomposition and

then an approximate inverse of the original matrix is computed level by level. This approximate in-

verse is based on low rank approximations of the local Schur complements. For this, a symmetric

singular value decomposition of a complex symmetric matix is used. The block-diagonal matrices

are decomposed by an incompleteLDL
T factorization with the Bunch-Kaufman pivoting method.

Using the example of Maxwell’s equations the generality of the approach is demonstrated.

1 Introduction

We consider iterative methods for solving large sparse systems

Ax = b, (1)

where A ∈ C
n×n, A = AT , A 6= AH , b ∈ C

n, and x ∈ C
n. Krylov subspace methods combined

with a preconditioner solve the above system (1). For example, left preconditioning consists of modify-

ing the original system into the system M−1Ax = M−1b. The preconditioner M is an approximation

to A. The solve of the preconditioned system is relatively inexpensive.

The domain decomposition (DD) approach decouples the original matrix A. We do not form the global

Schur complement system and do not solve it exactly. Let A be partitioned in 2× 2 block form as

A =

(

B E
ET C

)

, (2)

where B ∈ C
m×m, C ∈ C

s×s, E ∈ C
m×s, and n = m+ s. We will receive the following basic block

factorization of (2)

A =

(

B E
ET C

)

=

(

I 0
ETB−1 I

)(

B 0
0 S

)(

I B−1E
0 I

)

, (3)

where S ∈ C
s×s, S = C − ETB−1E, is the Schur complement. Using

A−1 =

(

I −B−1E
0 I

)(

B−1 0
0 S−1

)(

I 0
−ETB−1 I

)

, (4)

the original system (1) can be easily solved if S−1 is available. The goal is to approximate S−1 such

that S−1 ≈ C−1+LRA = S̃−1, where LRA stands for low rank approximation matrix. The precon-

ditioner M then has the following form

M =

(

I 0
ETB−1 I

)(

B 0

0 S̃

)(

I B−1E
0 I

)

. (5)
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R. Schlundt 2

We can write

S = C − ETB−1E = C1/2
(

I − C−1/2ETB−1EC−1/2
)

C1/2 = C1/2
(

I −G
)

C1/2
(6)

and

S−1 = C−1/2
(

I −G
)−1

C−1/2 = C−1 + C−1/2G
(

I −G
)−1

C−1/2 . (7)

The symmetric matrix G ∈ C
s×s has a symmetric singular value decomposition (SSVD)

G = C−1/2ETB−1EC−1/2 = WΣW T , (8)

where W is a unitary matrix and Σ = diag(σ1, . . . , σs) with nonnegative σi (cf. [1]). Then LRA

is an approximation of C−1/2G
(

I − G
)−1

C−1/2. The remaining sections are organized as follows.

Section 2 gives an overview of the domain decomposition framework and the multilevel preconditioning

technique proposed in [10]. The incomplete LDLT factorization with the Bunch-Kaufman pivoting is

discribed in Section 3. Numerical experiments of a model problem are presented in Section 4.

Implementation details for a real symmetric matrix A are described in [7, 8].

2 Domain decomposition and multilevel preconditioning

An interesting class of domain decomposition methods is the hierarchical interface decomposition

(HID) ordering (cf. [2]). An HID ordering can be obtained from a standard graph partitioning (cf.

METIS [4]). The reordered matrix has the following multilevel recursive form :

Aj = PjCj−1P
T
j =

(

Bj Ej

ET
j Cj

)

and C0 ≡ A for j = 1, . . . , lev . (9)

Pj is a permutation matrix and lev the number of levels. Each block Bj in Aj has a block-diagonal

structure resulting from this HID ordering. Analogous to (2), let Aj be partitioned at level j in block

form as

Aj =

(

Bj Ej

ET
j Cj

)

=











Bj1 Ej1
. . .

...

Bjp Ejp

ET
j1

. . . ET
jp Cj











, (10)

where Bj ∈ C
mj×mj is a block-diagonal matrix, Bj = diag(Bj1 , . . . , Bjp), Cj ∈ C

sj×sj , Ej ∈
C

mj×sj , ET
j = (ET

j1
, . . . , ET

jp), Bji ∈ C
mji

×mji , Eji ∈ C
mji

×sj , 1 ≤ i ≤ p, nj = mj + sj , and

mj = mj1 + · · ·+mjp . Analogous to (3), at each level j, the factorization of Aj is determined by

Aj =

(

Bj Ej

ET
j Cj

)

=

(

I 0
ET

j B
−1

j I

)(

Bj 0
0 Sj

)(

I B−1

j Ej

0 I

)

, (11)

where Sj = Cj − ET
j B

−1

j Ej is the Schur complement at level j. Thus

A−1

j =

(

I −B−1

j Ej

0 I

)(

B−1

j 0
0 S−1

j

)(

I 0
−ET

j B
−1

j I

)

(12)

is the inverse of Aj . Analogous to (7), S−1

j can be approximated by C−1

j plus an approximation of

C
−1/2
j Gj

(

I −Gj

)−1
C

−1/2
j . The preconditioner Mj then has the following form

Mj =

(

I 0
ET

j B
−1

j I

)(

Bj 0

0 S̃j

)(

I B−1

j Ej

0 I

)

(13)
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Schur complement preconditioner 3

and

C−1

j = P T
j+1M

−1

j+1Pj+1 . (14)

At each level j, the symmetric matrix Gj ∈ C
sj×sj has a singular value decomposition (SVD)

Gj = C
−1/2
j ET

j B
−1

j EjC
−1/2
j = UjΣjV

H
j , (15)

where Uj and Vj are unitary matrices and Σj = diag(σj1 , . . . , σjsj
) the singular values with real

nonnegative σji . For the matrix Gj there exists a unitary matrix Wj such that

Gj = C
−1/2
j ET

j B
−1

j EjC
−1/2
j = WjΣjW

T
j (16)

is an SSVD. An SSVD of a symmetric matrix can be determined from its SVD. Therefore we have

to modify the singular vectors corresponding to nonzero singular values (cf. [1]). The matrix Gj

(

I −
Gj

)−1
results in

Gj

(

I −Gj

)−1
= Wj

(

I − ΣjW
T
j Wj

)−1
ΣjW

T
j (17)

and consequently

C
−1/2
j Gj

(

I −Gj

)−1
C

−1/2
j = Zj

(

I − ΣjZ
T
j CjZj

)−1
ΣjZ

T
j , Zj = C

−1/2
j Wj. (18)

Thus, the computation of a low rank approximation to S−1

j −C−1

j (cf. (7), (18)) can be obtained by the

following SSVD problem

C−1

j ET
j B

−1

j EjC
−1

j = ZjΣjZ
T
j . (19)

Finally, the preconditioned system

M−1Ax = M−1b with M−1 = C−1

0 = P T
1 M

−1

1 P1 (20)

is to be solved.

3 Incomplete LDL
T with Bunch-Kaufman pivoting

The matricesBji , 1 ≤ j ≤ lev, 1 ≤ i ≤ p, (cf. (10)) are factored using a form of incomplete Cholesky

factorization, so we have Bji ≈ LjiDjiL
T
ji

. The core of the decomposition is a Crout variant of incom-

plete LU (ILU ), introduced for symmetric matrices by [5], which itself extends works by [6] and [3].

The Crout-based decomposition is an attractive way for computing an incomplete LDLT factoriza-

tion for symmetric matrices, because it naturally preserves structural symmetry. This is especially true

when applying dropping rules for the incomplete factorization. It is natural to store Lji by columns and

to have the lower triangular part of Bji stored similary.

Let the matrix A (A ← Bji) be the sum of the matrices L̂ and D̂, that is, A = L̂ + D̂ + L̂T . L̂ is

the strict lower part of A und D̂ the diagonal. Only the lower triangular part of A, (L̂ + D̂), is in the

Compressed Sparse Column (CSC) format stored. This is synonymous with the storage of (D̂+L̂T ) in

CSR (Compressed Sparse Row) format. Algorithm 1 shows the Crout version of incomplete Cholesky

factorization for a symmetrix matrix A, A ≈ LDLT , using a delayed update strategy for the fac-

tors. The k-th column update procedure is described in Algorithm 2. In the Bunch-Kaufman pivoting

method, to find the next pivot only requires searching up to two columns in the reduced matrix. The two

columns must be updated before proceeding with the search in the algorithm. Algorithm 3 descibes the

Bunch-Kaufman pivoting strategy. In Algorithm 1 the s×s pivot is typically 1×1 or 2×2. The following

dropping rule is used. Only the largest nonzero entries in every column are kept. The pre-specified

maximum number of fill-ins per column is a multiple of the average number of nonzero elements per

column in the original matrix. A bi-index data structure was used to address implementation difficulties

in sparse matrix operations (cf. [3, 5, 6]).

DOI 10.20347/WIAS.PREPRINT.2556 Berlin 2018



R. Schlundt 4

Algorithm 1 Crout version of incomplete LDLT factorization

Input: Symmetric matrix A, matrix size n
Output: Matrices P , L , and D, such that PAP T ≈ LDLT

1: procedure ILDLC

2: k = 1
3: while k ≤ n do

4: Find a s× s pivot in Ak:n,k:n, s ∈ {1, 2} ⊲ call BKPIVOT

5: Apply dropping rules to wk+s:n,1:s

6: Lk+s:n,k:k+s−1 = wk+s:n,1:sD
−1

k:k+s−1,k:k+s−1
⊲ w1:k+s−1,1:s = 0

7: Lk:k+s−1,k:k+s−1 = I
8: for i = k + s, . . . , n do

9: if {Li,k 6= 0 ∨ Li,k+1 6= 0} then

10: Ai,i = Ai,i − Li,k:k+s−1Dk:k+s−1,k:k+s−1L
T
i,k:k+s−1

11: end if

12: end for

13: k = k + s
14: end while

15: end procedure

Algorithm 2 k-th column update procedure

Input: Column vector w, partial factors L and D, matrix size n, current column index k
Output: Updated column w

1: procedure UPDATE

2: i = 1
3: while i < k do

4: s← size of the diagonal block with Di,i as it top left corner

5: if {Lk,i 6= 0 ∨ Lk,i+1 6= 0} then

6: wk+1:n = wk+1:n − Lk+1:n,i:i+s−1Di:i+s−1,i:i+s−1L
T
k,i:i+s−1

⊲ w1:k = 0
7: end if

8: i = i+ s
9: end while

10: end procedure

DOI 10.20347/WIAS.PREPRINT.2556 Berlin 2018



Schur complement preconditioner 5

Algorithm 3 Bunch-Kaufman pivoting method at step k

Input: Symmetric matrix A at step k, partial factors L and D, matrix size n, current column index k
Output: Symmetric updated matrix A, s× s pivot, column vectors w1:s

1: procedure BKPIVOT

2: α = (1 +
√
17)/8

3: Load and update Ak+1:n,k: w1:k,1 = 0, wk+1:n,1 = Ak+1:n,k ⊲ call UPDATE

4: Let λ = ‖wk+1:n,1‖∞ = max
k+1≤j≤n

|wj,1| and wl,1 = λ ⊲ l smallest integer

5: if |Ak,k| ≥ αλ then

6: Use Dk,k = Ak,k as a 1× 1 pivot

7: s = 1
8: else

9: Load and update Ak+1:n,l: w1:k,2 = 0, wk+1:n,2 = (Al,k:l−1, A
T
l+1:n,l)

T ⊲ call UPDATE

10: Let σ = max
k+1≤j≤n

|wj,2|
11: if |Ak,k|σ ≥ αλ2 then

12: Use Dk,k = Ak,k as a 1× 1 pivot

13: s = 1
14: else if |Al,l| ≥ ασ then

15: Use Dk,k = Al,l as a 1× 1 pivot

16: wk+1:n,1 = wk+1:n,2

17: s = 1 ⊲ interchange the k-th and the l-th rows and columns

18: else

19: Use

(

Dk,k Dk,k+1

Dk+1,k Dk+1,k+1

)

=

(

Ak,k λ
λ Al,l

)

as a 2× 2 pivot

20: s = 2 ⊲ interchange the (k + 1)-th and the l-th rows and columns

21: end if

22: end if

23: end procedure

DOI 10.20347/WIAS.PREPRINT.2556 Berlin 2018
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4 Numerical experiments

Using the example of Maxwell’s equations we demonstrate the generality of the approach. We obtain

in vector notation the following equations in integral form:

˛

P

~E · d~l = − ∂

∂t

¨

A

~B · d ~A
˛

P

~H · d~l = ∂

∂t

¨

A

~D · d ~A+

¨

A

~J · d ~A

‹

S

~B · d~S = 0

‹

S

~D · d~S =

˚

V

q dV .

(21)

The constitutive relations belonging to them are

~D = ε ~E , ~B = µ ~H , ~J = κ ~E . (22)

Here, A is a surface with boundary curve P , V is a volume bounded by a surface S, and q is the

volume charge density. An orthogonal dual mesh is used to discretize the Maxwell’s equations using

the Finite Integration Technique (FIT, [13, 14, 9]). The electric and magnetic voltages and fluxes over

elemtary objects are defined as state variables in the following way:

ei =

ˆ

Li

~E · d~l hj =

ˆ

L̃j

~H · d~l i = 1, . . . , ne

di =

¨

Ãi

~D · ~n d ~A bj =

¨

Aj

~B · ~n d ~A j = 1, . . . , nf

ji =

¨

Ãi

~J · ~n d ~A qk =

˚

Ṽk

q dV k = 1, . . . , np .

where ~n is the outward-pointing normal of the faces Aj and Ãi, respectively. If all field quantities vary

sinusoidally with time, the coefficient matrices of the corresponding linear systems of equation are

complex, symmetric, and indefinite. Using Krylov subspace methods, (20) can be solved iteratively

(cf. [11, 12]).

We consider different dimensions of the coefficient matrices of the corresponding systems of linear

equations, in fact n = 16 632, n = 40 824, n = 472 416, and n = 4020 192. At each level j,

j = 1, 2, . . . , the matrix A is partitioned into p, p ∈ {0, 2, 3, 5, 10, 15}, non-overlapping subsets

Bji , i = 1, . . . , p. At each p, p ∈ {2, 3, 5, 10, 15}, we compute the k, k ∈ {5, 10, 15, 20}, largest

singular values and the corresponding singular vectors to obtain a low rank approximation. For p = 0
the solution is computed by [11, 12]. The same applies on the one hand for the computation of the

solution with the coefficient matrices Bji and on the other hand we comput an incomplete LDLT

factorization of Bji (cf. Section 3). The testing platform consists of Intel Xeon W3520 processors with

2.67 GHz.

The following notation is used throughout the section:

• icf: “T” indicates that the matrices Bji were formed by an incomplete LDLT fac-

torization, on the other hand “F”

• its: number of iterations of preconditioned solver to reduce the initial residual by a

factor of 10−8
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Schur complement preconditioner 7

• s-t: wall clock time for the iteration phase of the solver in seconds

• p-t: s-t plus wall clock time to build the preconditioner in seconds

• “-” indicates that the preconditioner is not created

From Tables 1-4, we find the number of iterations and the wall clock times for the different dimensions.

In Table 5, we find the corresponding dimensions of the matrices Bji and Cj for j = 1, 2, . . . and

i = 1, . . . , p of the dimension n = 4020 192. For the other dimensions, i.e., n = 16 632, n =
40 824, and n = 472 416, the corresponding informations can be found in Tables 4-6 of [10]. The

informations from the Tables 1-4 are shown graphically in the Figures 1-4. The red line indicates the

values for p = 0.

The following notation is used for the figures:

• (a): number of iterations (its, icf = “F”)

• (b): wall clock time for the iteration phase (s-t, icf = “F”)

• (c): the proportion of wall clock time s-t (coloured) in the total time p-t (icf = “F”)

• (d): number of iterations (its, icf = “T”)

• (e): wall clock time for the iteration phase (s-t, icf = “T”)

• (f): the proportion of wall clock time s-t (coloured) in the total time p-t (icf = “T”)

With the exception of n = 4020 192, it can be seen that the lowest iteration numbers in the iteration

process have been achieved for itc = “F”, p = 2, and k ∈ {5, 10, 15, 20}. For small dimensions,

also p = 3 is useful. This process is very time consuming. In general, the iteration numbers for icf
= “T” are greater than those for icf = “F” and smaller than those for p = 0. They are comparable

for n = 16 632. For high-dimensional problems the computation of the incomplete LDLT factor-

ization of the matrices Bji is also time consuming. Likewise, the computation with Bji for greater

k ∈ {5, 10, 15, 20} becomes more time consuming. Experimental results indicate that this precondi-

tioner based on Schur complement approach is robust in the iteration phase.

5 Conclusions

This paper presents a preconditioning method based on a Schur complement approach with low rank

approximations for solving complex symmetric sparse linear systems. It tries to approximate the in-

verse of the Schur complement by exploiting low rank approximations. For this, a hierarchical graph

decomposition reorders the matrix into a multilevel block form. On the negative side, building this pre-

conditioner can be time consuming. A solve with the matrix Bj amounts to p local and independent

solves with the matrices Bji , i = 1, . . . , p. These can be carried out by a preconditioned Krylov

subspace iteration and by an incomplete LDLT factorization with Bunch-Kaufman pivoting, respec-

tively. A big part of the computations to build a preconditioner based on Schur complement approach

is attractive for massively parallel machines. This also applies to the application of the preconditioner

in the iteration process.
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Table 1: The number of iterations and the wall clock times for n = 16 632.

number of k largest singular values

subsets 5 10 15 20

p icf F T F T F T F T

0 its = 157 p-t = 0.238

2

its 128 123 124 121 126 121 131 136

s-t 23.584 0.569 22.653 0.612 23.037 0.709 24.028 0.988

p-t 44.441 1.743 37.777 1.619 36.599 1.679 42.278 2.426

3

its 142 126 147 126 142 127 143 131

s-t 22.424 0.616 23.032 0.748 22.273 0.917 22.859 1.152

p-t 45.940 1.583 37.425 1.692 36.136 1.806 41.737 2.431

5

its 146 142 143 141 143 141 143 140

s-t 19.490 0.735 19.209 0.920 19.483 1.160 19.904 1.435

p-t 23.290 1.134 27.267 1.539 33.953 1.981 35.059 2.605

10

its 182 177 187 176 187 182 180 177

s-t 20.314 1.282 21.171 1.776 21.393 2.575 21.286 3.195

p-t 29.963 2.215 33.603 2.954 34.703 4.156 39.078 5.523

15

its 211 208 208 204 217 215 214 215

s-t 21.885 1.701 21.806 2.545 23.964 3.946 24.767 5.157

p-t 34.714 3.053 34.976 4.241 41.654 6.940 48.224 9.660

Table 2: The number of iterations and the wall clock times for n = 40 824.

number of k largest singular values

subsets 5 10 15 20

p icf F T F T F T F T

0 its = 510 p-t = 1.609

2

its 172 401 168 410 173 493 167 509

s-t 200.5 4.892 196.0 5.479 203.3 7.647 194.4 8.883

p-t 238.5 9.180 252.8 9.972 271.8 12.627 238.7 14.216

3

its 182 389 173 385 176 387 181 379

s-t 157.6 5.111 151.2 5.777 152.1 6.831 158.2 7.900

p-t 193.9 7.960 191.5 8.760 112.5 10.127 229.5 11.392

5

its 294 398 283 380 285 371 275 371

s-t 144.2 5.661 139.3 6.823 142.6 8.334 138.6 10.426

p-t 166.0 7.608 168.0 8.981 181.6 10.957 189.7 13.704

10

its 347 430 341 417 330 392 298 381

s-t 133.5 6.752 132.5 8.906 132.9 11.078 120.9 14.027

p-t 153.9 8.254 165.1 11.085 174.2 13.985 172.2 18.149

15

its 382 465 366 431 362 431 368 416

s-t 127.6 8.015 124.6 10.498 126.2 14.383 131.2 18.195

p-t 151.0 9.505 161.6 13.157 167.4 18.256 184.8 23.587
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Schur complement preconditioner 9

Table 3: The number of iterations and the wall clock times for n = 472 416.

number of k largest singular values

subsets 5 10 15 20

p icf F T F T F T F T

0 its = 918 p-t = 32.714

2

its 344 943 310 909 262 945 270 921

s-t 6930.6 157.3 6237.5 156.2 5297.6 163.8 5451.5 166.0

p-t 8203.2 1054.6 7699.3 1038.6 7011.9 1063.8 7559.3 1086.7

3

its 537 814 532 817 550 958 530 936

s-t 6420.6 122.6 6416.1 141.9 6709.4 179.1 6473.3 191.7

p-t 7572.4 635.5 7527.8 652.0 7809.3 679.4 7783.3 694.6

5

its 596 851 614 1095 616 1035 617 1062

s-t 4495.3 129.9 4620.4 204.0 4705.8 217.0 4666.6 252.2

p-t 5278.7 368.8 5401.6 451.6 5539.9 457.9 5550.6 495.4

10

its 716 870 758 891 719 873 763 874

s-t 3418.5 138.8 3718.3 193.5 3595.5 225.7 3888.7 260.8

p-t 3898.7 241.3 4463.7 318.1 4224.1 343.6 4865.9 383.8

15

its 827 947 820 996 831 979 991 987

s-t 3228.0 162.3 3231.7 234.4 3394.0 285.0 4084.3 353.9

p-t 3755.0 255.6 4043.0 329.5 4246.6 387.0 5028.2 461.5

Table 4: The number of iterations and the wall clock times for n = 4020 192.

number of k largest singular values

subsets 5 10 15 20

p icf F T F T F T F T

0 its = 14 659 p-t = 5 295

2

its - 9 611 - 9 560 - 9 805 - 9 847

s-t - 15 159 - 15 602 - 15 626 - 16 033

p-t - 79 548 - 80 733 - 80 279 - 80 785

3

its - 6 943 - 6 624 - 6 794 - 7 004

s-t - 10 434 - 10 075 - 10 784 - 11 507

p-t - 52 502 - 52 472 - 53 262 - 53 961

5

its - 8 993 - 9 250 - 9 059 - 9 491

s-t - 13 813 - 13 654 - 15 355 - 16 574

p-t - 38 719 - 38 349 - 40 175 - 41 328

10

its - 10 705 - 11 115 - 10 668 - 10 865

s-t - 16 029 - 18 810 - 19 803 - 22 051

p-t - 27 911 - 30 667 - 31 716 - 33 899

15

its - 13 164 - 13 388 - 11 992 - 12 218

s-t - 20 679 - 23 568 - 21 998 - 26 554

p-t - 27 926 - 30 894 - 29 273 - 33 868
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Table 5: The dimensions of the matrices Bji and Cj for n = 4020 192.

p level j dim(Bji) dim(Cj)

2

1 1 995 946 1 995 891 28 355

2 13 976 13 978 401

3 193 194 14

3

1 1 326 396 1 328 109 1 314 339 51 348

2 17 021 16 946 16 847 534

3 172 174 175 13

5

1 783 419 788 212 793 646 778 816 778 951 97 1301

2 19 355 19 309 19 301 19 153 19 231 691

3 138 134 134 131 135 19

10

1 390 394 388 218 388 765 382 473 375 916 186 772

380 469 381 039 386 203 385 166 374 777

2 18 041 18 204 18 119 17 744 18 003 5426

18 494 18 253 18 255 18 061 18 172

3 537 542 537 534 535 56

539 536 543 532 535

15

1 251 999 242 253 250 967 253 231 253 313 230 150

256 837 245 764 254 114 268 013 251 458

248 194 252 735 251 524 254 254 255 386

2 14 788 14 598 14 770 14 767 15 079 7249

15 223 15 147 14 897 14 640 14 571

15 062 14 915 14 939 14 890 14 615

3 482 478 479 473 477 74

485 480 477 477 471

469 480 480 482 485

Figure 1: The number of iterations and wall clock times for n = 16 632
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Figure 2: The number of iterations and wall clock times for n = 40 824

Figure 3: The number of iterations and wall clock times for n = 472 416
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Figure 4: The number of iterations and wall clock times for n = 4020 192
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