139 research outputs found

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Distributed Sensing, Computing, Communication, and Control Fabric: A Unified Service-Level Architecture for 6G

    Full text link
    With the advent of the multimodal immersive communication system, people can interact with each other using multiple devices for sensing, communication and/or control either onsite or remotely. As a breakthrough concept, a distributed sensing, computing, communications, and control (DS3C) fabric is introduced in this paper for provisioning 6G services in multi-tenant environments in a unified manner. The DS3C fabric can be further enhanced by natively incorporating intelligent algorithms for network automation and managing networking, computing, and sensing resources efficiently to serve vertical use cases with extreme and/or conflicting requirements. As such, the paper proposes a novel end-to-end 6G system architecture with enhanced intelligence spanning across different network, computing, and business domains, identifies vertical use cases and presents an overview of the relevant standardization and pre-standardization landscape

    AI-native Interconnect Framework for Integration of Large Language Model Technologies in 6G Systems

    Full text link
    The evolution towards 6G architecture promises a transformative shift in communication networks, with artificial intelligence (AI) playing a pivotal role. This paper delves deep into the seamless integration of Large Language Models (LLMs) and Generalized Pretrained Transformers (GPT) within 6G systems. Their ability to grasp intent, strategize, and execute intricate commands will be pivotal in redefining network functionalities and interactions. Central to this is the AI Interconnect framework, intricately woven to facilitate AI-centric operations within the network. Building on the continuously evolving current state-of-the-art, we present a new architectural perspective for the upcoming generation of mobile networks. Here, LLMs and GPTs will collaboratively take center stage alongside traditional pre-generative AI and machine learning (ML) algorithms. This union promises a novel confluence of the old and new, melding tried-and-tested methods with transformative AI technologies. Along with providing a conceptual overview of this evolution, we delve into the nuances of practical applications arising from such an integration. Through this paper, we envisage a symbiotic integration where AI becomes the cornerstone of the next-generation communication paradigm, offering insights into the structural and functional facets of an AI-native 6G network

    The European Industrial Data Space (EIDS)

    Get PDF
    This research work has been performed in the framework of the Boost 4.0 Big Data lighthouse initiative, a project that has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 780732. This datadriven digital transformation research is also endorsed by the Digital Factory Alliance (DFA)The path that the European Commission foresees to leverage data in the best possible way for the sake of European citizens and the digital single market clearly addresses the need for a European Data Space. This data space must follow the rules, derived from European values. The European Data Strategy rests on four pillars: (1) Governance framework for access and use; (2) Investments in Europe’s data capabilities and infrastructures; (3) Competences and skills of individuals and SMEs; (4) Common European Data Spaces in nine strategic areas such as industrial manufacturing, mobility, health, and energy. The project BOOST 4.0 developed a prototype for the industrial manufacturing sector, called European Industrial Data Space (EIDS), an endeavour of 53 companies. The publication will show the developed architectural pattern as well as the developed components and introduce the required infrastructure that was developed for the EIDS. Additionally, the population of such a data space with Big Data enabled services and platforms is described and will be enriched with the perspective of the pilots that have been build based on EIDS.publishersversionpublishe

    5G-PPP Technology Board:Delivery of 5G Services Indoors - the wireless wire challenge and solutions

    Get PDF
    The 5G Public Private Partnership (5G PPP) has focused its research and innovation activities mainly on outdoor use cases and supporting the user and its applications while on the move. However, many use cases inherently apply in indoor environments whereas their requirements are not always properly reflected by the requirements eminent for outdoor applications. The best example for indoor applications can be found is the Industry 4.0 vertical, in which most described use cases are occurring in a manufacturing hall. Other environments exhibit similar characteristics such as commercial spaces in offices, shopping malls and commercial buildings. We can find further similar environments in the media & entertainment sector, culture sector with museums and the transportation sector with metro tunnels. Finally in the residential space we can observe a strong trend for wireless connectivity of appliances and devices in the home. Some of these spaces are exhibiting very high requirements among others in terms of device density, high-accuracy localisation, reliability, latency, time sensitivity, coverage and service continuity. The delivery of 5G services to these spaces has to consider the specificities of the indoor environments, in which the radio propagation characteristics are different and in the case of deep indoor scenarios, external radio signals cannot penetrate building construction materials. Furthermore, these spaces are usually “polluted” by existing wireless technologies, causing a multitude of interreference issues with 5G radio technologies. Nevertheless, there exist cases in which the co-existence of 5G new radio and other radio technologies may be sensible, such as for offloading local traffic. In any case the deployment of networks indoors is advised to consider and be planned along existing infrastructure, like powerlines and available shafts for other utilities. Finally indoor environments expose administrative cross-domain issues, and in some cases so called non-public networks, foreseen by 3GPP, could be an attractive deployment model for the owner/tenant of a private space and for the mobile network operators serving the area. Technology-wise there exist a number of solutions for indoor RAN deployment, ranging from small cell architectures, optical wireless/visual light communication, and THz communication utilising reconfigurable intelligent surfaces. For service delivery the concept of multi-access edge computing is well tailored to host virtual network functions needed in the indoor environment, including but not limited to functions supporting localisation, security, load balancing, video optimisation and multi-source streaming. Measurements of key performance indicators in indoor environments indicate that with proper planning and consideration of the environment characteristics, available solutions can deliver on the expectations. Measurements have been conducted regarding throughput and reliability in the mmWave and optical wireless communication cases, electric and magnetic field measurements, round trip latency measurements, as well as high-accuracy positioning in laboratory environment. Overall, the results so far are encouraging and indicate that 5G and beyond networks must advance further in order to meet the demands of future emerging intelligent automation systems in the next 10 years. Highly advanced industrial environments present challenges for 5G specifications, spanning congestion, interference, security and safety concerns, high power consumption, restricted propagation and poor location accuracy within the radio and core backbone communication networks for the massive IoT use cases, especially inside buildings. 6G and beyond 5G deployments for industrial networks will be increasingly denser, heterogeneous and dynamic, posing stricter performance requirements on the network. The large volume of data generated by future connected devices will put a strain on networks. It is therefore fundamental to discriminate the value of information to maximize the utility for the end users with limited network resources

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Programmable Smart NIC

    Get PDF

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates
    corecore