70 research outputs found

    NFA reduction via hypergraph vertex cover approximation

    Get PDF
    In this thesis, we study in minimum vertex cover problem on the class of k-partite k-uniform hypergraphs. This problem arises when reducing the size of nondeterministic finite automata (NFA) using preorders, as suggested by Champarnaud and Coulon. It has been shown that reducing NFAs using preorders is at least as hard as computing a minimal vertex cover on 3-partite 3-uniform hypergraphs, which is NP-hard. We present several classes of regular languages for which NFAs that recognize them can be optimally reduced via preorders. We introduce an algorithm for approximating vertex cover on k-partite k-uniform hypergraphs based on a theorem by Lovász and explore the use of fractional cover algorithms to improve the running time at the expense of a small increase in the approximation ratio

    On Approximability of Bounded Degree Instances of Selected Optimization Problems

    Get PDF
    In order to cope with the approximation hardness of an underlying optimization problem, it is advantageous to consider specific families of instances with properties that can be exploited to obtain efficient approximation algorithms for the restricted version of the problem with improved performance guarantees. In this thesis, we investigate the approximation complexity of selected NP-hard optimization problems restricted to instances with bounded degree, occurrence or weight parameter. Specifically, we consider the family of dense instances, where typically the average degree is bounded from below by some function of the size of the instance. Complementarily, we examine the family of sparse instances, in which the average degree is bounded from above by some fixed constant. We focus on developing new methods for proving explicit approximation hardness results for general as well as for restricted instances. The fist part of the thesis contributes to the systematic investigation of the VERTEX COVER problem in k-hypergraphs and k-partite k-hypergraphs with density and regularity constraints. We design efficient approximation algorithms for the problems with improved performance guarantees as compared to the general case. On the other hand, we prove the optimality of our approximation upper bounds under the Unique Games Conjecture or a variant. In the second part of the thesis, we study mainly the approximation hardness of restricted instances of selected global optimization problems. We establish improved or in some cases the first inapproximability thresholds for the problems considered in this thesis such as the METRIC DIMENSION problem restricted to graphs with maximum degree 3 and the (1,2)-STEINER TREE problem. We introduce a new reductions method for proving explicit approximation lower bounds for problems that are related to the TRAVELING SALESPERSON (TSP) problem. In particular, we prove the best up to now inapproximability thresholds for the general METRIC TSP problem, the ASYMMETRIC TSP problem, the SHORTEST SUPERSTRING problem, the MAXIMUM TSP problem and TSP problems with bounded metrics

    Super-polylogarithmic hypergraph coloring hardness via low-degree long codes

    Full text link
    We prove improved inapproximability results for hypergraph coloring using the low-degree polynomial code (aka, the 'short code' of Barak et. al. [FOCS 2012]) and the techniques proposed by Dinur and Guruswami [FOCS 2013] to incorporate this code for inapproximability results. In particular, we prove quasi-NP-hardness of the following problems on nn-vertex hyper-graphs: * Coloring a 2-colorable 8-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 4-colorable 4-uniform hypergraph with 22Ω(loglogn)2^{2^{\Omega(\sqrt{\log\log n})}} colors. * Coloring a 3-colorable 3-uniform hypergraph with (logn)Ω(1/logloglogn)(\log n)^{\Omega(1/\log\log\log n)} colors. In each of these cases, the hardness results obtained are (at least) exponentially stronger than what was previously known for the respective cases. In fact, prior to this result, polylog n colors was the strongest quantitative bound on the number of colors ruled out by inapproximability results for O(1)-colorable hypergraphs. The fundamental bottleneck in obtaining coloring inapproximability results using the low- degree long code was a multipartite structural restriction in the PCP construction of Dinur-Guruswami. We are able to get around this restriction by simulating the multipartite structure implicitly by querying just one partition (albeit requiring 8 queries), which yields our result for 2-colorable 8-uniform hypergraphs. The result for 4-colorable 4-uniform hypergraphs is obtained via a 'query doubling' method. For 3-colorable 3-uniform hypergraphs, we exploit the ternary domain to design a test with an additive (as opposed to multiplicative) noise function, and analyze its efficacy in killing high weight Fourier coefficients via the pseudorandom properties of an associated quadratic form.Comment: 25 page

    Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

    Get PDF
    A hypergraph is said to be χ\chi-colorable if its vertices can be colored with χ\chi colors so that no hyperedge is monochromatic. 22-colorability is a fundamental property (called Property B) of hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 22-colorable kk-uniform hypergraph, it is NP-hard to find a 22-coloring miscoloring fewer than a fraction 2k+12^{-k+1} of hyperedges (which is achieved by a random 22-coloring), and the best algorithms to color the hypergraph properly require n11/k\approx n^{1-1/k} colors, approaching the trivial bound of nn as kk increases. In this work, we study the complexity of approximate hypergraph coloring, for both the maximization (finding a 22-coloring with fewest miscolored edges) and minimization (finding a proper coloring using fewest number of colors) versions, when the input hypergraph is promised to have the following stronger properties than 22-colorability: (A) Low-discrepancy: If the hypergraph has discrepancy k\ell \ll \sqrt{k}, we give an algorithm to color the it with nO(2/k)\approx n^{O(\ell^2/k)} colors. However, for the maximization version, we prove NP-hardness of finding a 22-coloring miscoloring a smaller than 2O(k)2^{-O(k)} (resp. kO(k)k^{-O(k)}) fraction of the hyperedges when =O(logk)\ell = O(\log k) (resp. =2\ell=2). Assuming the UGC, we improve the latter hardness factor to 2O(k)2^{-O(k)} for almost discrepancy-11 hypergraphs. (B) Rainbow colorability: If the hypergraph has a (k)(k-\ell)-coloring such that each hyperedge is polychromatic with all these colors, we give a 22-coloring algorithm that miscolors at most kΩ(k)k^{-\Omega(k)} of the hyperedges when k\ell \ll \sqrt{k}, and complement this with a matching UG hardness result showing that when =k\ell =\sqrt{k}, it is hard to even beat the 2k+12^{-k+1} bound achieved by a random coloring.Comment: Approx 201

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure

    Towards Ryser\u27s Conjecture: Bounds on the Cardinality of Partitioned Intersecting Hypergraphs

    Get PDF
    This work is motivated by the open conjecture concerning the size of a minimum vertex cover in a partitioned hypergraph. In an r-uniform r-partite hypergraph, the size of the minimum vertex cover C is conjectured to be related to the size of its maximum matching M by the relation (|C|\u3c= (r-1)|M|). In fact it is not known whether this conjecture holds when |M| = 1. We consider r-partite hypergraphs with maximal matching size |M| = 1, and pose a novel algorithmic approach to finding a vertex cover of size (r - 1) in this case. We define a reactive hypergraph to be a back-and-forth algorithm for a hypergraph which chooses new edges in response to a choice of vertex cover, and prove that this algorithm terminates for all hypergraphs of orders r = 3 and 4. We introduce the idea of optimizing the size of the reactive hypergraph and find that the reactive hypergraph terminates for r = 5...20. We then consider the case where the intersection of any two edges is exactly 1. We prove bounds on the size of this 1-intersecting hypergraph and relate the 1-intersecting hypergraph maximization problem to mutually orthogonal Latin squares. We propose a generative algorithm for 1-intersecting hypergraphs of maximal size for prime powers r-1 = pd under the constraint pd+1 is also a prime power of the same form, and therefore pose a new generating algorithm for MOLS based upon intersecting hypergraphs. We prove this algorithm generates a valid set of mutually orthogonal Latin squares and prove the construction guarantees certain symmetric properties. We conclude that a conjecture by Lovasz, that the inequality in Ryser\u27s Conjecture cannot be improved when (r-1) is a prime power, is correct for the 1-intersecting hypergraph of prime power orders
    corecore