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Abstract
A hypergraph is said to be χ-colorable if its vertices can be colored with χ colors so that no
hyperedge is monochromatic. 2-colorability is a fundamental property (called Property B) of
hypergraphs and is extensively studied in combinatorics. Algorithmically, however, given a 2-
colorable k-uniform hypergraph, it is NP-hard to find a 2-coloring miscoloring fewer than a
fraction 2−k+1 of hyperedges (which is trivially achieved by a random 2-coloring), and the best
algorithms to color the hypergraph properly require ≈ n1−1/k colors, approaching the trivial
bound of n as k increases.

In this work, we study the complexity of approximate hypergraph coloring, for both the
maximization (finding a 2-coloring with fewest miscolored edges) and minimization (finding a
proper coloring using fewest number of colors) versions, when the input hypergraph is promised
to have the following stronger properties than 2-colorability:

Low-discrepancy: If the hypergraph has a 2-coloring of discrepancy ` �
√
k, we give an

algorithm to color the hypergraph with ≈ nO(`2/k) colors.
However, for the maximization version, we prove NP-hardness of finding a 2-coloring mis-
coloring a smaller than 2−O(k) (resp. k−O(k)) fraction of the hyperedges when ` = O(log k)
(resp. ` = 2). Assuming the Unique Games conjecture, we improve the latter hardness factor
to 2−O(k) for almost discrepancy-1 hypergraphs.
Rainbow colorability: If the hypergraph has a (k − `)-coloring such that each hyperedge is
polychromatic with all these colors (this is stronger than a (`+1)-discrepancy 2-coloring), we
give a 2-coloring algorithm that miscolors at most k−Ω(k) of the hyperedges when ` �

√
k,

and complement this with a matching Unique Games hardness result showing that when
` =
√
k, it is hard to even beat the 2−k+1 bound achieved by a random coloring.

Strong Colorability: We obtain similar (stronger) Min- and Max-2-Coloring algorithmic res-
ults in the case of (k + `)-strong colorability.
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1 Introduction

Coloring (hyper)graphs is one of the most important and well-studied tasks in discrete
mathematics and theoretical computer science. A k-uniform hypergraph G = (V,E) is said
to be χ-colorable if there exists a coloring c : V 7→ {1, . . . , χ} such that no hyperedge is
monochromatic, and such a coloring c is referred to as a proper χ-coloring. Graph and
hypergraph coloring has been the focus of active research in both fields, and has served as
the benchmark for new research paradigms such as the probabilistic method (Lovász local
lemma [16]) and semidefinite programming (Lovász theta function [27]).

While such structural results are targeted towards special classes of hypergraphs, given
a general χ-colorable k-uniform hypergraph, the problem of reconstructing a χ-coloring is
known to be a hard task. Even assuming 2-colorability, reconstructing a proper 2-coloring is a
classic NP-hard problem for k ≥ 3. Given the intractability of proper 2-coloring, two notions
of approximate coloring of 2-colorable hypergraphs have been studied in the literature of
approximation algorithms. The first notion, called Min-Coloring, is to minimize the number
of colors while still requiring that every hyperedge be non-monochromatic. The second
notion, called Max-2-Coloring allows only 2 colors, but the objective is to maximize the
number of non-monochromatic hyperedges.1

Even with these relaxed objectives, the promise that the input hypergraph is 2-colorable
seems grossly inadequate for polynomial time algorithms to exploit in a significant way. For
Min-Coloring, given a 2-colorable k-uniform hypergraph, the best known algorithm uses
O(n1− 1

k ) colors [13, 3], which tends to the trivial upper bound n as k increases. This problem
has been actively studied from the hardness side, motivating many new developments in
constructions of probabilistically checkable proofs. Coloring 2-colorable hypergraphs with
O(1) colors was shown to be NP-hard for k ≥ 4 in [18] and k = 3 in [15]. An exciting body
of recent work has pushed the hardness beyond poly-logarithmic colors [14, 17, 25, 22]. In
particular, [25] shows quasi-NP-hardness of 2(logn)Ω(1)-coloring a 2-colorable hypergraphs
(very recently the exponent was shown to approach 1/4 in [22]).

The hardness results for Max-2-Coloring show an even more pessimistic picture, wherein
the naive random assignment (randomly give one of two colors to each vertex independently
to leave a ( 1

2 )k−1 fraction of hyperedges monochromatic in expectation), is shown to have
the best guarantee for a polynomial time algorithm when k ≥ 4 (see [21]).

Given these strong intractability results, it is natural to consider what further relaxations
of the objectives could lead to efficient algorithms. For maximization versions, Austrin
and Håstad [6] prove that (almost2) 2-colorability is useless (in a formal sense that they
define) for any Constraint Satisfaction Problem (CSP) that is a relaxation of 2-coloring [37].
Therefore, it seems more natural to find a stronger promise on the hypergraph than mere
2-colorability that can be significantly exploited by polynomial time coloring algorithms
for the objectives of Min-Coloring and Max 2-Coloring. This motivates our main question
“how strong a promise on the input hypergraph is required for polynomial time algorithms to
perform significantly better than naive algorithms for Min-Coloring and Max-2-Coloring?”

There is a very strong promise on k-uniform hypergraphs which makes the task of proper
2-coloring easy. If a hypergraph is k-partite (i.e., there is a k-coloring such that each
hyperedge has each color exactly once), then one can properly 2-color the hypergraph in

1 The maximization version is also known as Max-Set-Splitting, or more specifically Max k-Set-Splitting
when considering k-uniform hypegraphs, in the literature.

2 We say a hypergraph is almost χ-colorable for a small constant ε > 0, there is a χ-coloring that leaves
at most ε fraction of hyperedges monochromatic.
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polynomial time. The same algorithm can be generalized to hypergraphs which admit a
c-balanced coloring (i.e., c divides k and there is a k-coloring such that each hyperedge has
each color exactly k

c times). This can be seen by random hyperplane rounding of a simple
SDP, or even simpler by solving a homogeneous linear system and iterating [2], or by a
random recoloring method analyzed using random walks [29]. In fact, a proper 2-coloring
can be efficiently achieved assuming that the hypergraph admits a fair partial 2-coloring,
namely a pair of disjoint subsets A and B of the vertices such that for every hyperedge e,
|e ∩A| = |e ∩B| > 0 [29].

The promises on structured colorings that we consider in this work are natural relaxations
of the above strong promise of a perfectly balanced (partial) coloring.

A hypergraph is said to have discrepancy ` when there is a 2-coloring such that in each
hyperedge, the difference between the number of vertices of each color is at most `.
A χ-coloring (χ ≤ k) is called rainbow if every hyperedge contains each color at least
once.
A χ-coloring (χ ≥ k) is called strong if every hyperedge contains k different colors.

These three notions are interesting in their own right, and have been independently
studied. Discrepancy minimization has recently seen different algorithmic ideas [8, 28, 33] to
give constructive proofs of the classic six standard deviations result of Spencer [36]. Rainbow
coloring admits a natural interpretation as a partition of V into the maximum number of
disjoint vertex covers, and has been actively studied for geometric hypergraphs due to its
applications in sensor networks [11]. Strong coloring is closely related to graph coloring by
definition, and is known to capture various other notions of coloring [1]. It is easy to see
that `-discrepancy (` < k), χ-rainbow colorability (2 ≤ χ ≤ k), and χ-strong colorability
(k ≤ χ ≤ 2k − 2) all imply 2-colorability. For odd k, both (k + 1)-strong colorability
and (k − 1)-rainbow colorability imply discrepancy-1, so strong colorability and rainbow
colorability seem stronger than low discrepancy.

Even though they seem very strong, previous works have mainly focused on hardness
with these promises. The work of Austrin et al. [5] shows NP-hardness of finding a proper 2-
coloring under the discrepancy-1 promise. The work of Bansal and Khot [9] shows hardness of
O(1)-coloring even when the input hypergraph is promised to be almost k-partite (under the
Unique Games Conjecture); Sachdeva and Saket [34] establish NP-hardness of O(1)-coloring
when the graph is almost k/2-rainbow colorable; and Guruswami and Lee [19] establish
NP-hardness when the graph is perfectly (not almost) k

2 -rainbow colorable, or admits a
2-coloring with discrepancy 2. These hardness results indicate that it is still a nontrivial task
to exploit these strong promises and outperform naive algorithms.

1.1 Our Results
In this work, we prove that our three promises, unlike mere 2-colorability, give enough
structure for polynomial time algorithms to perform significantly better than naive algorithms.
We also study these promises from a hardness perspective to understand the asymptotic
threshold at which beating naive algorithms goes from easy to UG/NP-Hard. In particular
assuming the UGC, for Max-2-Coloring under `-discrepancy or k − `-rainbow colorability,
this threshold is ` = Θ(

√
k).

I Theorem 1. There is a randomized polynomial time algorithm that produces a 2-coloring
of a k-uniform hypergraph H with the following guarantee. For any 0 < ε < 1

2 (let ` = kε),
there exists a constant η > 0 such that if H is (k − `)-rainbow colorable or (k + `)-strong
colorable, the fraction of monochromatic edges in the produced 2-coloring is O(( 1

k )ηk) in
expectation.
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Our results indeed show that this algorithm significantly outperforms the random assignment
even when ` approaches

√
k asymptotically. See Theorem 16 and Theorem 22 for the precise

statements.
For the `-discrepancy case, we observe that when ` <

√
k, the framework of the second

and the third authors [20] yields an approximation algorithm that marginally (by an additive
factor much less than 2−k) outperforms the random assignment, but we do not formally
prove this here.

The following hardness results suggest that this gap between low-discrepancy and rain-
bow/strong colorability might be intrinsic. Let the term UG-hardness denote NP-hardness
assuming the Unique Games Conjecture.

I Theorem 2. For sufficiently large odd k, given a k-uniform hypergraph which admits a
2-coloring with at most a ( 1

2 )6k fraction of edges of discrepancy larger than 1, it is UG-hard
to find a 2-coloring with a ( 1

2 )5k fraction of monochromatic edges.

I Theorem 3. For even k ≥ 4, given a k-uniform hypergraph which admits a 2-coloring with
no edge of discrepancy larger than 2, it is NP-hard to find a 2-coloring with a k−O(k) fraction
of monochromatic edges.

I Theorem 4. For k sufficiently large, given a k-uniform hypergraph which admits a 2-
coloring with no edge of discrepancy larger than O(log k), it is NP-hard to find a 2-coloring
with a 2−O(k) fraction of monochromatic edges.

I Theorem 5. For k such that χ := k−
√
k is an integer greater than 1, and any ε > 0, given

a k-uniform hypergraph which admits a χ-coloring with at most ε fraction of non-rainbow
edges, it is UG-hard to find a 2-coloring with a ( 1

2 )k−1 fraction of monochromatic edges.

For Min-Coloring, all three promises lead to an Õ(n 1
k )-coloring that is decreasing in

k. These results are also notable in the sense that our promises are helpful not only for
structured SDP solutions, but also for combinatorial degree reduction algorithms.

I Theorem 6. Consider any k-uniform hypergraph H = (V,E) with n vertices and m edges.
For any ` < O(

√
k), If H has discrepancy-`, (k − `)-rainbow colorable, or (k + `)-strong

colorable, one can color H with Õ((mn )
`2
k2 ) ≤ Õ(n `

2
k ) colors.

These results significantly improve the current best Õ(n1− 1
k ) colors that assumes only

2-colorability. Our techniques give slightly better results depending on the promise —
see Theorem 28. Table 1.1 summarizes our results.

1.2 Techniques
Our algorithms for Max-2-Coloring are straightforward applications of semidefinite pro-
gramming, namely, we use natural vector relaxations of the promised properties, and round
using a random hyperplane. The analysis however, is highly non-trivial and boils down to
approximating a multivariate Gaussian integral. In particular, we show a (to our knowledge,
new) upper bound on the Gaussian measure of simplicial cones in terms of simple properties
of these cones. We should note that this upper bound is sensible only for simplicial cones
that are well behaved with respect to the these properties. (The cones we are interested in
are those given by the intersection of hyperplanes whose normal vectors constitute a solution
to our vector relaxations). We believe our analysis to be of independent interest as similar
approaches may work for other k-CSP’s.

APPROX/RANDOM’15



156 Approximate Hypergraph Coloring under Low-discrepancy and Related Promises

Table 1.1 Summary of our algorithmic and hardness results with valid ranges of `. Two results
with † are implied in [20]. The numbers of the first row indicate upper bounds on the fraction of
monochromatic edges in a 2-coloring produced by our algorithms. δ := δ(k, `) > 0 is a small constant.
The second row shows lower bounds on the fraction of monochromatic edges achieved by polynomial
time algorithms. For the UG-hardness results, note that the input hypergraph does not have all
edges satisfying the promises but almost edges satisfying them. The third row shows upper bounds
upto log factors, on the number of colors the algorithms use to properly 2-color the hypergraph.

Promise `-Discrepancy (k − `)-Rainbow (k + `)-Strong

Max-2-Color 1/2k−1 − δ, ` <
√
k
† 1/kΩ(k), `�

√
k 1/kΩ(k), `�

√
k

Algorithm

Max-2-Color UG: 1/25k, ` = 1. UG: 1/2k−1, ` = Ω(
√
k)

Hardness NP: 1/kO(k), ` = 2.
NP: 1/2O(k), ` = Ω(log k)
UG: 1/2k−1, ` ≥

√
k
†

Min-Color n`2/k, ` = O(
√
k) n`2/k, ` = O(

√
k) n`2/k, ` = O(

√
k)

Algorithm

1.2.1 Gaussian Measure of Simplicial Cones

As can be seen via an observation of Kneser [26], the Gaussian measure of a simplicial cone
is equal to the fraction of spherical volume taken up by a spherical simplex (a spherical
simplex is the intersection of a simplicial cone with a ball centered at the apex of the cone).
This however, is a very old problem in spherical geometry, and while some things are known,
like a nice differential formula due to Schlafli (see [35]), closed forms upto four dimensions
(see [30]), and a complicated power series expansion due to Aomoto [4], it is likely hopeless
to achieve a closed form solution or even an asymptotic formula for the volume of general
spherical simplices.

Zwick [39] considered the performance of hyperplane rounding in various 3-CSP formula-
tions, and this involved analyzing the volume of a 4-dimensional spherical simplex. Due to
the complexity of this volume function, the analysis was tedious, and non-analytic for many of
the formulations. His techniques were based on the Schlafli differential formula, which relates
the volume differential of a spherical simplex to the volume functions of its codimension-2
faces and dihedral angles. However, to our knowledge not much is known about the general
volume function in even 6 dimensions. This suggests that Zwick’s techniques are unlikely to
be scalable to higher dimensions.

On the positive side, an asymptotic expression is known in the case of symmetric spherical
simplices, due to H. E. Daniels [32] who gave the analysis for regular cones of angle cos−1(1/2).
His techniques were extended by Rogers [31] and Boeroeczky and Henk [12] to the whole
class of regular cones.

We combine the complex analysis techniques employed by Daniels with a lower bound on
quadratic forms in the positive orthant, to give an upper bound on the Gaussian measure of
a much larger class of simplicial cones.
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1.2.2 Column Subset Selection

Informally, the cones for which our upper bound is relevant are those that are high dimensional
in a strong sense, i.e. the normal vectors whose corresponding hyperplanes form the cone,
must be such that no vector is too close to the linear span of any subset of the remaining
vectors.

When the normal vectors are solutions to our rainbow colorability SDP relaxation, this
need not be true. However, this can be remedied. We consider the column matrix of these
normal vectors, and using spectral techniques, we show that there is a reasonably large subset
of columns (vectors) that are well behaved with respect to condition number. We are then
able to apply our Gaussian Measure bound to the cone given by this subset, admittedly in a
slightly lower dimensional space.

2 Approximate Max-2-Coloring

In this section we show how the properties of (k + `)-strong colorability and (k − `)-rainbow
colorability in k-uniform hypergraphs allow one to 2-color the hypergraph, such that the
respective fractions of monochromatic edges are small. For ` = o(

√
k), these guarantees

handsomely beat the naive random algorithm (color every vertex blue or red uniformly and
independently at random), wherein the expected fraction of monochromatic edges is 1/2k−1.

Our algorithms are straightforward applications of semidefinite programming, namely, we
use natural vector relaxations of the above properties, and round using a random hyperplane.
The analysis however, is quite involved.

2.1 Semidefinite Relaxations

Our SDP relaxations for low-discrepancy, rainbow-colorability, and strong-colorability are the
following. Given that 〈vi, vj〉 = −1

χ−1 when unit vectors v1, . . . , vχ form a χ-regular simplex
centered at the origin, it is easy to show that they are valid relaxations. Due to space
constraints, we defer the proofs of feasibility to the full version [10].

Discrepancy `.

∀ e ∈ E,

∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` (2.1)

∀ i ∈ [n], ||ui||2 = 1
∀ i ∈ [n], ui ∈ IRn

(k − `)-Rainbow Colorability.

∀ e ∈ E,

∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` (2.2)

∀ e ∈ E, ∀ i < j ∈ e, 〈ui, uj〉 ≥
−1

k − `− 1
∀ i ∈ [n], ||ui||2 = 1

∀ i ∈ [n], ui ∈ IRn

APPROX/RANDOM’15
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(k + `)-Strong Colorability.

∀ e ∈ E, ∀ i < j ∈ e, 〈ui, uj〉 = −1
k + `− 1 (2.3)

∀ i ∈ [n], ||ui||2 = 1
∀ i ∈ [n], ui ∈ IRn

Our rounding scheme is the same for all the above relaxations.

Rounding Scheme. Pick a standard n-dimensional Gaussian random vector r. For any
i ∈ [n], if 〈vi, r〉 ≥ 0, then vertex i is colored blue, and otherwise it is colored red.

2.2 Setup of Analysis

We now setup the framework for analyzing all the above relaxations.
Consider a standard n-dimensional Gaussian random vector r, i.e. each coordinate is
independently picked from the standard normal distribution N (0, 1). The following are well
known facts (the latter being due to Renyi),

I Lemma 7. r/ ||r||2 is uniformly distributed over the unit sphere in IRn.

Note. Lemma 7 establishes that our rounding scheme is equivalent to random hyperplane
rounding.

I Lemma 8. Consider any j < n. The projections of r onto the pairwise orthogonal unit
vectors e1, . . . , ej are independent and have distribution N (0, 1).

Next, consider any k-uniform hypergraph H = (V = [n], E ⊆
(
V
k

)
) that is feasible for

any of the aforementioned formulations. Our goal now, is to analyze the expected number
of monochromatic edges. To obtain this expected fraction with high probability, we need
only repeat the rounding scheme polynomially many times, and the high probability of a
successful round follows by Markov’s inequality. Thus we are only left with bounding the
probability that a particular edge is monochromatic.

To this end, consider any edge e ∈ E and let the vectors corresponding to the vertices in e
be u′1, . . . , u′k. Consider a k-flat F (subspace of IRn congruent to IRk), containing u′1, . . . , u′k.
Applying Lemma 8 to the standard basis of F , implies that the projection of r into F has the
standard k-dimensional Gaussian distribution. Now since projecting r onto Span(u′1, . . . u′k)
preserves the inner products {〈r, u′i〉}i , we may assume without loss of generality that
u′1, . . . , u

′
k are vectors in IRk, and the rounding scheme corresponds to picking a random

k-dimensional Gaussian vector r, and proceeding as before.

Let U be the k × k matrix whose columns are the vectors u′1, . . . , u′k and µ represent the
Gaussian measure in IRk. Then the probability of e being monochromatic in the rounding is
given by,

µ
({
x ∈ IRk

∣∣UTx ≥ 0
})

+µ
({
x ∈ IRk

∣∣UTx < 0
})

= 2µ
({
x ∈ IRk

∣∣UTx ≥ 0
})

(2.4)

In other words, this boils down to analyzing the Gaussian measure of the cone given by
UTx ≥ 0. We thus take a necessary detour.



V.V. S. P. Bhattiprolu, V. Guruswami, and E. Lee 159

2.3 Gaussian Measure of Simplicial Cones
In this section we show how to bound the Gaussian measure of a special class of simplicial
cones. This is one of the primary tools in our analysis of the previously introduced SDP
relaxations. We first state some preliminaries.

2.3.1 Preliminaries
Simplicial Cones and Equivalent Representations. A simplicial cone in IRk, is given by
the intersection of a set of k linearly independent halfspaces. For any simplicial cone with
apex at position vector p, there is a unique set (upto changes in lengths), of k linearly
independent vectors, such that the direct sum of {p} with their positive span produces the
cone. Conversely, a simplicial cone given by the direct sum of {p} and the positive span
of k linearly independent vectors, can be expressed as the intersection of a unique set of
k halfspaces with apex at p. We shall refer to the normal vectors of the halfspaces above,
as simply normal vectors of the cone, and we shall refer to the spanning vectors above, as
simplicial vectors. We represent a simplicial cone C with apex at p, as (p, U, V ) where U is
a column matrix of unit vectors u1, . . . , uk (normal vectors), V is a column matrix of unit
vectors v1, . . . , vk (simplicial vectors) and

C =
{
x ∈ IRk

∣∣uT1 x ≥ p1, . . . , u
T
k x ≥ pk

}
=
{
p+ x1v1 + · · ·+ xkvk

∣∣∣x ≥ 0, x ∈ IRk
}

Switching Between Representations. Let C ≡ (0, U, V ) be a simplicial cone with apex at
the origin. It is not hard to see that any vi is in the intersection of exactly k − 1 of the k
halfspaces determined by U , and it is thus orthogonal to exactly k − 1 vectors of the form
uj . We may assume without loss of generality that for any vi, the only column vector of U
not orthogonal to it, is ui. Thus clearly V TU = D where D is some non-singular diagonal
matrix. Let AU = UTU and AV = V TV , be the gram matrices of the vectors. AU and AV
are positive definite symmetric matrices with diagonal entries equal to one (they comprise of
the pairwise inner products of the normal and simplicial vectors respectively). Also, clearly,

V = U−TD, AV = DA−1
U D (2.5)

One then immediately obtains: (AV )ij = aij√
aiiajj

, and (AU )ij = −a′ij√
a′
ii
a′
jj

. where aij and a′ij
are the cofactors of the (i, j)th entries of AU and AV respectively.

Formulating the Integral. Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin,
and for x ∈ IRk, let dx denote the differential of the standard k-dimensional Lebesgue
measure. Then the Gaussian measure of C is given by,

1
πk/2

∫
UT x≥0

e−||x||
2
2 dx = det(V )

πk/2

∫
IRk+

e−||V x||
2
2 dx (x← V x)

= det(V )
πk/2

∫
IRk+

e−||U
−TDx||22 dx (Eq. (2.5)) = det(V )

πk/2 det(D)

∫
IRk+

e−||U
−T x||22 dx (x← Dx)

= 1
πk/2 det(U)

∫
IRk+

e−||U
−T x||22 dx = 1

πk/2
√

det(AU )

∫
IRk+

e−x
TA−1

U
x dx

(2.6)

APPROX/RANDOM’15
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For future ease of use, we give a name to some properties.

I Definition 9. The para-volume of a set of vectors (resp. a matrix U), is the volume of the
parallelotope determined by the set of vectors (resp. the column vectors of U).

I Definition 10. The sum-norm of a set of vectors (resp. a matrix U), is the length of the
sum of the vectors (resp. the sum of the column vectors of U).

Walkthrough of Symmetric Case Analysis. We next state some simple identities that can
be found in say, [32], some of which were originally used by Daniels to show that the Gaussian
measure of a symmetric cone in IRk of angle cos−1(1/2) (between any two simplicial vectors)
is (1+o(1)) ek/2−1
√

2k+1√
k
k−1√

πk
. We state these identities, while loosely describing the analysis of the

symmetric case, to give the reader an idea of their purpose.
First note that the gram matrices SU and SV , of the symmetric cone of angle cos−1(1/2) are
given by:

SU = (1 + 1/k)I− 11T /k SV = (I + 11T )/2

Thus xTS−1
U x is of the form,

α ||x||21 + β ||x||22 (2.7)

The key step is in linearizing the ||x||21 term in the exponent, which allows us to separate
the terms in the multivariate integral into a product of univariate integrals, and this is easier
to analyze.

I Lemma 11 (Linearization).
√
πe−s

2 =
∫∞
−∞ e−t

2+2its dt.

I Observation 12. Let f : (−∞,∞) 7→ C be a continuous complex function. Then,∣∣∣∣∣∣
∞∫
−∞

f(t) dt

∣∣∣∣∣∣ ≤
∞∫
−∞

|f(t)| dt.

On applying Lemma 11 to Eq. (2.6) in the symmetric case, one obtains a product of
identical univariate complex integrals. Specifically, by Eq. (2.6), Eq. (2.7), and Lemma 11,
we have the expression,

∫
IRk+

e−β||x||
2
2−α||x||

2
1 dx =

∞∫
−∞

e−t
2

 ∞∫
0

e−βs
2+2it

√
αs ds

k

The inner univariate complex integral is not readily evaluable. To circumvent this, one can
change the line of integration so as to shift mass form the inner integral to the outer integral.
Then we can apply the crude upper bound of Observation 12 to the inner integral, and by
design, the error in our estimate is small.

I Lemma 13 (Changing line of integration). Let g(t) be a real valued function for real
t. If, when interpreted as a complex function in the variable t = a + ib, g(a + ib) is
an entire function, and furthermore, lim

a→∞
g(a + ib) = 0 for some fixed b, then we have,∫∞

−∞ g(t) dt =
∫∞
−∞ g(a+ ib) da.
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Squared L1 Inequality. Motivated by the above linearization technique, we prove the
following lower bound on quadratic forms in the positive orthant:

I Lemma 14. Consider any k × k matrix A, and x ∈ IRk
+, such that x is in the column

space of A. Let A† denote the Moore-Penrose pseudo-inverse of A. Then, xTA†x ≥ ||x||21
sum(A) .

Proof. Consider any x in the positive orthant and column space of A. Let v1, . . . , vq be the
eigenvectors of A corresponding to it’s non-zero eigenvalues. We may express x in the form
x =

∑
i βivi, so that

||x||1 = 〈1, x〉 =
∑
i∈[q]

βi〈1, vi〉 ⇒ ||x||21 = (
∑
i∈[q]

βi〈1, vi〉)2.

We also have
xTA†x = xT (

∑
i∈[q]

λ−1
i viv

T
i )x =

∑
i∈[q]

λ−1
i β2

i .

Now by Cauchy-Schwartz,(∑
i

λi〈1, vi〉2
)∑

i∈[q]

λ−1
i β2

i

 ≥ ||x||21 .
Therefore, we have

xTA†x ≥ ||x||21∑
i∈[q] λi〈1, vi〉2

=
||x||21
1TA1 =

||x||21
sum(A) .

J

Equipped with all necessary tools, we may now prove our result.

2.3.2 Our Gaussian Measure Bound
Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin. We now show an upper
bound on the Gaussian measure of C that depends surprisingly on only the para-volume and
sum-norm of U . Since Gaussian measure is at most 1, it is evident when viewing our bound
that it can only be useful for simplicial cones wherein the sum-norm of their normal vectors
is O(

√
k), and the para-volume of their normal vectors is not too small.

I Theorem 15. Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin. Let ` =
||
∑
i ui||2 (i.e. sum-norm of the normal vectors), then the Gaussian measure of C is at most(

e
2πk
)k/2 `k√

det(AU )

Proof. By the sum-norm property, the sum of entries of AU is `2. Also by the definition
of a simplicial cone, U , and cosequently AU , must have full rank. Thus we may apply
Lemma 14 over the entire positive orthant. We proceed to analyze the multivariate integral
in Eq. (2.6), by first applying Lemma 14 and then linearizing the exponent using Lemma 11.
Post-linearization, our approach is similar to the presentation of Boeroeczky and Henk [12].
We have,∫

IRk+

e−x
TA−1

U
x dx ≤

∫
IRk+

e−||x||
2
1/`

2
dx (by Lemma 14)
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= `k
∫

IRk+

e−||y||
2
1 dy (Subst. y ← x/`)

= `k√
π

∫
IRk+

∞∫
−∞

e

− t2 + 2it
∑
i∈[k]

yi

dt dy (by Lemma 11)

= `k√
π

∞∫
−∞

e−t
2
(∫ ∞

0
e2its ds

)k
dt Let g(t) = e−t

2
(∫ ∞

0
e2its ds

)k

|g(a+ ib)| ≤ e−a
2+b2

(∫ ∞
0

e−2bs ds
)k

⇒ lim
a→∞

g(a+ ib)→ 0, ∀b > 0

= `k√
π

∞∫
−∞

e−a
2+b2−2abi

(∫ ∞
0

e−2bs+2asi ds
)k

da ∀ b > 0, by Lemma 13

= ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2
(

2be−ia/b
∫ ∞

0
e−2bs+2asi ds

)k
da Fixing b =

√
k/2

= ek/2 `k√
π(2k)k/2

∣∣∣∣∣∣
∞∫
−∞

e−a
2
(

2be−ia/b
∫ ∞

0
e−2bs+2asi ds

)k
da

∣∣∣∣∣∣ Expr. is real, +ve

≤ ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2
(

2b
∫ ∞

0
e−2bs ds

)k
da By Observation 12

= ek/2 `k√
π(2k)k/2

∞∫
−∞

e−a
2

da = ek/2 `k

(2k)k/2

Lastly, the claim follows by substituting the above in Eq. (2.6). J

2.4 Analysis of Hyperplane Rounding given Strong Colorability
In this section we analyze the performance of random hyperplane rounding on k-uniform
hypergraphs that are (k + `)-strongly colorable.

I Theorem 16. Consider any (k + `)-strongly colorable k-uniform hypergraph H = (V,E).
The expected fraction of monochromatic edges obtained by performing random hyperplane
rounding on the solution of Relaxation 2.3, is O

(
`k−1/2( e

2π
)k/2 1

k(k−1)/2

)
.

Proof. Let U be any k × k matrix whose columns are unit vectors u1, . . . , uk ∈ Rek that
satisfy the edge constraints in Relaxation 2.3. Recall from Section 2.2, that to bound
the probability of a monochromatic edge we need only bound the expression in Eq. (2.4)
for U of the above form. By Relaxation 2.3, the gram matrix AU = UTU , is exactly,
AU = (1 + α)I − α11T where α = 1

k+`−1 . By matrix determinant lemma (determinant
formula for rank one updates), we know

det(AU ) = (1 + α)k
(

1− kα

1 + α

)
≥
(

`

k + `

)
= Ω

(
`

k

)
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Further, Relaxation 2.3 implies the length of
∑
i ui, is at most `. The claim then follows by

combining Eq. (2.4) with Theorem 15. J

Note. Being that any edge in the solution to the strong colorability relaxation corresponds
to a symmetric cone, Theorem 16 is directly implied by prior work on the volume of symmetric
spherical simplices. It is in the next section, where the true power of Theorem 15 is realized.

Remark. As can be seen from the asymptotic volume formula of symmetric spherical
simplices,

√
πk/(2e) is a sharp threshold for `, i.e. when ` > (1+o(1))

√
πk/(2e), hyperplane

rounding does worse than the naive random algorithm, and when ` < (1− o(1))
√
πk/(2e),

hyperplane rounding beats the naive random algorithm.

2.5 Analysis of Hyperplane Rounding given Rainbow Colorability
In this section we analyze the performance of random hyperplane rounding on k-uniform
hypergraphs that are (k − `)-rainbow colorable.

Let U be the k × k matrix whose columns are unit vectors u1, . . . , uk ∈ IRk satisfying
the edge constraints in Relaxation 2.2. We need to bound the expression in Eq. (2.4) for U
of the above form. While we’d like to proceed just as in Section 2.4, we are limited by the
possibility of U being singular or the parallelotope determined by U having arbitrarily low
volume (as u1 can be chosen arbitrarily close to the span of u2, . . . , uk while still satisfying
||
∑
i ui||2 ≤ `).

While U can be bad with respect to our properties of interest, we will show that some
subset of the vectors in U are reasonably well behaved with respect to para-volume and
sum-norm.

2.5.1 Finding a Well Behaved Subset
We’d like to find a subset of U with high para-volume, or equivalently, a principal sub-
matrix of AU with reasonably large determinant. To this end, we express the gram matrix
AU = UTU as the sum of a symmetric skeleton matrix BU and a residue matrix EU . Formally,
EU = AU −BU and BU = (1 + β)I − β11T where β = 1

k−`−1 .

BU = (1 + β)I − β11T where β = 1
k − `− 1

We have (assuming ` = o(k)), sum(AU ) ≤ `2 and sum(BU ) = k− k(k− 1)β = −`
1−o(1) . Let

s← sum(EU ) ≤ `2 − sum(BU ) = `2 + `
1−o(1) .

We further observe that EU is symmetric, with all diagonal entries zero. Also since
u1, . . . , uk satisfy Relaxation 2.2, all entries of EU are non-negative.

By an averaging argument, at most ckδ columns of EU have column sums greater than
s/(ckδ) for some parameters δ, c to be determined later. Let S ⊆ [k] be the set of indices
of the columns having the lowest k − ckδ column sums. Let k̃ ← |S| = k − ckδ, and let
AS , BS , ES be the corresponding matrices restricted to S (in both columns and rows).

2.5.1.1 Spectrum of BS and ES

I Observation 17. For a square matrix X, let λmin(X) denote its minimum eigenvalue.
The eigenvalues of BS are exactly (1 + β) with multiplicity (k̃ − 1), and (1 + β − k̃β) with
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multiplicity 1. Thus λmin(BS) = 1+β−k̃β. This is true since BS merely shifts all eigenvalues
of −β11T by 1 + β.

While we don’t know as much about the spectrum of ES , we can still say some useful things.

I Observation 18. Since ES is non-negative, by Perron-Frobenius theorem, its spectral
radius is equal to its max column sum, which is at most s/(ckδ). Thus λmin(ES) ≥ −s/(ckδ).

Now that we know some information about the spectra of BS and ES , the next natural
step is to consider the behaviour of spectra under matrix sums.

2.5.1.2 Spectral properties of Matrix sums

The following identity is well known.

I Observation 19. If X and Y are symmetric matrices with eigenvalues x1 > x2 > · · · > xm
and y1 > y2 > · · · > ym and the eigenvalues of A+B are z1 > z2 > · · · > zm, then

∀ 0 ≤ i+ j ≤ m, zm−i−j ≥ xm−i + ym−j .

In particular, this implies λmin(X + Y ) ≥ λmin(X) + λmin(Y ).

We may finally analyze the spectrum of AS .

2.5.1.3 Properties of AS

I Observation 20 (Para-Volume). Let the eigenvalues of AS be a1 > a2 > · · · > ak̃ By
Observation 17, Observation 18, and Observation 19 we have (Assuming ` < ckδ/2),

λmin(AS) = ak̃ ≥ 1 + β − k̃β − s

ckδ
= c

k1−δ −
`2

ckδ
− o(1)

a2, a3, . . . , ak̃−1 ≥ 1 + β − s

ckδ
= 1− `2

ckδ
− o(1)

Consequently,

det(AS) ≥
(

c

k1−δ −
`2

ckδ
− o(1)

)(
1− `2

ckδ
− o(1)

)k̃
≥
(

c

k1−δ −
`2

ckδ
− o(1)

)
e−k

In particular, note that AS is non-singular and has non-negligible para-volume when

`2

ckδ
= c

2k1−δ , i.e. ` ≈ ckδ−1/2 or, δ ≈ 1
2

log(`/c)
log k

I Observation 21 (Sum-Norm). Since EU is non-negative, sum(ES) ≤ sum(EU ) = s. Also
we know that the sum of entries of AS is

sum(BS) + sum(ES) = k̃(1 + β)− k̃(k̃ − 1)β + s ≤ ckδ + s (2.8)

2.5.2 The Result
We are now equipped to prove our result.

I Theorem 22. For ` <
√
k/100, consider any (k−`)-rainbow colorable k-uniform hypergraph

H = (V,E). Let θ = 1/2 + log(`)/ log(k) and η = 19(1− θ)/40. The expected fraction of
monochromatic edges obtained by performing random hyperplane rounding on the solution of
Relaxation 2.2, is at most

1
2.1k kηk
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Proof. Let U be any k × k matrix whose columns are unit vectors u1, . . . , uk ∈ IRk that
satisfy the edge constraints in Relaxation 2.3. Recall from Section 2.2, that to bound the
probability of a monochromatic edge we need only bound the expression in Eq. (2.4) for U
of the above form.

By Section 2.5.1, we can always choose a matrix US whose columns ũ1, . . . , ũk̃ are
from the set {u1, . . . , uk}, such that the gram matrix AS = UTS US satisfies Eq. (2.8) and
Observation 20. Clearly the probability of all vectors in U being monochromatic is at most
the probability of all vectors in US being monochromatic.

Thus just as in Section 2.2, to find the probability of US being monochromatic, we may
assume without loss of generality that we are performing random hyperplane rounding in
IRk̃ on any k̃-dimensional vectors ũ1, . . . , ũk̃ whose gram (pairwise inner-product) matrix is
the aforementioned AS .

Specifically, by combining Eq. (2.8) and Observation 20 with Theorem 15, our expression
is at most:( e

2π

)k̃/2(ckδ + s

k

)k̃/2 1√
det(AU )

≤ 3.2k̃/2
(

(1− o(1))c
k1−δ

)k̃/2
≤ 1

2.1k k(1−c)(1−δ)k

assuming c = 1/20, δ ≥ 1/2 and ` <
√
k/100 (constraint on ` ensures that non-singularity

conditions of Observation 20 are satisfied). The claim follows. J

Remark. Yet again we see a threshold for `, namely, when ` <
√
k/100, hyperplane rounding

beats the naive random algorithm, and for ` = Ω(
√
k), it fails to do better. In fact, as we’ll

see in the next section, assuming the UGC, we show a hardness result when ` = Ω(
√
k).

3 Hardness of Max-2-Coloring under Low Discrepancy

In this section we consider the hardness of Max-2-Coloring when promised discrepancy as low
as one. As noted in Section 2.5, our analysis requires the configuration of vectors in an edge
to be well behaved with respect to sum-norm and para-volume. While in the discrepancy case,
we can ensure good sum-norm, the vectors in an edge can have arbitrarily low para-volume.
While in the rainbow case we can remedy this by finding a reasonably large well behaved
subset of vectors, this is not possible in the case of discrepancy.

Indeed, consider the following counterexample: Start in 2 dimensions with k/3 copies
each of any u1, u2, u3 such that u1 +u2 +u3 = 0. Lift all vectors to 3-dimensions by assigning
every vector a third coordinate of value exactly 1/k. This satisfies Relaxation 2.1, yet every
superconstant sized subset has para-volume zero.

Confirming that this is not an artifact of our techniques and the problem is in fact hard,
we show in this section via a reduction from Max-Cut, that assuming the Unique Games
conjecture, it is NP-Hard to Max-2-Color much better than the naive random algorithm that
miscolors 2−k+1 fraction of edges, even in the case of discrepancy-1 hypergraphs.

3.1 Reduction from Max-Cut
Let k = 2t + 1. Let G = (V,E) be an instance of Max-Cut, where each edge has weight
1. Let n = |V | and m = |E|. We produce a hypergraph H = (V ′, E′) where V ′ = V × [k].
For each u ∈ V , let cloud(u) := {u} × [k]. For each edge (u, v) ∈ E, we add N := 2

(
k
t

)(
k
t+1
)

hyperedges

{U ∪ V : U ⊆ cloud(u), V ⊆ cloud(v), |U |+ |V | = k, ||U | − |V || = 1},
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each with weight 1
N . Call these hyperedges created by (u, v). The sum of weights is m for

both G and H.

3.1.1 Completeness
Given a coloring C : V 7→ {B,W} that cuts at least (1 − α)m edges of G, we color H so
that for every v ∈ V , each vertex in cloud(v) is given the same color as v. If (u, v) ∈ E is
cut, all hyperedges created by (u, v) will have discrepancy 1. Therefore, the total weight of
hyperedges with discrepancy 1 is at least (1− α)m.

3.1.2 Soundness
Given a coloring C ′ : V ′ 7→ {B,W} such that the total weight of non-monochromatic
hyperedges is (1 − β)m, v ∈ V is given the color that appears the most in its cloud (k
is odd, so it is well-defined). Consider (u, v) ∈ E. If no hyperedge created by (u, v) is
monochromatic, it means that u and v should be given different colors by the above majority
algorithm (if they are given the same color, say white, then there are at least t+ 1 white
vertices in both clouds, so we have at least one monochromatic hyperedge).

This means that for each (u, v) ∈ E that is uncut by the above algorithm (lost weight 1
for Max-Cut objective), at least one hyperedge created by (u, v) is monochromatic, and we
lost weight at least 1

N there for our problem. This means that the total weight of cut edges
for Max-Cut is at least (1− βN)m.

3.1.3 The Result
I Theorem 23 ([24]). Let G = (V,E) be a graph with m = |E|. For sufficiently small ε > 0,
it is UG-hard to distinguish the following cases.

There is a 2-coloring that cuts at least (1− ε)|E| edges.
Every 2-coloring cuts at most (1− (2/π)

√
ε)|E| edges.

Our reduction shows that

I Theorem 24. Given a hypergraph H = (V,E), it is UG-hard to distinguish the following
cases.

There is a 2-coloring where at least (1− ε) fraction of hyperedges have discrepancy 1.
Every 2-coloring cuts (in a standard sense) at most (1− (2/π)

√
ε
N ) fraction of hyperedges.

N = 2
(
k
t

)(
k
t+1
)
≤ (2/π)2k · 2k ≤ (2/π)22k. If we take ε = 2−6k for large enough k, we cannot

distinguish
There is a 2-coloring where at least (1− 2−6k) fraction of hyperedges have discrepancy 1.
Every 2-coloring cuts (in a standard sense) at most (1− 2−5k) fraction of hyperedges.

This proves Theorem 2.

3.2 NP-Hardness
In this subsection, we show that given a hypergraph which admits a 2-coloring with dis-
crepancy at most 2, it is NP-hard to find a 2-coloring that has less than k−O(k) fraction of
monochromatic hyperedges. Note that while the inapproximability factor is worse than the
previous subsection, we get NP-hardness and it holds when the input hypergraph is promised
to have all hyperedges have discrepancy at most 2. The reduction and the analysis closely
follow from the more general framework of Guruswami and Lee [19] except that we prove a
better reverse hypercontractivity bound for our case.
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3.2.1 Q-Hypergraph Label Cover
An instance of Q-Hypergraph Label Cover is based on a Q-uniform hypergraph H =
(V,E). Each hyperedge-vertex pair (e, v) such that v ∈ e is associated with a projection
πe,v : [R] → [L] for some positive integers R and L. A labeling l : V → [R] strongly
satisfies e = {v1, . . . , vQ} when πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)). It weakly satisfies e when
πe,vi(l(vi)) = πe,vj (l(vj)) for some i 6= j. The following are two desired properties of instances
of Q-Hypergraph Label Cover.

Regular: every projection is d-to-1 for d = R/L.
Weakly dense: any subset of V of measure at least ε vertices induces at least εQ

2 fraction
of hyperedges.
T -smooth: for all v ∈ V and i 6= j ∈ [R], Pre∈E:e3v[πe,v(i) = πe,v(j)] ≤ 1

T .

The following theorem asserts that it is NP-hard to find a good labeling in such instances.

I Theorem 25 ([19]). For all integers T,Q ≥ 2 and η > 0, the following is true. Given
an instance of Q-Hypergraph Label Cover that is regular, weakly-dense and T -smooth, it is
NP-hard to distinguish between the following cases.

Completeness: There exists a labeling l that strongly satisfies every hyperedge.
Soundness: No labeling l can weakly satisfy η fraction of hyperedges.

3.2.2 Distributions
We first define the distribution µ′ for each block. 2Q points xq,i ∈ {1, 2}d for 1 ≤ q ≤ Q and
1 ≤ i ≤ 2 are sampled by the following procedure.

Sample q′ ∈ [Q] uniformly at random.
Sample xq′,1, xq′,2 ∈ {1, 2}d i.i.d.
For q 6= q′, 1 ≤ j ≤ d, sample a permutation ((xq,1)j , (xq,2)j) ∈ {(1, 2), (2, 1)} uniformly
at random.

3.2.3 Reduction and Completeness
We now describe the reduction from Q-Hypergraph Label Cover. Given a Q-uniform
hypergraph H = (V,E) with Q projections from [R] to [L] for each hyperedge (let d = R/L),
the resulting instance of 2Q-Hypergraph Coloring is H ′ = (V ′, E′) where V ′ = V × {1, 2}R.
Let cloud(v) := {v} × {1, 2}R. The set E′ consists of hyperedges generated by the following
procedure.

Sample a random hyperedge e = (v1, . . . , vQ) ∈ E with associated projections,
πe,v1 , . . . , πe,vQ from E.
Sample (xq,i)1≤q≤Q,1≤i≤2 ∈ {1, 2}R in the following way. For each 1 ≤ j ≤ L, independ-
ently sample ((xq,i)π−1

e,vq (j))q,i from (({1, 2}d)2Q,µ′).
Add a hyperedge between 2Q vertices {(vq, xq,i)}q,i to E

′. We say this hyperedge is
formed from e ∈ E.

Given the reduction, completeness is easy to show.

I Lemma 26. If an instance of Q-Hypergraph Label Cover admits a labeling that strongly
satisfies every hyperedge e ∈ E, there is a coloring c : V ′ → {1, 2} of the vertices of H ′ such
that every hyperedge e′ ∈ E′ has at least (Q− 1) vertices of each color.
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Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For
any v ∈ V, x ∈ {1, 2}R, let c(v, x) = xl(v). For any hyperedge e′ = {(vq, xq,i)}q,i ∈ E′,
c(vq, xq,i) = (xq,i)l(vq), and all but one q satisfies

{
(xq,1)l(vq), (xq,2)l(vq)

}
= {1, 2}. Therefore,

the above strategy ensures that every hyperedge of E′ contains at least (Q− 1) vertices of
each color. J

3.2.4 Soundness
I Lemma 27. There exists η := η(Q) such that if I ⊆ V ′ of measure 1

2 induces less than
Q−O(Q) fraction of hyperedges in H ′, the corresponding instance of Q-Hypergraph Label
Cover admits a labeling that weakly satisfies a fraction η of hyperedges.

Proof. Consider a vertex v and hyperedge e ∈ E that contains v with a permutation
π = πe,v. Let f : {1, 2}R 7→ [0, 1] be a noised indicator function of I ∩ cloud(v) with
Ex∈{1,2}R [f(x)] ≥ 1

2 − ε for small ε > 0 that will be determined later. We define the inner
product

〈f, g〉 = Ex∈{1,2}R [f(x)g(x)].

f admits the Fourier expansion ∑
S⊆[R]

f̂(S)χS

where
χS(x1, . . . , xk) =

∏
i∈S

(−1)xi , f̂(S) = 〈f, χS〉.

In particular, f̂(∅) = E[f(x)], and∑
S

f̂(S)2 = E[f(x)2] ≤ E[f(x)] (3.1)

A subset S ⊆ [R] is said to be shattered by π if |S| = |π(S)|. For a positive integer J , we
decompose f as the following:

fgood =
∑

S: shattered
f̂(S)χS

fbad = f − fgood.

By adding a suitable noise and using smoothness of Label Cover, for any δ > 0, we can
assume that ||fbad||2 ≤ δ. See [19] for the details.

Each time a 2Q-hyperedge is sampled is formed from e, two points are sampled from
each cloud. Let x, y be the points in cloud(v). Recall that they are sampled such that for
each 1 ≤ j ≤ L,

With probability 1
Q , for each i ∈ π−1(j), xi and yi are independently sampled from {1, 2}.

With probability Q−1
Q , for each i ∈ π−1(j), (xi, yi) are sampled from {(1, 2), (2, 1)}.

We can deduce the following simple properties.
1. Ex,y[χ{i}(x)χ{i}(y)] = −Q−1

Q . Let ρ := −Q−1
Q .

2. Ex,y[χ{i}(x)χ{j}(y)] = 0 if i 6= j.
3. Ex,y[χS(x)χT (y)] = 0 unless π(S) = π(T ) = π(S ∩ T ).
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We are interested in lower bounding

Ex,y[f(x)f(y)] ≥ E[fgood(x)fgood(y)]− 3‖fbad(x)‖2‖f‖2 ≥ E[fgood(x)fgood(y)]− 3δ.

By the property 3.,

E[fgood(x)fgood(y)] =
∑

S: shattered
f̂(S)2ρ|S|

= E[f ]2 +
∑

S: shattered
f̂(S)2ρ|S|

≥ E[f ]2 + ρ(
∑
|S|>1

f̂(S)2) since ρ is negative

≥ E[f ]2 + ρ(E[f ]− E[f ]2) by (3.1)

≥ E[f ]2(1 + ρ)− ε since E[f ] ≥ 1
2 − ε⇒ E[f ]− E[f ]2 ≤ E[f ]2 + ε

≥ E[f ]2

Q
− ε.

By taking ε and δ small enough, we can ensure that

E[f(x)f(y)] ≥ ζ := 1
5Q. (3.2)

The soundness analysis of Guruswami and Lee [19] ensures ((3.2) replaces their Step 2) that
there exists η := η(Q) such that if the fraction of hyperedges induced by I is less than
Q−O(Q), the Hypergraph Label Cover instance admits a solution that satisfies η fraction of
constraints. We omit the details. J

3.2.5 Corollary to Max-2-Coloring under discrepancy O(log k)
The above NP-hardness, combined with the reduction techinque from Max-Cut in Section 3.1,
shows that given a k-uniform hypergraph, it is NP-hard to distinguish whether it has
discrepancy at most O(log k) or any 2-coloring leaves at least 2−O(k) fraction of hyperedges
monochromatic. Even though the direction reduction from Max-Cut results in a similar
inapproximability factor with discrepancy even 1, this result does not rely on the UGC and
hold even all edges (compared to almost in Section 3.1) have discrepancy O(log k).

Let r = Θ( k
log k ) so that s = k

r = Θ(log k) is an integer. Given a r-uniform hypergraph,
it is NP-hard to distinguish whether it has discrepancy at most 2 or any 2-coloring leaves
at least r−O(r) fraction of hyperedges monochromatic. Given a r-uniform hypergraph, the
reduction replaces each vertex v with cloud(v) that contains (2s − 1) new vertices. Each
hyperedge (v1, . . . , vr) is replaced by d := (

(2s−1
s

)
)r ≤ (2s)r = 2k hyperedges

{∪ri=1Vi : Vi ⊂ cloud(vi), |Vi| = s}.

If the given r-uniform hypergraph has discrepancy at most 2, the resulting k-uniform
hypergraph has discrepancy at most 2s = O(log k).

If the resulting k-uniform hypergraph admits a coloring that leaves α fraction of hyperedges
monochromatic, giving v the color that appears more in cloud(v) is guaranteed to leaves at
most dα fraction of hyperedges monochromatic. Therefore, if any 2-coloring of the input
r-uniform hypergraph leaves at least r−O(r) fraction of hyperedges monochromatic, any
2-coloring of the resulting k-uniform hypergraph leaves at least r−O(r)

d = 2−O(k) fraction of
hyperedges.

APPROX/RANDOM’15
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3.3 Hardness of Max-2-Coloring under almost (k −
√

k)-colorability
Let k be such that ` :=

√
k be an integer and let χ := k − `. We prove the following

hardness result for any ε > 0 assuming the Unique Games Conjecture: given a k-uniform
hypergraph such that there is a χ-coloring that have at least (1− ε) fraction of hyperedges
rainbow, it is NP-hard to find a 2-coloring that leaves at most ( 1

2 )k−1 fraction of hyperedges
monochromatic.

The main technique for this result is to show the existence of a balanced pairwise
independence distribution with the desired support. Let µ be a distribution on [χ]k. µ is
called balanced pairwise independent if for any i 6= j ∈ [k] and a, b ∈ [χ],

Pr
(x1,...,xk)∼µ

[xi = a, xj = b] = 1
χ2 .

For example, the uniform distribution on [χ]k is a balanced pairwise distribution. We now
consider the following distribution µ to sample (x1, . . . , xk) ∈ [χ]k.

Sample S ⊆ [k] with |S| = χ uniformly at random. Let S = {s1 < · · · < sχ}.
Sample a permutation π : [χ] 7→ [χ].
Sample y ∈ [χ].
For each i ∈ [k], if i = sj for some j ∈ [χ], output xi = π(χ). Otherwise, output xi = y.

Note that for any supported by (x1, . . . , xk), we have {x1, . . . , xk} = [χ]. Therefore, µ is
supported on rainbow strings. We now verify pairwise independence. Fix i 6= j ∈ [k] and
a, b ∈ [χ].

If a = b, by conditioning on wheter i, j are in S or not,

Pr
µ

[xi = a, xj = b] = Pr[xi = a, xj = b|i, j ∈ S] Pr[i, j ∈ S]+

Pr[xi = a, xj = b|i ∈ S, j /∈ S] Pr[i ∈ S, j /∈ S]+
Pr[xi = a, xj = b|i /∈, j ∈ S] Pr[i /∈, j ∈ S]+
Pr[xi = a, xj = b|i, j /∈ S] Pr[i, j /∈ S]

=0 · (χ(χ− 1)
k(k − 1) ) + 2 · ( 1

χ2 ) · ( lχ

k(k − 1)) + ( 1
χ

) · ( `(`− 1)
k(k − 1))

=2`χ+ χ(`2 − `)
χ2k(k − 1) = χk + χ

√
k

χ2k(k − 1) =
√
k(
√
k + 1)

χk(
√
k + 1)(

√
k − 1)

= 1
χ(k −

√
k)

= 1
χ2 .

If a 6= b, by the same conditioning,

Pr
µ

[xi = a, xj = b] =( 1
χ(χ− 1)) · (χ(χ− 1)

k(k − 1) ) + 2 · ( 1
χ2 ) · ( `χ

k(k − 1)) + 0 · ( `(`− 1)
k(k − 1))

= χ2 + 2lχ
χ2k(k − 1) = χ+ 2`

χk(k − 1) = k +
√
k

χk(k − 1) = 1
χ2 .

Given such a balanced pairwise independent distribution supported on rainbow strings, a
standard procedure following the work of Austrin and Mossel [7] shows that it is UG-hard to
outperform the random 2-coloring. We omit the details.

4 Approximate Min-Coloring

In this section, we provide approximation algorithms for the Min-Coloring problem under
strong colorability, rainbow colorability, and low discrepancy assumptions. Our approach is
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standard, namely, we first apply degree reduction algorithms followed by the usual paradigm
pioneered by Karger, Motwani and Sudan [23], for coloring bounded degree (hyper)graphs.
Consequently, our exposition will be brief.

In the interest of clarity, all results henceforth assume the special cases of Discrepancy-1,
or (k − 1)-rainbow colorability, or (k + 1)-strong colorability. All arguments generalize easily
to the cases parameterized by `.

4.1 Approximate Min-Coloring in Bounded Degree Hypergraphs
4.1.1 The Algorithm
INPUT: k-uniform hypergraph H = ([n], E) with max-degree t and m edges, having Discrep-
ancy 1, or being (k − 1)-rainbow colorable, or being (k + 1)-strong colorable.
1. Let u1, . . . , un be a solution to the SDP relaxation from Section 2.1 corresponding to the

assumption on the hypergraph.
2. Let H1 be a copy of H, and let γ, τ be parameters to be determined shortly.
3. Until no vertex remains in the hypergraph, Repeat:

a. Find an independent set I in the residual hypergraph, of size at least γn by repeating
the below process until |I| ≥ γn:
(A) Pick a random vector r from the standard multivariate normal distribution.
(B) For all i, if 〈ui, r〉 ≥ τ , add vertex i to I.
(C) For every edge e completely contained in I, delete any single vertex in e, from I.

b. Color I with a new color and remove I and all edges involving vertices in I, from H1.

4.1.2 Analysis
First note that by Lemma 8, for any fixed vector a, 〈a, r〉 has the distribution N (0, 1). Note
that all SDP formulations in Section 2.1 satisfy,∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈[k]

uij

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1 (4.1)

Now consider any edge e = (i1, . . . , ik). In any fixed iteration of the inner loop, the probability
of e being contained in I at Step (B), is at most the probability of

〈r,
∑
j∈[k]

uij 〉 ≥ kτ

However, by Lemma 8 and Eq. (4.1), the inner product above is dominated by the distribution
N (0, 1). Thus in any fixed iteration of the inner loop, let H1 have n1 vertices and m1 edges,
we have

E [I] ≥ n1Φ(τ)−m1Φ(kτ)

≥ n1e
−τ2/2 − n1t

k
e−k

2τ2/2

= Ω(γn1) setting, τ2 = 2 log t
k2 − 1 , and γ = t−1/(k2−1)

Now by applying Markov’s inequality to the vertices not in I, we have, Pr[|I| < γn1] ≤
1− Ω(γ). Thus for a fixed iteration of the outer loop, with high probability, the inner loop
doesn’t repeat more than O(logn1/γ) times.

APPROX/RANDOM’15
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Lastly, the outermost loop repeats O(logn/γ) times, using one color at each iteration.
Thus with high probability, in polynomial time, the algorithm colors H with t1/(k2−1) logn col-
ors.

Important Note. We can be more careful in the above analysis for the rainbow and strong
colorability cases. Specifically, the crux boils down to finding the gaussian measure of the
cone given by

{
x
∣∣UTx ≥ τ } instead of zero. Indeed, on closely following the proof of

Theorem 15 we obtain for strong and rainbow coloring respectively (assuming max-degree
nk),

n
1
k(1− 3β

2 ) logn and n
1
k(1− 5β

4 ) logn, where β = log k
logn

While these improvements are negligible for small k, they are significant as k approaches
n2/3.

4.2 Degree Reduction Schemes under Promise
Wigderson [38] and Alon et al. [3] studied degree reduction in the cases of 3-colorable graphs
and 2-colorable hypergraphs, respectively. Assuming our proposed structures, we are able
to combine some simple combinatorial ideas with counterparts of the observations made
by Wigderson and Alon et al., to obtain degree reduction approximation schemes. Such
approximation schemes are likely not possible assuming only 2-colorability. Due to space
constraints we defer these degree reduction algorithms to the full version [10].

4.3 Main Min-Coloring Result
Combining results from Section 4.1.2 with our degree reduction approximation schemes from
the Section 4.2, we obtain the Min-Coloring results.

I Theorem 28. Consider any k-uniform hypergraph H = (V,E) with n vertices. In nc+O(1)

time, one can color H with

min
{(

n

c logn

)α
, n

1
k(1− 3β

2 ),
(m
n

) 1
k2
}

logn colors, if H is (k + 1)-strongly colorable.

min
{(n

c

)α
, n

1
k(1− 5β

4 ),
(m
n

) 1
k2
}

logn colors, if H is (k − 1)-rainbow colorable.

min
{(n

c

)α
,
(m
n

) 1
k2
}

logn colors, if H has discrepancy 1.

where, α = 1
k + 2− o(1) , β = log k

logn

I Remark. In all three promise cases the general polytime min-coloring guarantee paramet-
erized by `, is roughly n`2/k. Thus, the threshold value of `, for which standard min-coloring
techniques improve with k, is o(

√
k).
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