128 research outputs found

    Assessment of Snow Status Changes Using L-HH Temporal-Coherence Components at Mt. Dagu, China

    Get PDF
    Multitemporal Phased Array type L-band Synthetic Aperture Radar (PALSAR) horizontally transmitted and horizontally received (HH) coherence data was decomposed into temporal-coherence, spatial-coherence, and thermal noise components. The multitemporal data spanned between February and May of 2008, and consisted of two pairs of interferometric SAR (InSAR) images formed by consecutive repeat passes. With the analysis of ancillary data, a snow increase process and a snow decrease process were determined. Then, the multiple temporal-coherence components were used to study the variation of thawing and freezing statuses of snow because the components can mostly reflect the temporal change of the snow that occurred between two data acquisitions. Compared with snow mapping results derived from optical images, the outcomes from the snow increase process and the snow decrease process reached an overall accuracy of 71.3% and 79.5%, respectively. Being capable of delineating not only the areas with or without snow cover but also status changes among no-snow, wet snow, and dry snow, we have developed a critical means to assess the water resource in alpine areas

    Remote Sensing of Mountain Glaciers and Related Hazards

    Get PDF
    Mountain glaciers are highly sensitive to temperature and precipitation fluctuations and active geomorphic agents in shaping the landforms of glaciated regions which are direct imprints of past glaciations, providing reliable evidence of the evolution of the past Cryosphere and contain important information on climatic variables. But most importantly, glaciers have aroused a lot of concern in terms of glacier area changes, thickness change, mass balance and their consequences on water resources as well as related hazards. The contribution of glacier mass loss to global sea-level rise and increasing number of glacier-related hazards are the most important and current socioeconomic concerns. Therefore, understanding the dynamics of the changes and constant monitoring of glaciers are essential for studying climate, water resource management and hydropower and also to predict and evade glacier-related hazards. The recent advances in the techniques of earth observations have proved as a boon for investigating glaciers and glacier-related hazards. Remote sensing technology enables extraction of glacier parameters such as albedo/reflectance/scattering, glacier area, glacier zones and facies, equilibrium line, glacier thickness, volume, mass balance, velocity and glacier topography. The present chapter explores the prospective of remote sensing technology for understanding and surveying glaciers formed at high, inaccessible mountains and glacier-induced hazards

    Gangotri glacier dynamics from multi-sensor SAR and optical data

    Get PDF
    The present study has analyzed dynamics of Gangotri glacier using multiple remote sensing (RS) datasets and ground based observations. Interferometric Synthetic Aperture Radar (InSAR) data pairs from European Remote Sensing satellite (ERS 1/2) tandem pair for spring of 1996, Sentinel-1 SAR pairs and Japanese's Advance Land Observation System (ALOS) PALSAR-2 SAR data for Spring of 2015 were used to derive glacier-surface velocity at seasonal time scale using Differential InSAR (DInSAR) techniques. Bi-static TanDEM-X (Experimental) data was used for the 1st time to estimate glacier surface elevation changes for a period of 22, 44, 88 days during summer of 2012 using InSAR techniques in this study. Annual glacier velocity was also estimated using temporal panchromatic data of LANDSAT-5 (30 m), LANDSAT-7/8 (15 m), Sentinel-2 (10 m) and Indian Remote Sensing Satellite IRS-1C/1D panchromatic (5 m) data during 1998–2019 with feature tracking approach. This study has estimated glacier surface velocity and surface elevation changes for the major parts of Gangotri glacier and its tributary glaciers using medium to high resolution optical and SAR datasets, at annual and seasonal time scale, which is an improvement over earlier studies, wherein snout based glacier recession or only main glacier velocities were reported. The velocity and slope were used to assess glacier-ice thickness distribution using Glabtop-2, slope dependent and laminar flow based methods over the Gangotri group of glaciers. The estimated ice thickness was estimated in the range of 58–550 m for the complete glacier while few small areas in middle &amp; upper regions carry higher thickness of about 607 m. The estimated glacier-ice thickness was found in the range of 58–67 m at the snout region. The estimation was validated using 2014 field measurements from Terrestrial Laser Scanner (TLS) for the first time and correlation was found to be 0.799 at snout of the glacier.</p

    Mapping Samudra Tapu glacier:A holistic approach utilizing radar and optical remote sensing data for glacier radar facies mapping and velocity estimation

    Get PDF
    Himalayan glaciers have shown more sensitivity and visible changes to the climate change and global warming in the last 150 years. The highly rugged topography and inaccessible remote areas makes satellite images as the most appropriate source of information retrieval. We performed remote sensing based glacier change study for Samudra Tapu glacier, located in the Chandra basin of North-West Himalaya. In the present study, the capabilities of both optical and microwave remote sensing data was analysed in glacier change study in terms of its coverage, shift in equilibrium line altitude (ELA) and surface velocity over a period from 2000 to 2021. Multi Sensor (RISAT-1, Sentinel-1) time series of C-band SAR data along with a object oriented classification technique were used to identify different glacier facies such as percolation facies, icefalls, bare ice facies, refreeze snow and supraglacial debris. These classified maps were also used to detect the snow line and firn line along with ELA, aided with elevation information from digital elevation model (DEM). It was identified that more than 50 % of the total glacier area still lies into accumulation region. Further, we estimated the glacier surface velocity using Differential Interferometric Synthetic Aperture Radar (DInSAR) technique using European Remote Sensing Satellite (ERS-1/2) tandem data of 1996. High value of coherence was observed from the SAR return signal for one-day temporal difference. A mean velocity of 17–24 cm/day was found for the months of March and May 1996, highest flow rates were seen in the high accumulation area located in the Eastern and Southern Aspect of glacier. Spatial analysis of velocity patterns with respect to slope and aspect show that high rates of flow was found in southern slopes and movement rates generally increase with increase in slope. Feature tracking approach was used to estimate the glacier flow for long term and seasonal basis using optical and SAR datasets (IRS-1C, 1D PAN, Landsat-7, 8 PAN, and TANDEM-x) during 1999–2020 period. The results suggest that glacier flow varies with season, i.e., high velocity during spring-summer season, as compared to late summer or winter and, the rate of ice flow changes over the years. The mean glacier velocity reduced to 49.5 m/year during 2013–2020 time, as compared to 67.67 m/year during 1999–2003 time. These results of reducing glacier velocity and changing snow line altitude indicates enhanced glacier's melt rate and overall negative mass balance for Smudra tapu glacier.</p

    Remote Sensing of Snow Cover Using Spaceborne SAR: A Review

    Get PDF
    The importance of snow cover extent (SCE) has been proven to strongly link with various natural phenomenon and human activities; consequently, monitoring snow cover is one the most critical topics in studying and understanding the cryosphere. As snow cover can vary significantly within short time spans and often extends over vast areas, spaceborne remote sensing constitutes an efficient observation technique to track it continuously. However, as optical imagery is limited by cloud cover and polar darkness, synthetic aperture radar (SAR) attracted more attention for its ability to sense day-and-night under any cloud and weather condition. In addition to widely applied backscattering-based method, thanks to the advancements of spaceborne SAR sensors and image processing techniques, many new approaches based on interferometric SAR (InSAR) and polarimetric SAR (PolSAR) have been developed since the launch of ERS-1 in 1991 to monitor snow cover under both dry and wet snow conditions. Critical auxiliary data including DEM, land cover information, and local meteorological data have also been explored to aid the snow cover analysis. This review presents an overview of existing studies and discusses the advantages, constraints, and trajectories of the current developments

    Monitoring Snow Cover and Snowmelt Dynamics and Assessing their Influences on Inland Water Resources

    Get PDF
    Snow is one of the most vital cryospheric components owing to its wide coverage as well as its unique physical characteristics. It not only affects the balance of numerous natural systems but also influences various socio-economic activities of human beings. Notably, the importance of snowmelt water to global water resources is outstanding, as millions of populations rely on snowmelt water for daily consumption and agricultural use. Nevertheless, due to the unprecedented temperature rise resulting from the deterioration of climate change, global snow cover extent (SCE) has been shrinking significantly, which endangers the sustainability and availability of inland water resources. Therefore, in order to understand cryo-hydrosphere interactions under a warming climate, (1) monitoring SCE dynamics and snowmelt conditions, (2) tracking the dynamics of snowmelt-influenced waterbodies, and (3) assessing the causal effect of snowmelt conditions on inland water resources are indispensable. However, for each point, there exist many research questions that need to be answered. Consequently, in this thesis, five objectives are proposed accordingly. Objective 1: Reviewing the characteristics of SAR and its interactions with snow, and exploring the trends, difficulties, and opportunities of existing SAR-based SCE mapping studies; Objective 2: Proposing a novel total and wet SCE mapping strategy based on freely accessible SAR imagery with all land cover classes applicability and global transferability; Objective 3: Enhancing total SCE mapping accuracy by fusing SAR- and multi-spectral sensor-based information, and providing total SCE mapping reliability map information; Objective 4: Proposing a cloud-free and illumination-independent inland waterbody dynamics tracking strategy using freely accessible datasets and services; Objective 5: Assessing the influence of snowmelt conditions on inland water resources

    A study of decadal scale glacier changes of the Lunana glacier system in Bhutan, Himalaya, with considerations to glacial lake outburst floods (GLOFs)

    Get PDF
    This study assesses changes in glacier area, velocity, and geodetic mass balance for a selection of glaciers in the Lunana glacier system of Bhutan, Himalaya. It takes considerations to Glacial Lake Outburst Floods (GLOFs) by creating a glacial lake inventory of two important potential dangerous glacial lakes, Raphstreng Tsho and Luggye Tsho. Bhutan is located in the eastern parts of the HKH region and is known for its earlier GLOF events. The precipitation in Bhutan is driven by the Indian monsoon resulting in 60% annual precipitation, the high amount of rainfall results in rockfalls that covers large valley glacier tongues with debris. I studied the glacier area changes between 1976, 1996 and 2018 using freely available Landsat satellite imagery, SAR Sentinel 1&2, the SRTM Digital Elevation Model (DEM) and HMA DEM. The geodetic mass balance was calculated between 1976, 2000 and 2018/9 (for selected glaciers) using DEM constructed from high-resolution stereo images, Pléiades and SPOT, granted from the European Space Agency, as well as using the already accessed SRTM DEM and a Hexagon DEM courtesy of King, et al. (2019). The glacier velocity was generated using SAR TerraSAR-X data from 2016 and shows an average yearly displacement over the Lunana glacier system. The glacial lake time series for Raphstreng Tsho and Luggye Tsho where studied between 1993 and 2018 using a stack of freely available Landsat imagery. The results of this study, show a variety of decadal glacial changes over Lunana glacier system, with glaciers lowering on an average by 0.48± 0.08 m a-1 between 1976 and 2018/9 which calculates to a geodetic mass balance of -0.41 ± 0.068 m w.e. a-1. The system had a total average of 12.73% area of reduction for all glaciers, between the same time period. The Lunana glacier system consists of both debris-covered glaciers in the south and debris-free glaciers in the north, and as a result, the glacier changes vary between the two regions. Between 1976 – 2018/9 the southern region had an average surface melt of 0.76 ± 0.07 m a-1 which calculates to a geodetic mass balance of -0.65 ± 0.06 m w.e. a-1 and a 12.65% area of reduction. For the Northern region, the average surface melt was measured to be 1.26 ± 0.07 m a-1 which calculates to a geodetic mass balance of 1.07 ± 0.06 m w.e. a-1 and a 12.80% area of reduction. The glacier velocity was calculated to be at average of 3.05 ± 0.73 m a-1 over the south region and 3.78 ± 0.73 m a-1 over the north region. The Luggye glacier 1, located in the southern parts of Lunana glacier system, is the main input source for glacier meltwater to Luggye Tsho an ice-moraine dam proglacial lake which outburst in 1994 due to hydrostatic pressure. Between 1976 and 2018/9, the Luggye glacier 1 has had a considerable loss in surface elevation by 1.19 ± 0.07 m a-1 which calculates to a geodetic mass balance of 1.01 ± 0.069 m w.e. a-1. The 1994 GLOF event discharged over 18 million m3 of water, destroying infrastructure, flooding villages and houses which killed 21 humans. Today, Luggye Tsho is classified to yield over 1.41 km2 of water, an increase from its former state of 1.12 km2 in 1993, just before the event. This study cannot affirm if PDGLs such as Luggye Tsho is to outburst in the future, but it does affirm its growth in lake area and its input source from glacier melt over Luggye glacier, and that it should be monitored in case of potential outbreak. This can be done by doing repeated analysis of glacier velocity and calculation of glacier mass balance, as this would calculate the input source amount of meltwater to Luggye Tsho.Masteroppgave i geografiGEO350MASV-PHYGMASV-GEOGMPGEOGRMASV-MEH

    LiCSBAS: An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor

    Get PDF
    For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit

    One Decade of Glacier Mass Changes on the Tibetan Plateau Derived from Multisensoral Remote Sensing Data

    Get PDF
    The Tibetan Plateau (TP) with an average altitude of 4,500 meters above sea level is characterized by many glaciers and ice caps. Glaciers are a natural indicator for climate variability in this high mountain environment where meteorological stations are rare or non-existent. In addition, the melt water released from the Tibetan glaciers is feeding the headwaters of the major Asian river systems and contributes to the rising levels of endorheic lakes on the plateau. As many people directly rely on the glacier melt water a continuous glacier monitoring program is necessary in this region. In situ measurements of glaciers are important, but are spatial limited due to large logistical efforts, physical constrains and high costs. Remote sensing techniques can overcome this gap and are suitable to complement in situ measurements on a larger scale. In the last decade several remote sensing studies dealt with areal changes of glaciers on the TP. However, glacier area changes only provide a delayed signal to a changing climate and the amount of melt water released from the glaciers cannot be quantified. Therefore it is important to measure the glacier mass balance. In order to estimate glacier mass balances and their spatial differences on the TP, several remote sensing techniques and sensors were synthesized in this thesis. In a first study data from the Ice Cloud and Elevation Satellite (ICESat) mission were employed. ICESat was in orbit between 2003 and 2009 and carried a laser altimeter which recorded highly accurate surface elevation measurements. As in mid-latitudes these measurements are rather sparse glaciers on the TP were grouped into eight climatological homogeneous sub-regions in order to perform a statistical sound analysis of glacier elevation changes. To assess surface elevation changes of a single mountain glacier from ICESat data, an adequate spatial sampling of ICESat measurements need to be present. This is the case for the Grosser Aletschgletscher, located in the Swiss Alps which served as a test site in this thesis. In another study data from the current TanDEM-X satellite mission and from the Shuttle Radar Topography Mission (SRTM) conducted in February 2000 were employed to calculate glacier elevation changes. In a co-authored study, these estimates could be compared with glacier elevation changes obtained from the current French Pléiades satellite mission. In order to calculate glacier mass balances, the derived elevation changes were combined with assumptions about glacier area and ice density in all studies. In this thesis contrasting patterns of glacier mass changes were found on the TP. With an ICESat derived estimate of -15.6±10.1 Gt/a between 2003 and 2009 the average glacier mass balance on the TP was clearly negative. However, some glaciers in the central and north-western part of the TP showed a neutral mass balance or a slightly positive anomaly which was also confirmed by data from the current TanDEM-X satellite mission. A possible explanation of this anomaly in mass balance could be a compensation of the temperature driven glacier melt due to an increase in precipitation
    corecore