176 research outputs found

    Single-carrier 72 GBaud 32QAM and 84 GBaud 16QAM transmission using a SiP IQ modulator with joint digital-optical pre-compensation

    Get PDF
    We establish experimentally the suitability of an all-silicon optical modulator to support future ultra-high-capacity coherent optical transmission links beyond 400 Gb/s. We present single-carrier data transmission from 400 Gb/s to 600 Gb/s using an all-silicon IQ modulator produced with a generic foundry process. The operating point of the silicon photonic transmitter is carefully optimized to find the best efficiency bandwidth trade-off. We present a methodology to split pre-compensation between digital and optical stages. For the 400 Gb/s transmission, we achieved 60 Gbaud dual-polarization (DP)-16QAM, reaching a distance of 1,520 km. Transmission of 500 Gb/s was further tested using 75 Gbaud 16QAM and 60 Gbaud 32QAM, reaching 1,120 km and 480 km, respectively. We finally demonstrated 72 Gbaud DP-32QAM (720 Gb/s) transmitted over 160 km and 84 Gbaud DP-16QAM (672 Gb/s) transmitted over 720 km, meeting the threshold for 20% forward error correction overhead and achieving net rates of 600 Gb/s and 576 Gb/s, respectively. To the best of our knowledge, these are the highest baud-rate coherent transmission results achieved using an all-silicon IQ modulator. We have demonstrated that we can reap the myriad advantages of SiP integration for transmission at extreme bit rates

    Optical terabit transmitter and receiver based on passive polymer and InP technology for high-speed optical connectivity between datacenters

    Get PDF
    We demonstrate the hybrid integration of a multi-format tunable transmitter and a coherent optical receiver based on optical polymers and InP electronics and photonics for next generation metro and core optical networks. The transmitter comprises an array of two InP Mach-Zehnder modulators (MZMs) with 42 GHz bandwidth and two passive PolyBoards at the back- and front-end of the device. The back-end PolyBoard integrates an InP gain chip, a Bragg grating and a phase section on the polymer substrate capable of 22 nm wavelength tunability inside the C-band and optical waveguides that guide the light to the inputs of the two InP MZMs. The front-end PolyBoard provides the optical waveguides for combing the In-phase and Quadrature-phase modulated signals via an integrated thermo-optic phase shifter for applying the pi/2 phase-shift at the lower arm and a 3-dB optical coupler at the output. Two InP-double heterojunction bipolar transistor (InP-DHBT) 3-bit power digital-to-analog converters (DACs) are hybridly integrated at either side of the MZM array chip in order to drive the IQ transmitter with QPSK, 16-QAM and 64-QAM encoded signals. The coherent receiver is based on the other side on a PolyBoard, which integrates an InP gain chip and a monolithic Bragg grating for the formation of the local oscillator laser, and a monolithic 90° optical hybrid. This PolyBoard is further integrated with a 4-fold InP photodiode array chip with more than 80 GHz bandwidth and two high-speed InP-DHBT transimpedance amplifiers (TIAs) with automatic gain control. The transmitter and the receiver have been experimentally evaluated at 25Gbaud over 100 km for mQAM modulation showing bit-error-rate (BER) performance performance below FEC limit

    Multi-level optical signal generation using a segmented-electrode InP IQ-MZM with integrated CMOS binary drivers

    Get PDF
    We present a segmented-electrode InP IQ-MZM, capable of multi-level optical signal generation (5-bit per I/Q arm) by employing direct digital drive from integrated, low-power (1W) CMOS binary drivers. Programmable, multi-level operation is demonstrated experimentally on one MZM of the device

    Data Rate vs. Maximum Reach in a Data Center Interconnect Scenario Exploiting Wideband InP Mach-Zehnder Modulators

    Get PDF
    A new Mach-Zehnder DP-IQ ultra-wideband indium phosphide modulator with integrated optical semiconductor amplifiers has been characterized for time domain simulations to investigate data rate versus maximum range in a DCI scenario

    InP-based comb-locked optical super channel transmitter

    Get PDF
    We demonstrate a comb-based transmitter with a potential to be integrated on a single InP photonic chip. Nyquist-shaped polarization-multiplexed 16QAM/64QAM signals are generated and transmitted over 300-km of SMF-28

    Segmented optical transmitter comprising a CMOS driver array and an InP IQ-MZM for advanced modulation formats

    Get PDF
    Segmented Mach-Zehnder modulators are promising solutions to generate complex modulation schemes in the migration towards optical links with a higher-spectral efficiency. We present an optical transmitter comprising a segmented-electrode InP IQ-MZM, capable of multilevel optical signal generation (5-bit per I/Q arm) by employing direct digital drive from integrated, low-power (1W) CMOS binary drivers. We discuss the advantages and design tradeoffs of the segmented driver structure and the implementation in a 40 nm CMOS technology. Multilevel operation with combined phase and amplitude modulation is demonstrated experimentally on a single MZM of the device for 2-ASK-2PSK and 4-ASK-2-PSK, showing potential for respectively 16-QAM and 64-QAM modulation in future assemblies

    Cost-Effective Spectrally-Efficient Optical Transceiver Architectures for Metropolitan and Regional Links

    Get PDF
    The work presented herein explores cost-effective optical transceiver architectures for access, metropolitan and regional links. The primary requirement in such links is cost-effectiveness and secondly, spectral efficiency. The bandwidth/data demand is driven by data-intensive Internet applications, such as cloud-based services and video-on-demand, and is rapidly increasing in access and metro links. Therefore, cost-effective optical transceiver architectures offering high information spectral densities (ISDs > 1(b/s)/Hz) need to be implemented over metropolitan distances. Then, a key question for each link length and application is whether coherent- or direct (non-coherent) detection technology offers the best cost and performance trade-off. The performance and complexity limits of both technologies have been studied. Single polarization direct detection transceivers have been reviewed, focusing on their achievable ISDs and reach. It is concluded that subcarrier modulation (SCM) technique combined with single sideband (SSB) and high-order quadrature amplitude modulation (QAM) signaling, enabled by digital signal processing (DSP) based optical transceivers, must be implemented in order to exceed an ISD of 1 (b/s)/Hz in direct-detection links. The complexity can be shifted from the optical to the electrical domain using such transceivers, and hence, the cost can be minimized. In this regard, a detailed performance comparison of two spectrally-efficient direct detection SCM techniques, namely Nyquist-SCM and OFDM, is presented by means of simulations. It is found out that Nyquist-SCM format offers the transmission distances more than double that of OFDM due to its higher resilience to signal-signal beating interference. Following this, dispersion-precompensated SSB 4- and 16-QAM Nyquist-SCM signal formats were experimentally demonstrated using in-phase and quadrature (IQ)-modulators at net optical ISDs of 1.2 and 2 (b/s)/Hz over 800 km and 323 km of standard single-mode fibre (SSMF), respectively. These demonstrations represent record net optical ISDs over such distances among the reported single polarization wavelength division multiplexed (WDM) systems. Furthermore, since the cost-effectiveness is crucial, the optical complexity of Nyquist-SCM transmitters can be significantly reduced by using low-cost modulators and high-linewidth lasers. A comprehensive theoretical study on SSB signal generation using IQ- and dual-drive Mach-Zehnder modulators (DD-MZMs) was carried out to assess their performance for WDM direct detection links. This was followed by an experimental demonstration of WDM transmission over 242 km of SSMF with a net optical ISD of 1.5 (b/s)/Hz, the highest achieved ISD using a DD-MZM-based transmitter. Following the assessment of direct detection technology using various transmitter designs, cost-effective simplified coherent receiver architectures for access and metro networks have been investigated. The optical complexity of the conventional (polarization- and phase-diverse) coherent receiver is significantly simplified, i.e., consisting of a single 3 dB coupler and balanced photodetector, utilizing heterodyne reception and Alamouti polarization-time block coding. Although the achievable net optical ISD is halved compared to a conventional coherent receiver due to Alamouti coding, its receiver sensitivity provides significant gain over a direct detection receiver at M-ary QAM formats where M ≄16

    Semiconductor Optical Amplifiers and mm-Wave Wireless Links for Converged Access Networks

    Get PDF
    Future access networks are converged optical-wireless networks, where fixed-line and wireless services share the same infrastructure. In this book, semiconductor optical amplifiers (SOA) and mm-wave wireless links are investigated, and their use in converged access networks is explored: SOAs compensate losses in the network, and thereby extend the network reach. Millimeter-wave wireless links substitute fiber links when cabling is not economical

    Novel optical transmitters for high speed optical networks

    Get PDF
    The objective of this thesis is to investigate the performance of novel optical transmitter lasers for use in high speed optical networks. The laser technology considered is the discrete mode laser diode (DMLD) which is designed to achieve single wavelength operation by etching features on the surface of the ridge waveguide. This leads to a simplified manufacturing process by eliminating the regrowth step used in conventional approaches, presenting an economic approach to high volume manufacture of semiconductor lasers. Two application areas are investigated in this work. The bit rate in next generation access networks is moving to 10 Gbit/s. This work characterises the performance of DMLDs designed for high speed operation with the objective of identifying the limitations and improving performance to meet the specifications for uncooled operation at 10 Gbit/s. With the deployment of advanced modulation formats the phase noise of the laser source has become an important parameter, particularly for higher order formats. DMLDs were developed for narrow linewidth operation. The linewidth of these devices was characterised and a value as low as 70 kHz was demonstrated. Transmission experiments were also carried out using a coherent transmission test bed and the performance achieve is compared with that of an external cavity laser
    • 

    corecore