793 research outputs found

    Improved sphere packing lower bounds from Hurwitz lattices

    Get PDF
    In this paper we prove an asymptotic lower bound for the sphere packing density in dimensions divisible by four. This asymptotic lower bound improves on previous asymptotic bounds by a constant factor and improves not just lower bounds for the sphere packing density, but also for the lattice sphere packing density and, in fact, the Hurwitz lattice sphere packing density.Comment: 12 page

    An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow

    Get PDF
    This is the published version. Copyright American Geophysical Union[1] The use of conservative geochemical and isotopic tracers along with mass balance equations to determine the pre-event groundwater contributions to streamflow during a rainfall event is widely used for hydrograph separation; however, aspects related to the influence of surface and subsurface mixing processes on the estimates of the pre-event contribution remain poorly understood. Moreover, the lack of a precise definition of “pre-event” versus “event” contributions on the one hand and “old” versus “new” water components on the other hand has seemingly led to confusion within the hydrologic community about the role of Darcian-based groundwater flow during a storm event. In this work, a fully integrated surface and subsurface flow and solute transport model is used to analyze flow system dynamics during a storm event, concomitantly with advective-dispersive tracer transport, and to investigate the role of hydrodynamic mixing processes on the estimates of the pre-event component. A number of numerical experiments are presented, including an analysis of a controlled rainfall-runoff experiment, that compare the computed Darcian-based groundwater fluxes contributing to streamflow during a rainfall event with estimates of these contributions based on a tracer-based separation. It is shown that hydrodynamic mixing processes can dramatically influence estimates of the pre-event water contribution estimated by a tracer-based separation. Specifically, it is demonstrated that the actual amount of bulk flowing groundwater contributing to streamflow may be much smaller than the quantity indirectly estimated from a separation based on tracer mass balances, even if the mixing processes are weak

    Investigation of stress-induced (100) platelet formation and surface exfoliation in plasma hydrogenated Si

    Get PDF
    We have studied the mechanisms underlying stress-induced platelet formation during plasma hydrogenation. The stress is purposely introduced by a buried SiGe stained layer in a Si substrate. During plasma hydrogenation, diffusing H is trapped in the region of the SiGe layer and H platelets are formed. The platelet orientation is controlled by the in-plane compressive stress, which favors nucleation and growth of platelets in the plane of stress and parallel to the substrate surface, and ultimately leads to controlled fracture along the SiGe layer. Also, the SiSiGeSi structure is found to be more efficient in utilizing H for platelet formation and growth compared to H ion implanted Si because there are fewer defects to trap H (e.g., Vn Hm and In Hm); therefore, the total H dose needed for layer exfoliation is greatly reduced. © 2007 American Institute of Physics

    Modulated Hawking radiation and a nonviolent channel for information release

    Get PDF
    Unitarization of black hole evaporation requires that quantum information escapes a black hole; an important question is to identify the mechanism or channel by which it does so. Accurate counting of black hole states via the Bekenstein-Hawking entropy would indicate this information should be encoded in radiation with average energy flux matching Hawking's. Information can be encoded with no change in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state of the black hole are a promising alternative for inducing such modulation. These can be picturesquely thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear order in the couplings, with motivation given for possible extension of this result to higher orders. The potential advantages of such couplings to the stress tensor thus extend beyond their universality, which is helpful in addressing constraints from black hole mining.Comment: 10 pages of text + refs. v2: cleaner figure. v3: minor updates to match published versio

    Fuzzy approach for CNOT gate in quantum computation with mixed states

    Full text link
    In the framework of quantum computation with mixed states, a fuzzy representation of CNOT gate is introduced. In this representation, the incidence of non-factorizability is specially investigated.Comment: 14 pages, 2 figure
    • …
    corecore