
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Advances in Mathematics 227 (2011) 2144–2156
www.elsevier.com/locate/aim

Improved sphere packing lower bounds from Hurwitz
lattices

Stephanie Vance

Department of Chemistry, Computer Science, & Mathematics, Adams State College, 208 Edgemont Blvd.,
Alamosa, CO 81102, United States

Received 13 October 2010; accepted 28 April 2011

Available online 7 May 2011

Communicated by the Managing Editors of AIM

Abstract

In this paper we prove an asymptotic lower bound for the sphere packing density in dimensions divisible
by four. This asymptotic lower bound improves on previous asymptotic bounds by a constant factor and
improves not just lower bounds for the sphere packing density, but also for the lattice sphere packing
density and, in fact, the Hurwitz lattice sphere packing density.
© 2011 Elsevier Inc. All rights reserved.

Keywords: Lattice sphere packings; Hurwitz lattices

1. Introduction

The sphere packing density �n is defined to be the greatest proportion of Rn (computed as
a limit) that can be covered by congruent solid spheres with disjoint interiors. Currently this
value is known only for dimensions n � 3, and the known densities �1 = 1, �2 = π/

√
12, and

�3 = π/
√

18 are all achieved by lattice sphere packings (i.e., the sphere centers form a lattice).
(See [1] for a more detailed history of the sphere packing problem and [4], [5] and [8] for an
overview of the known optimal sphere packings.)

As is the case for dimensions 1–3, in most dimensions many of the densest known sphere
packings are constructed from lattices. (Given a lattice Λ, a sphere with radius equal to half the
length of the shortest non-zero lattice vectors, i.e., 1

2‖Λ‖, is centered at each lattice point.) The
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density of an n-dimensional lattice sphere packing with sphere center lattice Λ is given by the
formula

�(Λ) = ‖Λ‖nVn

2n det(Λ)
,

where Vn denotes the volume of a unit sphere in Rn and det(Λ) is equal to the volume of a
fundamental lattice region. (Note that det(Λ) is equal to the absolute value of the determinant
of any matrix whose columns form a basis for Λ.) Unfortunately, even with this explicit density
formula the lattice sphere packing density �n,L is unknown for all dimensions n > 8, with the
exception of dimension 24; see [5] and [3] for more details regarding the known optimal lattices.

Despite the absence of a known general solution to either the sphere packing or lattice sphere
packing problems, one can still investigate these problems in higher dimensions with the aid
of asymptotic bounds for �n and �n,L. For example, by looking at saturated sphere packings,
i.e., sphere packings in which no more spheres can be added unless the interiors are allowed
to overlap, one obtains the lower bound �n � 1/2n. Better asymptotic lower bounds have been
obtained over the past century by Minkowski in [12], by Rogers in [16], by Davenport and Rogers
in [6], and most recently by Ball in 1992. In [2] Ball proved �n,L � ζ(n)(n−1)/2n−1; here ζ(n)

denotes the Riemann Zeta function which converges to 1 for large values of n. Note that these
lower bounds are all proven using lattice sphere packings and hold for both �n and �n,L. For a
more detailed account of these and other asymptotic lower bounds for �n and �n,L the reader is
referred to [7] and [19].

The purpose of this paper is to prove the lower bound

�4m,L � 3mζ(4m)

24m−3e(1 − e−m)
, (1.1)

which holds for all m � 2. As the case for previously proven asymptotic lower bounds for �n and
�n,L, this bound is non-constructive and there are known low-dimensional sphere packings with
densities significantly larger than the bound. However, it improves on previous lower bounds
for �n and �n,L and is the best lower bound currently known. Specifically, it improves by a
factor of 3/e the asymptotic lower bound previously proven by Ball for dimensions 4m. (Ball’s
bound for dimension n not divisible by four continues to be the best known asymptotic lower
bound for both �n and �n,L.) The divisibility condition we impose on the dimension is due to
the fact that the bound is proven using 4m-dimensional Hurwitz lattice sphere packings. These
are lattice sphere packings in Hm in which the lattices of sphere centers are closed under scalar
multiplication by the Hurwitz integer ring H = Z[i, j, 1+i+j+k

2 ]. (Here H denotes the quaternion
skew field {

a + bi + cj + dk: a, b, c, d ∈ R and i2 = j2 = k2 = ijk = −1
}
,

which as a real vector space is isomorphic to R4.) Hurwitz lattice sphere packings are a natural
choice to use because in low dimensions divisible by four many of the densest known sphere
packings have a Hurwitz structure, that is, their lattices of sphere centers are isometric to a
lattice in quaternionic Hermitian space that is a module over the Hurwitz integers. (Note that a
quaternionic vector space M is called Hermitian if it is endowed with a Hermitian product, i.e.,
a map h : M ×M → H which is linear with respect to the first variable and conjugate linear with
respect to the second; the conjugate of a scalar a +bi + cj +dk ∈ H is equal to a −bi − cj −dk.
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Distance in M comes via the trace of h(·,·), with the inner product of two vectors x and y given
by the formula, 〈x, y〉 = α TrH/R(h(x, y)) where α > 0 is a specified constant and the value of
which does not affect packing densities.) The reader is referred to [18] for a table of the densest
known lattice sphere packings in dimensions 4m � 24 that have a Hurwitz structure.

The next section contains several preliminary results on Hurwitz lattices. In particular, it con-
tains a theorem regarding the existence of a special quaternionic vector space basis contained in
a Hurwitz lattice and a Hurwitz analogue of Hlawka’s theorem proven in [9]. Both of these theo-
rems are later used in Section 3 and allow us to adapt the proof techniques used by Rogers in [16]
and prove (1.1) using Hurwitz lattice sphere packings. Afterwards in Section 4 we describe how
the proof of (1.1) can be modified to obtain similar lower bounds for Eisenstein and Gaussian
lattices in Cm; detailed proofs of these bounds are omitted because they do not improve on Ball’s
lower bound in dimensions 2m. Also, in Section 4 we use the Hurwitz analogue of Hlawka’s
theorem (proven in Section 2) to prove lower bounds for the densities of Hurwitz lattice pack-
ings of special convex bodies (not necessarily spherical) in Hm which satisfy certain symmetry
conditions; in particular, they must be invariant under scalar multiplication by the Hurwitz inte-
ger units. These lower bounds can be regarded as a Hurwitz analogue of the Minkowski–Hlawka
theorem for 0-symmetric convex bodies (see [7, pp. 202–203]).

Note that throughout this paper Hm is identified with R4m via the map

(a1 + b1i + c1j + d1k, . . . , am + bmi + cmj + dmk) �→ (a1, b1, c1, d1, . . . , am, bm, cm, dm),

and B4m is used to denote the closed unit ball in Hm. Finally, all integrals represent Riemann
integration and while we often work with the quaternionic components of vectors in Hm, in
order to perform Riemann integration on real valued functions defined on Hm we identify Hm

with R4m via the real vector space isomorphism given above.

2. Special properties of Hurwitz lattices

A Hurwitz lattice is a lattice Λ in Hm that has the extra algebraic structure of a Hurwitz
module. In particular, Λ = HΛ = {λu: λ ∈ H and u ∈ Λ} where H = Z[i, j, 1+i+j+k

2 ] is the
ring of Hurwitz integers, a maximal order in the rational positive definite quaternion algebra
(−1,−1

Q
) = {a + bi + cj + dk ∈ H: a, b, c, d ∈ Q}. As an H-module, every Hurwitz lattice Λ

in Hm is necessarily free and is generated by a quaternionic basis for Hm. (This is due to the
fact that H has class number one, a special property not satisfied by maximal orders in general.)
Furthermore we prove below (see Theorem 2.2) that Λ also contains, but is not necessarily gen-
erated by, a special quaternionic basis for Hm with prescribed lengths min1(Λ), . . . ,minm(Λ)

defined as follows. (See [11] and [15] for additional properties of properties of Hurwitz lattices,
and more generally lattices over maximal orders in positive definite Q-algebras.)

Definition 2.1. The ith quaternionic minimum mini (Λ) of a Hurwitz lattice Λ in Hm is the
smallest r > 0 such that the closed ball rB4m contains i H-linearly independent lattice vectors.

Observe that the quaternionic minima defined in Definition 2.1 satisfy min1(Λ) � · · · �
minm(Λ) and min1(Λ) = ‖Λ‖, the length of the shortest non-zero lattice vectors in Λ. More-
over, they are the quaternionic analogues of the successive minima λ1, . . . , λn of a lattice in Rn

with respect to the closed unit ball (defined by Minkowski in [13]) and can be generalized to
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any convex body in Hm invariant under multiplication by the Hurwitz integer unit group. (See
also [7] regarding the successive minima of a lattice with respect to any convex body.)

The following theorem, Theorem 2.2, can be regarded as a Hurwitz analogue of a result proven
originally by Minkowski for the successive minima of quadratic forms (and hence for lattices)
in [13].

Theorem 2.2. Each Hurwitz lattice Λ in Hm contains a quaternionic vector space basis
v1, . . . , vm such that ‖vi‖ = mini (Λ) for i = 1, . . . ,m. Moreover, if det(Λ) = 1, then there exists
a Hurwitz lattice Λ̃ in Hm with det(Λ̃) = 1 and

‖Λ̃‖ =
(

m∏
i=1

mini (Λ)

) 1
m

.

Proof. Let Λ be a Hurwitz lattice in Hm and suppose that {v1, . . . , vk} ⊆ Λ is a maximal set of
H-linearly independent vectors in Λ satisfying ‖vi‖ = mini (Λ); observe that such a set exists
since one can choose v1 to be any minimal vector in Λ. If k < m then let {w1, . . . ,wk+1} be a set
of H-linearly independent vectors, each satisfying ‖wi‖ � mink+1(Λ). At least one of these vec-
tors, say wk+1, does not lie in the span of v1, . . . , vk and hence {v1, . . . , vk,wk+1} is an H-linearly
independent subset of Λ. The maximality of {v1, . . . , vk} and the definition of mink+1(Λ) require
that ‖wk+1‖ < mink+1(Λ). So if i is the smallest index satisfying ‖wk+1‖ < mini (Λ) then the
set {v1, . . . , vi−1,wk+1} is an H-linearly independent subset of i vectors in Λ, each vector having
length less than mini (Λ). (Note that the condition imposed on i is necessary to conclude this due
to the possibility that mink(Λ) = mink+1(Λ).) This is a contradiction. Therefore k = m and the
first claim of the theorem holds.

To prove the second claim, assume that det(Λ) = 1 and let B = {b1, . . . , bm} be an
orthonormal basis (with respect to the Hermitian product h(x, y) = xT y), chosen such
that SpanH{b1, . . . , bk} = SpanH{v1, . . . , vk} for k = 1, . . . ,m. (Note that B can be ob-
tained by applying Gram–Schmidt orthogonalization to the vectors v1, . . . , vm using the Her-
mitian product h(·,·).) Writing each vector in Hm in coordinates with respect B, define
T (x) = ( x1

min1(Λ)
, . . . , xm

minm(Λ)
) so that T is an H-linear transformation. Then using T and

α = ∏m
i=1 mini (Λ), define Λ̃ = {α 1

m T (x): x ∈ Λ} so that Λ̃ is a Hurwitz lattice in Hm with

det(Λ̃) = (
α

1
m
)4m det(T )det(Λ) = α4α−4 = 1.

For any non-zero vector α
1
m T (x) ∈ Λ̃ one can choose k such that xk 
= 0 and

xk+1 = · · · = xm = 0. Due to our choice of basis B, x /∈ spanH{v1, . . . , vk−1}, implying that
‖x‖ � mink(Λ). Therefore,

∥∥α
1
m T (x)

∥∥2 = α
2
m

k∑
i=1

∣∣∣∣ xi

mini (Λ)

∣∣∣∣2

� α
2
m

‖x‖2

mink(Λ)2
� α

2
m .

Now since ‖α 1
m T (v1)‖2 = α

2
m it follows that ‖Λ̃‖ = α1/m = (

∏m
i=1 mini (Λ))

1
m . �

The remainder of this section is devoted to proving the following theorem, Theorem 2.3,
a Hurwitz analogue of Hlawka’s theorem in [9], and as a corollary, a modified version which
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involves the factor 1/ζ(4m). (Recall ζ(·) denotes the Riemann Zeta function.) Note that the
corollary, Corollary 2.4, is referred to in the next two sections.

Theorem 2.3. Suppose f : Hm → R is a bounded, Riemann integrable function with compact
support. If m � 2, then for every ε > 0 there exists a Hurwitz lattice Λ in Hm with determinant
one satisfying ∑

u∈Λ\{0}
f (u) <

∫
Hm

f (z) dz + ε. (2.1)

To prove Theorem 2.3 we shall borrow the proof techniques used by Davenport and Rogers
in [6] to prove Hlawka’s original theorem. In particular, we identify Hm−1 with the sub-
space {z ∈ Hm: zm = 0} and for w ∈ Hm−1 and α > 0 we use (w,α) to denote the vector
w + (0, . . . ,0, α) ∈ Hm. If Λ is a Hurwitz lattice in Hm−1 then for a fixed choice of α we
define Λw = {Λ + λ(w,α): λ ∈ H} so that Λw is a Hurwitz lattice in Hm with det(Λw) =
α4 det(H)det(Λ) = α4

2 det(Λ). Then as done by Davenport and Rogers, for a fixed (Hurwitz)
lattice Λ and α > 0 we average the sum on the left hand side of (2.1) over all lattices Λw and
prove the existence of a (Hurwitz) lattice satisfying the inequality.

Proof of Theorem 2.3. First observe that since f is Riemann integrable we can compute∫
Hm f (z) dz as the limit

lim
α→0+

∑
λ∈αH

det(αH)

∫
Hm−1

f (z,λ) dz = lim
α→0+

∑
λ∈H\{0}

α4

2

∫
Hm−1

f (z,αλ)dz.

Hence we can choose α > 0 such that∑
λ∈H\{0}

α4

2

∫
Hm−1

f (z,αλ)dz <

∫
Hm

f (z) dz + ε.

Furthermore, since f vanishes off a compact set we can choose this α sufficiently small that

Λ = (
α−1/(m−1) det(H)m/(4−4m)

)
Hm−1

is a Hurwitz lattice in Hm−1 with the property f (u,λ) = 0 for all u ∈ Λ\{0} and λ ∈ H. (Note
that Λ is scaled so that for every w ∈ Hm−1 the Hurwitz lattice

Λw = {
Λ + λ(w,α): λ ∈ H

}
in Hm has determinant one.)

We now show that there exists a vector w ∈ Hm−1 such that Λw satisfies inequality (2.1). To
do this, we first suppose that f is continuous. This assumption, combined with the fact that f is
periodic modulo Λ, allows us to average the left hand side of the equation∑

f (u) =
∑ ∑

f (v + λw,λα) (2.2)

u∈Λw\{0} λ∈H\{0} v∈Λ
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over all possible vectors w ∈ Hm−1. Observe that this average can be computed by summing
the averages of the inner sums on the right hand side of (2.2) over all vectors w ∈ λ−1G, where
λ ∈ H\{0} and G is a fundamental region of Λ. (For each value of λ, the inner sum is periodic
modulo λ−1Λ as a function of w.) The average of each inner sum over all w ∈ λ−1G is equal to

1

vol(λ−1G)

∫
λ−1G

∑
v∈Λ

f (v + λw,λα)dw,

which, using the change of variable z = λw with dz = vol(G)

vol(λ−1G)
dw, becomes

1

vol(G)

∫
G

∑
v∈Λ

f (v + z,λα)dz

and hence is equal to

1

det(Λ)

∫
Hm−1

f (z,λα)dz.

Thus the average of the left hand side of (2.2) over all w ∈ Hm−1 is equal to

α4

2

∑
λ∈H\{0}

∫
Hm−1

f (z,λα)dz,

and so there exists at least one vector w ∈ Hm−1 such that

∑
u∈Λw\{0}

f (u) � α4

2

∑
λ∈H\{0}

∫
Hm−1

f (z,λα)dz <

∫
Hm

f (z) dz + ε.

Now if f is not continuous, we can approximate f by a continuous function g satisfying the
hypothesis of the theorem. To do this we use the fact that f is Riemann integrable and so the
set of points D at which f fails to be continuous has measure zero. Moreover, since f vanishes
off a compact set and D has measure zero, there exist a compact set A and an open set B such
that vol(A) < ε

8M
, vol(B) < ε

4M
, and D ⊂ A ⊂ B ⊂ Hm (see [14, §11] regarding the existence

of A and B). Hence by Urysohn’s lemma there exists a continuous function φ : Hm → [0,1]
satisfying φ|A = 1 and φ|Hm\B = 0. Using this function φ and M = supz∈Hm |f (z)| we define

g = max{2Mφ − M,f },

so that g is a continuous function with −M � f � g � M and g|Hm\B = f . Observe that the
latter two conditions satisfied by g imply∫

m

g(z) dz −
∫
m

f (z) dz � 2M vol(B) <
ε

2
.

H H
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Now since g is a continuous function satisfying the hypothesis of the theorem, we have shown
above that there exists a vector w ∈ Hm−1 such that the Hurwitz lattice Λw satisfies∑

u∈Λw\{0}
g(u) <

∫
Hm

g(z) dz + ε

2
.

Hence ∑
u∈Λw\{0}

f (u) �
∑

u∈Λw\{0}
g(u) <

∫
Hm

g(z) dz + ε

2
<

∫
Hm

f (z) dz + ε. �

Using a Möbius inversion argument similar to that used to prove the Minkowski–Hlawka
theorem (see [7, p. 202]) one can modify inequality (2.1) in Theorem 2.3 and obtain Corollary 2.4
below. This corollary is used to produce the ζ(4m) factor of the lower bound (1.1). The details of
the proof are provided for completeness; however, since ζ(4m) converges exponentially quickly
to 1 as m → ∞ one may wish to skip the proof of the corollary and move on to Section 3. (In
the proof of Theorem 3.1 in the next section, Theorem 2.3 can be used instead of Corollary 2.4
if the ζ(4m) factor is omitted from inequality (3.1).)

Note that in the statement of the corollary we use Λ′ to denote the set of primitive lattice
vectors in a Hurwitz lattice Λ, which is defined to be the set of non-zero lattice vectors which
are not a positive integer multiple of another lattice vector.

Corollary 2.4. If m � 2 and f : Hm → R is a non-negative, bounded Riemann integrable func-
tion with compact support, then for every ε > 0 there exists a Hurwitz lattice Λ in Hm with
determinant one satisfying ∑

u∈Λ′
f (u) <

1

ζ(4m)

∫
Hm

f (z) dz + ε, (2.3)

where Λ′ is the set of all primitive lattice vectors in Λ.

Proof. Let μ : Z+ → {−1,0,1} denote the Möbius function, which satisfies

(1)
∑

k|t μ(k) =
{

1 if t = 1
0 if t 
= 1

, and

(2) for every real number s > 1,

1

ζ(s)
=

∞∑
k=1

μ(k)

ks
,

where ζ is the Riemann Zeta function defined by ζ(s) = ∑∞
k=1 k−s .

Then letting M > 0 such that 0 � f (z) � M and choosing δ > 0 such that Mδ4mV4m < ε/2,
define a new function g : Hm → R such that

g(z) =
{∑∞

k=1 μ(k)f (kz) if ‖z‖ � δ,
M if ‖z‖ < δ.



S. Vance / Advances in Mathematics 227 (2011) 2144–2156 2151
Note that g satisfies the hypothesis of Theorem 2.3 (g is bounded since f is bounded and vanishes
off a compact set) and hence there exists a Hurwitz lattice Λ in Hm with det(Λ) = 1 such that

∑
u∈Λ
u 
=0

g(u) <

∫
Hm

g(z) dz + ε

2

=
∫

Hm\δBn

∞∑
k=1

μ(k)f (kz) dz + Mδ4mV4m + ε

2

<

∞∑
k=1

μ(k)

k4m

∫
Hm\δBn

f (z) dz + ε

� 1

ζ(4m)

∫
Hm

f (z) dz + ε.

Now for the set of lattice vectors A = {u ∈ Λ: ‖u‖ � δ}, let A′ denote the vectors in A

which cannot be written as a positive integer multiple of another vector contained in A. (Note
that {u ∈ Λ′: ‖u‖ � δ} ⊆ A′.) Using the properties of the Möbius function, the fact that f is
non-negative and g(z) � f (z) whenever ‖z‖ < δ, we obtain

∑
u∈Λ\{0}

g(u) =
∑
u∈Λ

0<‖u‖<δ

g(u) +
∑
u∈A′

∞∑
s=1

g(su)

�
∑
u∈Λ

0<‖u‖<δ

f (u) +
∑
u∈A′

∞∑
s=1

∞∑
k=1

μ(k)f (ksu)

�
∑
u∈Λ

0<‖u‖<δ

f (u) +
∑
u∈A′

∞∑
t=1

∑
k|t

μ(k)f (tu)

=
∑
u∈Λ

0<‖u‖<δ

f (u) +
∑
u∈A′

f (u)

�
∑
u∈Λ′

f (u).

Combining these with the previous sequence of inequalities yields inequality (2.3). �
Note that in the previous proof we defined g(z) as a piecewise function to ensure that it is

bounded near the origin. Issues arise at the origin due to the unknown asymptotic behavior of the
Mertens function M(n) = ∑n

k=1 μ(k); see [10] for additional information on both the Möbius
and Mertens functions.



2152 S. Vance / Advances in Mathematics 227 (2011) 2144–2156
3. A lower bound for the Hurwitz lattice sphere packing density

In this section we use Hurwitz lattice sphere packings to prove (1.1), the lower bound
for the 4m-dimensional lattice sphere packing density �4m stated in Section 1. The proof
method we use is very similar to that used by Rogers in [16], in which he proved
�n,L � nζ(n)/(2n−1e(1 − e−n)). In particular, we first use Theorem 2.2 and Corollary 2.4 to
prove the existence of a Hurwitz lattice with determinant one and whose product of quaternionic
minima satisfies a given lower bound. We then use this particular result with Theorem 2.2 and
Mahler’s compactness theorem to prove the existence of a Hurwitz lattice satisfying (1.1).

Note that both the statements and proofs of the two following theorems are similar to Theo-
rems 3 and 4 in [16], however, using Theorem 2.2 and Corollary 2.4 from of the previous section
they are modified to take advantage to the extra symmetries of Hurwitz lattices.

Theorem 3.1. If m � 2 and r > 0 satisfy

r4mV4m <
24mζ(4m)

e(1 − e−m)
, (3.1)

then there exists a Hurwitz lattice Λ with determinant one satisfying

m∏
i=1

mini (Λ) > rm.

Proof. For m � 2 and r > 0 satisfying r4mV4m <
24mζ(4m)

e(1−e−m)
, define ρ : Hm → R to be the radial

function1

ρ(z) =

⎧⎪⎨⎪⎩
1
4 if 0 � ‖z‖ < re(1−m)/(4m),

1
4m

− log(
‖z‖
r

) if re(1−m)/(4m) � ‖z‖ � re1/(4m), and

0 if re1/(4m) < ‖z‖
so that ρ satisfies the hypothesis of Corollary 2.4 and (using polar coordinates)

∫
Hm

ρ(z) dz = r4mV4m

e1−m

4
+

re1/(4m)∫
re(1−m)/(4m)

(
1

4m
− log

(
θ

r

))
4mθ4m−1V4m dθ

= r4mV4m

(
e(1 − e−m)

4m

)
< 6ζ(4m).

Observe that we can choose ε > 0 such that

1

ζ(4m)

∫
Hm

ρ(z) dz + ε < 6

1 This function ρ is similar to the ρ defined by Rogers in Theorem 3 in his paper [16].
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and hence by Corollary 2.4 there exists a Hurwitz lattice Λ in Hm with det(Λ) = 1 such that

∑
u∈Λ′

ρ(u) � 1

ζ(4m)

∫
Hm

ρ(z) dz + ε < 6.

By Theorem 2.2, Λ contains a quaternionic basis {v1, . . . , vm} such that ‖vi‖ = mini (Λ) for
i = 1, . . . ,m. Observe that the definition of mini (Λ) implies that each vi is necessarily a primitive
lattice vector and hence the set

A = {
λvi : 1 � i � m and λ ∈ H×}

is contained in Λ′. Now since ρ is a radial function and the Hurwitz integer unit group H× has
size 24,

24
m∑

i=1

ρ(vi) =
∑
u∈A

ρ(u) �
∑
u∈Λ′

ρ(u) < 6.

Then since ρ is non-negative the above inequalities imply that for i = 1, . . . ,m ρ(vi) < 1/4 and
hence

ρ(vi) � 1

4m
− log

(‖vi‖
r

)
= 1

4m
− log

(
mini (Λ)

r

)
.

Therefore

1

4
−

m∑
i=1

log

(
mini (Λ)

r

)
�

m∑
i=1

ρ(vi) <
1

4
,

and so

m∑
i=1

log

(
mini (Λ)

r

)
> 0.

Exponentiating both sides of this final inequality we obtain

m∏
i=1

mini (Λ) > rm. �

Theorem 3.1 is used in the proof of the next theorem, Theorem 3.2, from which the lower
bound

�4m,L � 3mζ(4m)

24m−3e(1 − e−m)
,

immediately follows for all m � 2. (This inequality is (1.1) from Section 1.) We wish to em-
phasize that due to Theorem 3.2, this lower bound holds not just for the 4m-dimensional sphere
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packing and lattice sphere packing densities, but also for the 4m-dimensional Hurwitz lattice
sphere packing density.

Theorem 3.2. For every positive integer m � 2, there exists a Hurwitz lattice sphere packing Λ

in Hm with density

�(Λ) � 3mζ(4m)

24m−3e(1 − e−m)
.

Proof. This final lower bound follows readily from Theorem 2.2, Theorem 3.1, and Mahler’s
compactness theorem. Note that Mahler’s compactness theorem guarantees that every sequence
of lattices with determinants bounded above, and minimal vector lengths bounded away from
zero, has a convergent subsequence. (See [7, Ch. 3, §17] or [11] for the topology of the space of
n-dimensional lattices and for Mahler’s compactness theorem, which is referred to in [7] as the
selection theorem of Mahler.)

Similar to previous results, we shall first construct a sequence of Hurwitz lattices, all
with determinant one, and with densities either exceeding or converging from below to
(3mζ(4m))/(24m−3e(1 − e−m)). To do this, let {rt }∞t=1 be an increasing sequence of positive
real numbers such that the sequence {r4m

t V4m}∞t=1 converges from below to

24mζ(4m)

e(1 − e−m)
.

By Theorem 3.1 there exists sequence of Hurwitz lattices {Λt }∞t=1 in Hm, each with det(Λt ) = 1
and

m∏
i=1

mini (Λt ) > rm
t .

Theorem 2.2 then implies that there exists another sequence of Hurwitz lattices {Λ̃t }∞t=1, each
with det(Λ̃t ) = 1 and ‖Λ̃t‖ > rt . Either at least one Λ̃t has density

�(Λ̃t ) >
3mζ(4m)

24m−3e(1 − e−m)

or

lim
t→∞�(Λ̃t ) =

(
1

2

)4m 24mζ(4m)

e(1 − e−m)
= 3mζ(4m)

24m−3e(1 − e−m)
.

If only the latter case holds then we use the fact that the space of 4m-dimensional Hurwitz
lattices with unit determinant is a closed subset of the space of all 4m-dimensional lattices and
so by Mahler’s compactness theorem there exists a Hurwitz lattice Λ ∈ Hm with unit determinant
and with density

�(Λ) = 3mζ(4m)

24m−3e(1 − e−m)
. �
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4. Remarks

In addition to the lower bound (1.1) proven in the previous section, Corollary 2.4 can also be
used to obtain a lower bound for the optimal density of more general Hurwitz packings in Hm

consisting of copies of an H×-invariant convex body S translated by the vectors of a Hurwitz
lattice and such that the interiors of the copies of S are disjoint. (The term H×-invariant convex
body is used here to describe a compact convex subset of Hm with non-empty interior and that
is invariant under scalar multiplication by the Hurwitz integer unit group H×. Note that an H×-
invariant convex body in Hm is the Hurwitz analogue of a 0-symmetric convex body in Rn, i.e., a
convex body invariant under multiplication by the units {−1,1} in Z.) This type of lower bound
is similar to the lower bound given in the Minkowski–Hlawka theorem for 0-symmetric convex
bodies and is proved using similar techniques; see the proof of the Minkowski–Hlawka theorem
in [7] or [19]. The extra assumption that the convex body be H×-invariant allows one to improve
on the lower bound in the Minkowski–Hlawka theorem by a factor of 12.

Theorem 4.1. Let S be an H×-invariant convex body in Hm. If m � 2 then there exists a Hurwitz
lattice packing of translated copies of S such that the density of the packing is at least

3ζ(4m)

24m−3
.

Proof. Without loss of generality assume that vol(S) = 24ζ(4m) (otherwise replace S by a dilate
having volume 24ζ(4m)) and for ε > 0, choose δ ∈ (0,1) such that vol(δS) = (24 − ε)ζ(4m).
Let ρ denote the characteristic function of δS and let Λ be a Hurwitz lattice in Hm obtained by
applying Corollary 2.4 with this ε and ρ so that det(Λ) = 1 and

∑
u∈Λ′

ρ(u) <
1

ζ(4m)

∫
Hm

ρ(z) dz + ε = 24.

Observe that if δS contains any non-zero vectors of Λ′ then it must contain at least 24 since every
Hurwitz lattice has at least 24 minimal vectors and δS is H×-invariant (the unit group H× has
size 24). In particular,

∑
u∈Λ′ ρ(u) is either zero or greater than or equal to 24. Thus the above

inequality implies that
∑

u∈Λ′ ρ(u) = 0 and hence Λ intersects δS only at the origin.
Now since ε > 0 is arbitrary, as a consequence of Mahler’s compactness theorem, there exists

a Hurwitz lattice with determinant one in Hm that intersects S only at the origin. Such a Hurwitz
lattice can be used to obtain a packing of translates of 1

2S and the density of this packing is equal

to 3ζ(4m)

24m−3 . �
Note that all the proofs in this paper can be easily modified to prove results about 2m-

dimensional Gaussian and Eisenstein lattices in Cm, i.e., lattices which are invariant under scalar
multiplication by the Gaussian integers G = Z[i] or the Eisenstein integers E = Z[ 1+i

√
3

2 ] respec-
tively. However the author has chosen to omit the Gaussian and Eisenstein analogues because the
lower bounds obtained for Gaussian and Eisenstein lattice sphere packings in dimension 2m are
respectively mζ(2m)

22m−2 and 3mζ(2m)

22m−1 , with neither exceeding Ball’s lower bound in [2]. The reason
why the proof method used in this paper works better for the Hurwitz case is because the Hurwitz
integer unit group is sufficiently larger than the size of the Gaussian and Eisenstein integer unit
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groups. (Note that for the Gaussian and Eisenstein analogues of Theorem 4.1 above, the extra
assumption that the convex body in Cn be G×- or E ×-invariant allows one to improve on the
lower bound in the Minkowski–Hlawka theorem by a factor of 2 and 3 respectively.)

Finally, the techniques used by Ball to prove his asymptotic lower bound in [2] are entirely
different from those used in this paper, as well as the methods used by other authors to obtain
weaker lower bounds. It would be interesting if one could adapt Ball’s method for Hurwitz, Gaus-
sian, and Eisenstein lattices and improve on the asymptotic lower bound given in this paper using
these particular lattices. However, we do caution the reader that despite the improvements made
to the best known asymptotic lower bounds for �4m and �4m,L in this paper, there is a possibility
that using only Hurwitz or Eisenstein lattice sphere packings, or more generally any lattice sphere
packing, might be limiting due to the extra structure imposed. In fact, the densest sphere packings
in high dimensions may even be disordered, and Torquato and Stillinger have conjectured in [17]
that such packings might provide an exponential increase in density. However, it seems difficult
to analyze disordered sphere packings and, given our current state of knowledge, imposing addi-
tional algebraic structure appears to be the most fruitful approach for improving density bounds.
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