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Unitarization of black hole evaporation requires that quantum information escapes a black hole; an 
important question is to identify the mechanism or channel by which it does so. Accurate counting of 
black hole states via the Bekenstein–Hawking entropy would indicate this information should be encoded 
in radiation with average energy flux matching Hawking’s. Information can be encoded with no change 
in net flux via fine-grained modulation of the Hawking radiation. In an approximate effective field theory 
description, couplings to the stress tensor of the black hole atmosphere that depend on the internal state 
of the black hole are a promising alternative for inducing such modulation. These can be picturesquely 
thought of as due to state-dependent metric fluctuations in the vicinity of the horizon. Such couplings 
offer the prospect of emitting information without extra energy flux, and can be shown to do so at linear 
order in the couplings, with motivation given for possible extension of this result to higher orders. The 
potential advantages of such couplings to the stress tensor thus extend beyond their universality, which 
is helpful in addressing constraints from black hole mining.

© 2014 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

If quantum mechanics governs nature, formation and decay of 
a black hole (BH) must be a unitary process. Local quantum field 
theory (LQFT) evolution on the semiclassical BH background [1] in 
contrast predicts dramatic loss of information. Unitarization of this 
evolution apparently requires significant new physics beyond such 
an LQFT description.

Key questions are where and how such modifications of this 
LQFT evolution become relevant. In particular, we expect that LQFT 
in semiclassical spacetime geometry furnishes a good approximate 
description of physics far from a BH. On the other hand, LQFT is 
expected to be strongly corrected in the deep interior, or core, of 
BH. This by itself appears insufficient to transfer information out of 
the BH and unitarize evolution. But, if there are also small correc-
tions to LQFT in an intermediate region – the immediate vicinity or 
atmosphere of the BH – extending outside the horizon (see Fig. 1), 
these offer the prospect of unitarizing evolution.

An illuminating way to describe information transfer is via 
transfer of entanglement [2–4]. A BH builds up entanglement 
with its environment either by absorbing matter entangled with 
the surroundings, or through production of Hawking particles en-
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tangled with interior excitations. Unitarity requires that all this 
entanglement ultimately transfers out, so that the fine-grained 
von Neumann entropy SvN of pre- and post-BH states are equal. 
A simplest example of such transfer is just transfer of degrees 
of freedom [3]. A critical question, then, is what mechanism or 
dynamics is responsible for this transfer; such a mechanism ap-
pears beyond usual LQFT dynamics. In information-theoretic terms, 
we can frame the issue by focussing on the question: what chan-
nel is responsible for escape of the information from the BH interior to 
infinity? This approach contrasts with, e.g. [5–8], where LQFT is 
instead altered by modifying the property of localization of infor-
mation.

There are many constraints on possible channels. In particu-
lar, if LQFT is exactly valid outside the horizon, such information 
transfer produces singular behavior at the horizon [9–12]. For this 
reason, it appears important that corrections to LQFT reach beyond 
the horizon, and the proposal that such corrections yield “nonvio-
lent” transfer of information, preserving usual spacetime near the 
horizon to a good approximation, has been made and investigated 
in [13–17].

Even with such exterior corrections to LQFT, the general in-
tuition that information transfer requires energy transfer appears 
borne out, and generic models for information escape produce 
extra energy flux beyond Hawking’s [13–18]. This would indi-
cate [19] that the internal states of a BH are not accurately 
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. Proposed schematic picture of unitary black hole evolution. Entanglement 
is built up between the BH and exterior through infall of quantum information or 
the Hawking process. Semiclassical evolution fails at the “core” of the BH. New ef-
fects extending through a region (shaded) including the BH atmosphere transfer 
information into outgoing modes that then escape, while preserving, to a good ap-
proximation, the semiclassical BH geometry.

parameterized by the Bekenstein–Hawking entropy SBH. While this 
may be consistent [19], a more conservative and appealing alterna-
tive would be no extra flux.

In an asymptotic LQFT description, we certainly expect that 
there are quantum states with coarse-grained thermal properties 
of the Hawking radiation, but with vanishing SvN. This motivates 
the proposal that the radiation carries the information in fine-
grained modulations, with average energy flux matching Hawk-
ing’s. An important question is whether this flux arises from per-
turbations of the Hawking radiation. A possible loose analogy is 
that of modulation of a radio signal: an underlying carrier flux can 
be modulated to transmit information.

Specifically, one can investigate whether such modulation of 
the Hawking radiation can be induced, while avoiding destruction 
of the horizon [9–12]. An important question is what channel or 
mechanism imprints the information on the outgoing radiation yet 
preserves near-horizon spacetime. This paper will propose and in-
vestigate a candidate mechanism/channel for information to flow 
from the BH interior to asymptotic observer, which offers the pos-
sibility of avoiding extra net flux.

In particular, if such dynamics can be approximately parame-
terized as a small correction to LQFT, it might be described by 
couplings to near-horizon fields that depend on the state of the 
BH [15,16]. It is desirable for such couplings to be universal, in 
particular to address mining constraints [12,15], and this suggests 
coupling the internal state to external fields through their stress 
tensor [15]. Interestingly, we will find that these couplings avoid 
producing leading-order corrections to energy flux. Such couplings 
through the stress tensor can be picturesquely thought of as due to 
near-horizon metric fluctuations correlated with the internal state 
of the BH. While the fundamental picture is not expected to be 
via such nonlocal corrections to LQFT, this may be for present 
purposes a good approximate description of a more fundamental 
dynamics [14]. This paper will explore such a description. A more 
complete description is possibly based on a fundamental tensor-
factor structure [20,14].
2. States and evolution: scrambling and transfer

Assume that a BH coupled to its environment is represented 
in terms of states in a product space, with factors corresponding 
to BH and environment subsystems; this is a coarsest decomposi-
tion of the overall Hilbert space, and more refined versions may 
be considered [14,19]. Let |̂I〉 denote a basis of internal states HM

for a BH of mass ≤ M , and suppose there are exp{Sbh(M)} such 
states. The entanglement entropy SvN of BH with environment 
is bounded above by Sbh(M). According to LQFT, the entangle-
ment SvN increases continually in the Hawking process [1]. But, 
once SvN reaches Sbh, decrease of Sbh with M means that trans-
fer of entanglement from BH interior to exterior must take place 
to preserve unitary evolution. Thus, one postulates [21–23,13–15]
couplings that transfer information from the BH interior to envi-
ronment. Within LQFT these would be forbidden by prohibition of 
superluminal signaling with respect to the semiclassical geometry.

The presence of such effects may provide a critical clue to the 
underlying nature of quantum gravity. For now we give a general 
approximate parameterization [15–17] of them in terms of cou-
plings between the BH states and the states Hnear in the near-BH 
atmosphere. The latter states are expected to be approximately 
described within LQFT. Consider a Hamiltonian description. LQFT 
evolution in the Schrödinger picture produces pairs of Hawking ex-
citations in HM ⊗ Hnear, transfers excitations from Hnear to HM

(infall), and describes interactions between Hnear and far states 
in Hfar.

The non-LQFT completion of this evolution necessary to restore 
unitarity may involve two other processes [14]. The first is scram-
bling, which can be described in terms of unitary evolution mixing 
internal states,

|̂I〉 → UIJ(t)|̂ J 〉. (2.1)

UIJ is expected to depend on gauge [15]; for example, in LQFT evo-
lution, in a gauge corresponding to a nice slicing [24,14], evolution 
of internal states freezes [25], implying U = 1 in this approxima-
tion.1 In fact, while the internal Hilbert space and evolution U
are sometimes modeled as generic [26], we expect that they have 
special properties, since the evolution of internal states should de-
scribe observations of infalling observers in what to them initially 
appears to be weakly-curved space, so should approximately match 
such an LQFT description for those observers.

The second new process is transfer of information from HM to 
Hnear. It can be written in terms of couplings in the action or 
Hamiltonian (the latter being the generator of unitary evolution, in 
some slicing or gauge) between operators Aa acting on HM and 
operators acting on fields in the atmosphere. General couplings 
were considered in [15,16], and linear couplings in [16,17]. Here 
we explore a model with couplings to the stress tensor Tμν(x),

Strans =
∑

a

∫
dVAaGμν

a (x)Tμν(x) + h.c. (2.2)

where dV is the near-horizon volume element, and the Ga ’s are 
x-dependent coefficients. The interaction in general transfers infor-
mation from the degrees of freedom of HM to those of Hnear.

Consider, for example, working in an interaction picture where 
the interaction Hamiltonian comes from (2.2) and the remaining 
evolution is absorbed into that of operators. Then, without (2.2), 
the state would be of schematic form |Ψ0〉 ≈ |0〉U ⊗ |ψ〉, where 
|0〉U describes the Unruh vacuum, and |ψ〉 the state of matter that 

1 In a more natural slicing [23], LQFT may describe some scrambling, but ulti-
mately breaks down.



94 S.B. Giddings / Physics Letters B 738 (2014) 92–96
formed the BH. Since evolution of the state is frozen in this picture, 
excitations can be well-described by their “last seen” form near the 
horizon. With (2.2), the state becomes

∣∣Ψ (t)
〉 = T exp

{
−i

∫
dV

[
Aa(t)Gμν

a (x)Tμν(x) + h.c.
]}|Ψ0〉;

(2.3)

time dependence of Aa arises from conjugation with U (t) from 
(2.1), and from ordinary LQFT evolution.

Whatever the correct detailed description is for internal evo-
lution, the couplings (2.2) need to transfer sufficient information 
out of the BH. Clearly they would not do so if e.g. Aa(t)Gμν

a (x) ∼
Aa gμν (with all time dependence in gμν ) for all a; orthogonal 
states must map to orthogonal states. If we define operators creat-
ing atmosphere excitations

T †
a =

∫
dV Hμν

a (x)Tμν(x), (2.4)

for some functions Ha , clearly we would like couplings to a suf-
ficiently rich spectrum of the Ta ’s to encode internal state exci-
tations that we can think of as annihilated by the Aa ’s. We can 
pose this as a condition on the action of the Ta ’s on the external 
state |0〉 of the BH, for example taken to be the Unruh vacuum. 
We would like

〈0|Ta|0〉 = 0 and
〈
0|Ta T †

b|0
〉 = δab, (2.5)

so that the T †
a ’s create independent excitations, in order to encode 

sufficient information (the a = b case is a normalization condition).

3. Two-dimensional reduction and information encoding

These considerations are most easily investigated in a two-
dimensional example. Moreover, for a Schwarzschild BH, this 2d 
dynamics describes the higher-dimensional dynamics via a reduc-
tion in partial waves. Consider for example a scalar field

Sφ = −1

2

∫
dV

(
gμν∂μφ∂νφ + m2φ2) (3.1)

in the Schwarzschild background

ds2 = − f (r)dt2 + dr2

f (r)
+ r2dΩ2; (3.2)

in four dimensions, f = 1 − R/r, where R is the BH radius. The 
D-dimensional partial wave expansion is

φ =
∑
Alm

∫
dω

4πω
bA
ωlmu A

ωl(r, t)
Ylm(Ω)

rD/2−1
+ h.c., (3.3)

where the bA
ωlm are annihilation operators, and u A

ωl(r, t) are mode 
solutions in an effective 2d potential (for further details, see e.g.
[17]). Then, if for example Ga is spherically symmetric, the cou-
pling (2.2) is approximately the same as that to the stress tensors 
of a collection of 2d fields, labeled by A, l, m. (Note this approach 
fixes a definite time coordinate t at infinity.)

So, we consider an interaction (2.2) in 2d to illustrate basic 
features of evolution; let us moreover illustrate with the special 
example of a massless field. Introduce conformal coordinates via 
tortoise coordinates,

ds2 = f (r)
(−dt2 + dr2∗

) = − f (r)dudv, u = t − r∗, v = t + r∗.
(3.4)
Then the stress tensor Tuu = ∂uφ∂uφ for outgoing modes obeys the 
Virasoro algebra,

[Tuu, Tu′u′ ] = i(:Tuu: + :Tu′u′ :)δ′(u − u′) − i

24π
δ′′′(u − u′)

(3.5)

where normal ordering is with respect to positive-frequency 
modes in u (cf. (3.3)). This gives us a means to check the con-
ditions (2.5). We will also find it gives a simple way to calculate 
leading corrections to the energy flux from the BH.

Specifically, let the couplings to the BH internal state be 
through operators (cf. (2.4))

T †
h =

∫
dV h(u, v)Tuu =

∫
dudv

2
f hTuu (3.6)

for some functions h(u, v); for convenience define h̃ = f h/2. For 
example, let h̃ = e−iωuδ(v), so, for ω > 0,

Tω =
∫

dueiωu Tuu =
∞∫

0

dω′

4π

(
b†
ω′bω+ω′ − 1

2
bω′bω−ω′

)
(3.7)

in terms of creation/annihilation operators like in (3.3), and T−ω =
T †
ω . Then, for either the Boulware or Unruh vacuum, and ω > 0,

〈0|Tω|0〉 = 0; (3.8)

for the Boulware vacuum, which satisfies bω|0〉B = 0,

B〈0|TωT †
ω′ |0〉B = ω3

12
δ
(
ω − ω′). (3.9)

So, the T †
ω ’s produce nontrivial excitations of |0〉B . These are eigen-

states of the energy

:T0: =
∫

dω

4π
b†
ωbω (3.10)

with eigenvalue ω. While Tω|0〉B = 0 for ω > 0, the positive-
frequency Tω ’s do not annihilate |0〉U . Excitations of the Unruh 
vacuum with both higher and lower energies can be created, 
and generalizations of (3.9) can be calculated with both orderings 
of T , T †.

These excitations thus satisfy analogs of (2.5), and can transfer 
internal-state information into outgoing modes. Alternately, con-
sider wavepacket h’s; for non-overlapping or orthogonal wavepack-
ets these will satisfy similar conditions. In particular, a wavepacket 
with characteristic u-frequency ω ∼ 1/R and v-width R has nor-
malization of size (2.5). Creation of excitations via such wavepack-
ets is sufficient to reach the benchmark rate dSvN/dt ∼ −1/R nec-
essary for restoration of unitarity [15].

4. Energy flux

We wish to understand properties of the state (2.3). An impor-
tant characteristic is the energy flux. We will approximate this in 
the effective source approximation [16,17], as〈
Ψ (t)

∣∣Tμν

(
t, xi)∣∣Ψ (t)

〉 ≈ 〈
ψ(t)

∣∣Tμν

(
t, xi)∣∣ψ(t)

〉
(4.1)

where

∣∣ψ(t)
〉 = T exp

{
−i

t∫
dV ′Hμν

(
x′)Tμν

(
x′)}|0〉U . (4.2)

Here Hμν represents the effective average of Aa(t)Gμν
a (x) in (2.3)

over the pertinent BH internal states: one approximates the effect 
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of the coupling between quantum systems in terms of a classical 
source acting on the system (Hext) of interest.

To linear order in the source H , the flux is〈
ψ(t)

∣∣Tμν(x)
∣∣ψ(t)

〉 � U 〈0|Tμν(x)|0〉U

− i

t∫
dV ′Hλσ

(
x′)

U 〈0|[Tμν(x), Tλσ

(
x′)]|0〉U . (4.3)

In the 2d example, with

∣∣ψ(t)
〉 = T exp

{
−i

u∫
du′dv ′h̃Tu′u′

}
|0〉U , (4.4)

the flux can be calculated in terms of the asymptotic Hawking flux

T H
uu(r = ∞) = U 〈0|:Tuu :(r = ∞)|0〉U = 1

192π R2
(4.5)

via (3.5), giving

〈
ψ(t)

∣∣Tuu(u, v)
∣∣ψ(t)

〉 � T H
uu(u, v) + 2T H

uu(∞)

v∫
dv ′∂uh̃

(
u, v ′)

− 1

24π

v∫
dv ′∂3

u h̃
(
u, v ′). (4.6)

For general h the change δh Tuu(u, ∞) at infinity will clearly be 
nonzero and these variations in flux at infinity can carry informa-
tion. An important question is the change in the integrated flux, or 
radiated energy,

δh Pu(u) =
u∫

−∞
du′δh Tuu

(
u′,∞)

. (4.7)

Consider, for example, an h that vanishes in the far past and fu-
ture; then the h-dependent contributions to (4.6) integrate to zero. 
The expression (4.7) shows that while the flux is modulated, at 
this linear order there is no change in the total radiated energy 
associated with the escaping information.

One would also like to understand the higher-order flux cor-
rections. The right side of (4.1) is an in–in correlator and can be 
computed by standard methods (particularly efficient are those of 
[27]). Such calculations are left for future work, but note the fol-
lowing. Fluctuations about the Unruh vacuum may either raise or 
lower its energy; e.g. consider T †

ω or Tω acting on |0〉U . The former 
raises the eigenvalue of :T0: by ω; the latter lowers it by ω. This 
indicates there can be fluctuations where negative and positive 
energy contributions to the (quadratic-order) expectation value of 
:T0: cancel.

One can calculate the nonlinear change in the flux for a classical
perturbation guu of the metric (3.4), via the trace anomaly [28]. 
The flux is given in terms of the new conformal coordinate

u′ = u + 1

4

v∫
−∞

dv ′ f guu = u +
v∫

−∞
dv ′h̃, (4.8)

as

〈
Tuu(u,∞)

〉 = (
∂u′

∂u

)2

T H
uu(∞) − 1

24π

[
∂3

u u′

∂uu′ − 3

2

(
∂2

u u′

∂uu′

)2]
,

(4.9)

generalizing (4.6). While the nonlinear terms in this expression in-
tegrate via (4.7) to be positive definite, the important question is 
whether interactions (2.2) can achieve small change in radiated 
flux via the full calculation of the left-hand side of (4.1), taking 
also into account quantum correlations in the BH state.

While explicit formulas are most easily given for 2d, similar re-
sults should hold for the four- or higher-dimensional case, given 
the spherical reduction to a collection of 2d fields. These fields 
move in an effective potential so are no longer massless. However, 
the primary effect of this is to introduce gray-body transmission 
and reflection factors. For modes that can efficiently escape the BH, 
we therefore expect essentially the same considerations to allow 
comparable transfer of information via couplings of the form (2.2).

5. Nonviolence

Another important question is whether a singular horizon 
[9–12] can be avoided. Section 3 argued that the necessary in-
formation can be transferred by excitations softer than the cutoff, 
e.g. with energies ∼ 1/R , and with little or no change in the en-
ergy flux, suggesting an affirmative answer. However, the change 
in the state given by (2.3), or approximately (4.2), describes appar-
ent metric fluctuations near the horizon. Let us check that these 
are innocuous to infalling observers.

We do this in the 2d example, with metric perturbation as 
in (4.4),

ds2 = − f (r)dudv − f 2 guu

4
dv2. (5.1)

Tidal forces on infalling observers are given, via geodesic deviation, 
in terms of the Kruskal components of the curvature tensor. These 
perturbed components may be calculated for (5.1); they are of size 
comparable to the perturbation in the curvature scalar,

δR ∼ ∂2
u guu . (5.2)

For example, if guu = h ∼ e−iωu , these are of size δR ∼ ω2, or as 
small as 1/R2, which are no larger than curvature of the unper-
turbed metric. Functions with definite frequency in u are singular, 
and more regular functions may be more pertinent (e.g. analytic 
functions in Kruskal coordinates), resulting in further suppression 
in δR. These considerations also extend to the higher-dimensional 
case.

6. Conclusion

If information is to escape a BH to unitarize the Hawking pro-
cess, without modifying the BH thermodynamics as described by 
the Bekenstein–Hawking entropy SBH , apparently the information 
must escape in fine-grained modulations of radiation preserving
average properties of the Hawking flux. We seek a channel for such 
transfer of information, which is not violent to near-horizon space-
time and infalling observers. This note has investigated information
transfer from BH to exterior states via metric perturbation cou-
plings to the stress tensor, (2.2). For a sufficiently rich spectrum of 
such perturbations, this furnishes the needed channel capacity; a 
benchmark rate of one qubit emitted per time R is easily achieved. 
The energy flux can be investigated in a 2d model related to a 
reduction via spherical harmonics. To linear order in the met-
ric perturbation, a compact support oscillating perturbation pro-
duces no extra energy average flux. The higher-order energy flux 
is yet to be calculated, but is plausibly also small for certain 
information-carrying couplings; one way to understand this is that 
certain modulations of the Hawking flux can have unaltered to-
tal emitted energy. The needed couplings can be nonviolent to 
infalling observers. Couplings (2.2) to the stress tensor are also 
universal, so offer a way to avoid [15,16] the potential problem of 
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producing overfull BHs via mining, since the information-carrying 
flux increases commensurately with the Hawking flux when a min-
ing channel is opened.2 While the more fundamental underlying 
framework may well be based on a structure different from field 
theory [14], such an effective description may help elucidate some 
of its essential properties.
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