420 research outputs found

    Middleware for large scale in situ analytics workflows

    Get PDF
    The trend to exascale is causing researchers to rethink the entire computa- tional science stack, as future generation machines will contain both diverse hardware environments and run times that manage them. Additionally, the science applications themselves are stepping away from the traditional bulk-synchronous model and are moving towards a more dynamic and decoupled environment where analysis routines are run in situ alongside the large scale simulations. This thesis presents CoApps, a middleware that allows in situ science analytics applications to operate in a location-flexible manner. Additionally, CoApps explores methods to extract information from, and issue management operations to, lower level run times that are managing the diverse hardware expected to be found on next generation exascale machines. This work leverages experience with several extremely scalable applications in materials and fusion, and has been evaluated on machines ranging from local Linux clusters to the supercomputer Titan.Ph.D

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    The Workflow Trace Archive: Open-Access Data from Public and Private Computing Infrastructures -- Technical Report

    Get PDF
    Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. We focus in this work on traces of workflows---common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in using workflow-traces raises important issues: (1) the use of realistic traces is infrequent, and (2) the use of realistic, {\it open-access} traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes >48{>}48 million workflows captured from >10{>}10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between workload sources, domains, and fields.Comment: Technical repor

    The workflow trace archive:Open-access data from public and private computing infrastructures

    Get PDF
    Realistic, relevant, and reproducible experiments often need input traces collected from real-world environments. In this work, we focus on traces of workflows - common in datacenters, clouds, and HPC infrastructures. We show that the state-of-the-art in using workflow-traces raises important issues: (1) the use of realistic traces is infrequent and (2) the use of realistic, open-access traces even more so. Alleviating these issues, we introduce the Workflow Trace Archive (WTA), an open-access archive of workflow traces from diverse computing infrastructures and tooling to parse, validate, and analyze traces. The WTA includes {>}48>48 million workflows captured from {>}10>10 computing infrastructures, representing a broad diversity of trace domains and characteristics. To emphasize the importance of trace diversity, we characterize the WTA contents and analyze in simulation the impact of trace diversity on experiment results. Our results indicate significant differences in characteristics, properties, and workflow structures between workload sources, domains, and fields

    Dynamic workflow management for large scale scientific applications

    Get PDF
    The increasing computational and data requirements of scientific applications have made the usage of large clustered systems as well as distributed resources inevitable. Although executing large applications in these environments brings increased performance, the automation of the process becomes more and more challenging. The use of complex workflow management systems has been a viable solution for this automation process. In this thesis, we study a broad range of workflow management tools and compare their capabilities especially in terms of dynamic and conditional structures they support, which are crucial for the automation of complex applications. We then apply some of these tools to two real-life scientific applications: i) simulation of DNA folding, and ii) reservoir uncertainty analysis. Our implementation is based on Pegasus workflow planning tool, DAGMan workflow execution system, Condor-G computational scheduler, and Stork data scheduler. The designed abstract workflows are converted to concrete workflows using Pegasus where jobs are matched to resources; DAGMan makes sure these jobs execute reliably and in the correct order on the remote resources; Condor-G performs the scheduling for the computational tasks and Stork optimizes the data movement between different components. Integrated solution with these tools allows automation of large scale applications, as well as providing complete reliability and efficiency in executing complex workflows. We have also developed a new site selection mechanism on top of these systems, which can choose the most available computing resources for the submission of the tasks. The details of our design and implementation, as well as experimental results are presented

    Data Placement And Task Mapping Optimization For Big Data Workflows In The Cloud

    Get PDF
    Data-centric workflows naturally process and analyze a huge volume of datasets. In this new era of Big Data there is a growing need to enable data-centric workflows to perform computations at a scale far exceeding a single workstation\u27s capabilities. Therefore, this type of applications can benefit from distributed high performance computing (HPC) infrastructures like cluster, grid or cloud computing. Although data-centric workflows have been applied extensively to structure complex scientific data analysis processes, they fail to address the big data challenges as well as leverage the capability of dynamic resource provisioning in the Cloud. The concept of “big data workflows” is proposed by our research group as the next generation of data-centric workflow technologies to address the limitations of exist-ing workflows technologies in addressing big data challenges. Executing big data workflows in the Cloud is a challenging problem as work-flow tasks and data are required to be partitioned, distributed and assigned to the cloud execution sites (multiple virtual machines). In running such big data work-flows in the cloud distributed across several physical locations, the workflow execution time and the cloud resource utilization efficiency highly depends on the initial placement and distribution of the workflow tasks and datasets across the multiple virtual machines in the Cloud. Several workflow management systems have been developed for scientists to facilitate the use of workflows; however, data and work-flow task placement issue has not been sufficiently addressed yet. In this dissertation, I propose BDAP strategy (Big Data Placement strategy) for data placement and TPS (Task Placement Strategy) for task placement, which improve workflow performance by minimizing data movement across multiple virtual machines in the Cloud during the workflow execution. In addition, I propose CATS (Cultural Algorithm Task Scheduling) for workflow scheduling, which improve workflow performance by minimizing workflow execution cost. In this dissertation, I 1) formalize data and task placement problems in workflows, 2) propose a data placement algorithm that considers both initial input dataset and intermediate datasets obtained during workflow run, 3) propose a task placement algorithm that considers placement of workflow tasks before workflow run, 4) propose a workflow scheduling strategy to minimize the workflow execution cost once the deadline is provided by user and 5)perform extensive experiments in the distributed environment to validate that our proposed strategies provide an effective data and task placement solution to distribute and place big datasets and tasks into the appropriate virtual machines in the Cloud within reasonable time
    • …
    corecore