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SUMMARY

The trend to exascale is causing researchers to rethink the entire computa-
tional science stack, as future generation machines will contain both diverse hardware
environments and run times that manage them. Additionally, the science applications
themselves are stepping away from the traditional bulk-synchronous model and are
moving towards a more dynamic and decoupled environment where analysis routines
are run in situ alongside the large scale simulations.

This thesis presents CoApps, a middleware that allows in situ science analytics
applications to operate in a location-flexible manner. Additionally, CoApps explores
methods to extract information from, and issue management operations to, lower
level run times that are managing the diverse hardware expected to be found on next
generation exascale machines. This work leverages experience with several extremely
scalable applications in materials and fusion, and has been evaluated on machines

ranging from local Linux clusters to the supercomputer Titan.
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CHAPTER 1

INTRODUCTION

1.1 Trend: In Situ Analytics and Hardware Heterogeneity

On current generation petascale supercomputers, large-scale science applications like
GTC [2] and S3D [34] are already stressing the limits of the capabilities these ma-
chines provide. By offering diverse hardware architectures, such as inter-mixed CPUs
and accelerators, deep memory hierarchies, and multi-tiered storage systems, users
can now scale their science applications to conduct science at larger scales and finer
resolutions. Scaling to petascale sizes can be problematic as data produced at such
large volumes and high velocities can overwhelm storage systems leading to significant
performance bottlenecks. As we move beyond petascale towards exascale infrastruc-
tures, this trend only intensifies.

While these immense scales and data volumes have given science end users bet-
ter insights into the phenomena they are investigating, before such insights can be
gleaned, the data must often go through an expensive and complex analysis and visu-
alization process. The desire to scale analytics workflows to handle such data volumes,
and to better take advantage of the new hardware found on modern machines, has
caused researchers to investigate new methods for conducting computational science
to help avoid the existing scalability bottlenecks. In particular, science and analysis
workflows are moving away from relying solely on storage systems as the intermediary
for the data, to instead using models where analysis workflows run concurrently, or
“in situ” with the core simulation ingesting data live as it is being produced. In situ
is a Latin phrase used in a number of science and engineer fields that means “on site”

or “in place.” In computational science, in situ analysis means to analyze the data



in the same location as it is produced, which has been taken to more generally mean
the data is analyzed before it is sent to storage. An open question for science end
users then is what is the proper location to execute this analysis code in relation to
the simulation: (1) as separate processes on the same set of compute nodes as the
simulation, either sharing cores or on dedicated cores; (2) as separate processes on a
set of dedicated “staging” nodes; (3) being treated as standard in-line functions that
share the simulation’s address space; and (4) as traditional post-run analysis using
storage as the medium.

Beyond addressing storage-related performance challenges, in situ analytics offer
science users new functionality for better understanding the scientific simulations
being run. This includes using analytics to (1) continuously ascertaining simulation
validity, (2) gaining rapid insights into the scientific processes being simulated (online
visualization), (3) managing ensembles of simulations, or even (4) enabling methods
for application steering.

Additionally, several programming models [12, 60], run times [19, 67, 33, 26], and
operating systems [32, 54] have been developed to provide science end users with
better ways to develop their analytics to take advantage of the growing number of
hardware components. Figure 1 depicts an example of what a supercomputer node
is projected to look like at exascale. The individual components of this example are
not particularly relevant for this thesis, but what should be noted is the large variety
of hardware and software subsystems that end users will have at their diposal on an
exascale machine.

While the research supporting these developments is already showing great promise,
there are still several challenges in terms of “bridging the gap” between the workflow
components and the underlying hardware resources. Analytics algorithms all have dif-
ferent scaling characteristics, resilience properties, and any given algorithm can also

have different versions targeted for specific hardware (i.e., a histogram function can
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Figure 1: Projected Node Architecture for an Exascale Machine




have a CPU or a GPU implementation). Relying on the end-user to properly profile
and schedule the workflow components on the different hardware is time consuming
and error prone, only to be exacerbated at exascale.

Further, dynamics can also occur at run time causing initial resource allocations
to become sub-optimal. Such dynamism can occur for several reasons; poor initial
resource allocation to the workflow components leading to performance bottlenecks,
hardware and software failures, the nature of the changing data may change the run-
time, etc. At the current state of the art, science end users over-provision for worst
case scenarios leading to wasted resources.

The focus of this thesis is to design middleware constructs for in situ analytics
workflows that enables proactive and reactive response to run time dynamics in or-
der to meet user-driven performance and science goals. Specifically, I am presenting
CoApps and its enabling technical components that will provide: (1) communica-
tion mechanisms so that workflow components can operate in a location independent
manner; (2) an execution mechanism that can make use of different implementations
of analytics algorithms to enable smarter placement decisions; (3) provide a program-
matic API to allow users to create beyond simple, best effort service level agreements
(SLAs) that the middleware can enforce at run time.

The communication mechanisms address both inter-component and intra-component
needs, the latter stemming from colocation limitations found on many high-end ma-
chines. The execution framework chooses at run time from the different hardware
implementations of the analytics components in an effort to improve consolidation
opportunities and better meet end-user goals. The programming API allows infor-
mation about the state of the workflow to be gathered and evaluated and allows the
end-user to specify control operations to take when certain conditions or triggers are
met.

The CoApps approach rests on assumptions that hold true for many large-scale



scientific applications and their associated analytics workflows. These assumptions
do not always match those found in enterprise or “big data” frameworks like [64, 6, 3]

in terms of their data characteristics, execution models, and degrees of parallelism.

e Functional Dependencies. Analytics codes expect to ingest data matching
specific formats and layouts. These analytics functions may need to transform
data to meet algorithmic correctness and/or to export an analysis function’s
discoveries into the data itself. Given these dependencies in the data-plane,

functions in an analytics pipeline may or may not require in-order operation.

e Heterogeneous Codes. Analytics can have heterogeneous architectures and
have a wide range of execution models, fault tolerance, and scaling characteris-

tics.

e Stringent Resource Constraints. Resources are typically assigned to the
compute job statically. Analysis codes are given “spare” resources, i.e., spare
CPU cycles on simulation nodes [67, 14], reserved staging nodes [9, 25], or
those on smaller, auxiliary clusters perhaps in different physical locations. An-
alytics pipelines, therefore, must operate with these limited resources, without
interfering with the simulations and their output actions including by delaying
simulation completion or adversely affecting other jobs running on the same

platforms.

1.2 Thesis Statement

In situ analytics provide a high performance path for modern scientific applications
and workflows running on leadership class machines. For such applications, enabling
in situ analytics to be proactive and reactive to runtime dynamics creates inherently
scalable workflows that can be managed at runtime to better utilize machine resources,

improve application performance, and to better meet end-user goals.



1.3 Thesis Contributions

There are four principle contributions of this thesis. First, this thesis introduces the
CoApps abstraction, which enables colocation of workflow components. Second, this
thesis introduces communication mechanisms that enable location independence as
well as the reorganization of in situ workflow components at run time. These tech-
niques include both inter- and intra-component messaging and data exchanges as well
as the co-management of network resources. Third, this thesis provides an execution
environment to make use of different hardware implementations of workflow compo-
nents when making decisions on colocation. Finally, we explore these abstractions
and mechanisms using real science codes operating on current high-end petascale

supercomputers as well as smaller university scale clusters.

1.4 Impact of Future Technologies

This thesis provides a software, and more specifically a middleware, for the run time
management of in situ science analytics as we approach exascale limits. Hardware,
and the lower-level run times that management, also provide solutions for improving
the scalability and programmability of science workflows. New technologies such as
burst buffers and non-volatile memory (NVRAMS) are secking to address the 1/O
challenges at exascale, however these approach are complimentary to the approach
presented in this thesis. In particular fast persistent storage hardware can improve

our resilience and data exchange capabilities. This is discussed further in section 7.

1.5 CoApps Research Overview

The remainder of this thesis presents a progressive narrative of the requirements and
performance of the CoApps system, starting with some canonical science applications,
through our development of in situ workflows to the CoApps abstraction.

Chapter 2 outlines several driving applications that largely served as motivating



use cases for CoApps, and in situ workflows in general. There, we present science
applications, their analysis workflows and some of the unique challenges they repre-
sent for the CoApps abstraction. We also present some of the core technologies we
use as part of our CoApps implementation. Chapter 3 describes our work on leverag-
ing a publish/subscribe infrastructure to design a communication, or code-coupling,
mechanism for “on line” science workflows. Chapter 4 builds on this initial concept
and describes abstractions and control protocols for orchestration. This work focuses
on coarse grained policies mostly with re-arranging workflow components in a stag-
ing area and does not directly deal with per compute node attributes. Chapter 5
presents the complete CoApps abstraction and run time. It describes how location
independence is achievable at run time, presents new launching and communication
mechanisms for node-sharing in situ cases, and also describes what additional infor-
mation and control structures are needed to make more fine-grained per compute node
decisions at run time. Chapter 7 discusses future work, Chapter 6 discusses related
work on in situ workflows and orchestration/management in general, and Chapter 8

concludes the thesis.



CHAPTER 11

MOTIVATING APPLICATIONS AND FOUNDATIONAL
TECHNOLOGIES

CoApps provides a new paradigm for programming, deploying and executing in situ
scientific workflows on leadership scale applications. The design principles have been
developed in collaboration with scientific application developers, and with the scien-
tists using these applications. We will look at some of these motivating application,
and also describe the workflow management challenges raised by each. The CoApps

abstraction can be considered to be one way of addressing these challenges.

2.1 Motiwvating Applications
2.1.1 LAMMPS

LAMMPSI[53] is a molecular dynamics simulation used across a number of science
domains ranging from materials engineering to physics to biology. Depending on the
particular input parameters used with it, it can have a wide variety of performance
characteristics. It is written with MPI and performs force and energy calculations on
discrete atomic particles. After a number of user-defined epochs, it outputs the atom-
istic simulation data (e.g., atom types and positions) with the size of this data ranging
fom megabytes to terabytes depending on the science being investigated. LAMMPS
can also take advantage of common hardware runtimes such as CUDA and OpenMP
and other extensions are available to use newer accelerator based technologies such

as Xeon Phi.



2.1.1.1 SmartPointer

SmartPointer[61] is a representative analytics pipeline interpreting LAMMPS output
data to detect and then scientifically explore plastic deformation and crack genesis.
In such scenarios, the material being simulated is steadily stressed until it first starts
to break. The scientific question being asked is how to understand the geometry of
the region around that initial break. This means that the purpose of the molecular
dynamics simulation is to bring the data set to some self-consistent, interesting state,
at which point substantial additional analytics and characterization need to take
place. The SmartPointer analytics toolkit implements these functions to determine
where and when plastic deformation occurs and to generate relevant information as
the material is cracked. Table 1 summarizes the computational characteristics of
the individual SmartPointer components, and the list below explains each in greater
detail. Figure 2 depicts this example workflow.

This workflow provides us with several interesting orchestration challenges as it
requires application introspection into the data based on the CSYM and CNA compo-
nents. In contrast to purely performance based policies, the analysis functions report
the metric of interest (CSYM detects a crack) and the orchestration actions (kill
CSYM and run CNA) are defined by and triggered by the applications. This type
of data-centric policy ensures data quality via correct execution of pipeline analysis

functions.
e Lammps Helper: serves as an aggregator and filter of the raw LAMMPS data.

e Bonds: subscribes to aggregated data from Lammps helper at each time-step,
and performs an all-nearest neighbor calculation to determine which atoms are

bonded together in order to publish a bond-pair array as its output.

e (sym: the central symmetry analysis routine operates on an array of bond-pairs

from bonds, and also a bond adjacency list (a graph structure) to determine if
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Figure 2: LAMMPS and SmartPointer Analysis Pipeline

Table 1: Characteristics of SmartPointer Analysis Actions

Complexity Data Model Stateful
Helper O(n) Array No
Bonds O(n?) Array, Parallel No
CSym O(n) Complex Yes
CNA O(n?) Array No

there is a deformation in the material. This code maintains the initial bonds

adjacency state for the duration of its run.

e (CNA: common neighbor analysis executes whenever CSYM determines that a
deformation in the material has occurred. CNA is compute-intensive and is
executed on the bond pairs array to perform a structural characterization on

the data, to determine the conditions under which the crack occurred.

2.1.2 GTCP

GTCP[44], simulates a toroidally-confined plasma such as is found in Tokamak fusion
reactors. In order to simulate such reactor environments, the code uses a Particle-in-
Cell technique, where the electric and magnetic fields within the domain are stored
on a mesh, but the ions of the plasma are represented by discrete particles. There
are challenges with analyzing both the particle and mesh-carried variables, but for
the purposes of this work, we have focused on the mesh ones. As such, the output

of the simulation is a 3D array with the dimensions representing: (a) toroidal ranks
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(toroidal slice number), (b) grid point numbers, and (c¢) property indices (ie magnetic
field components, pressure, temperature). An example workflow that has motivated
much of our development involves generating a per-timestep histogram that shows
the distribution of per-gridpoint parallel pressure across the entire simulation. From
GTCPs output, the particular quantities of interest must be extracted and then a

histogram generated.
2.1.3 SuperGlue Reusable Analysis Workflow

SuperGlue[8] is a set of “off the self” analysis tools that are designed to be generic
enough to be reusable for a large variety of different workflows. There are a number
of analysis routines that can be chained together to form arbitrary workflows and
users use configuration files to customize the workflow to the specific application.
SuperGlue components are coupled together using the ADIOS framework, discussed
in Chapter 2.2.1.

From the larger number of SuperGlue components available, we use the following:

e Select: Given an input stream that includes an n-dimensional array, Select
extracts specific indices from one of the dimensions. The output array of this
function has the same number of dimensions, but has a smaller number of

elements.

e Dim-Reduce: removes one dimension from its input array by absorbing it into
another dimension without modifying the total size of the data. The other

dimensions are left unchanged.

e Magnitude: calculates the magnitudes of the vectors from the values of their

individual components and outputs a 1D array of the new values.

e Histogram: Computes a histogram over the elements in the array. The his-

togram component is implemented using the Thrust Parallel Algorithms Library

11



(cite thrust) and runs on CPUs as well as accelerators such as GPUs.

The interesting part of this workflow, from an orchestration perspective, is that
some of the components, i.e., the histogram component, have both CPU and GPU
implementations available, giving us greater options to explore improving utilization
hetergenous for hetergenous hardware. With current state of the art tools and de-
ployment methods, end users are required to provision the workflow resources accord-
ingly and often may choose sub-optimal arrangements. By offering different hardware
implementations of workflow components, we have a greater number of placement op-

tions available to try to improve our ability to meet end-user goals.

2.2 Foundational Technologies

While CoApps is a significant change in the paradigm of workflow and data manage-
ment for high performance applications, their development has been realized through
the use of existing technologies that provide key characteristics necessary for the
CoApps paradigm. Two components, ADIOS and EVPath, have played a significant

roll in the implementation for the CoApps abstraction.

2.2.1 ADIOS

The Adaptable 10 System (ADIOS) is an I/O componentization library that ex-
poses file-like read and write interfaces to applications, with underlying I/O meth-
ods including disk based methods like POSIX and MPI-IO, and “staging” methods
like Datatap[9], Dataspaces|25], and also Flexpath[22], an enabling technology for
CoApps, which is further described in Chapter 3. With ADIOS, end users can simply
‘switch’ transports, without modifying their codes, using an external XML document.
This allows us to identify those transports as well as other I/O characteristics, like
the variables to be written, their array dimensions & offsets, etc. We have chosen

ADIOS to be the interface into Flexpath for two reasons: 1) For ease of use by the

12



large number of existing applications that use the ADIOS interfaces, and 2) it pro-
vides a service-oriented interface for science applications allowing them to be written
generically and deployed anywhere without extensive code changes or re-compilation

efforts.
2.2.2 EVPath

EVPath [28] is a constructor for typed messaging systems. Using EVPath allows us
to construct a number of underlying messaging infrastructures needed to realize the
CoApp inplementation. Using EVpath, we have created type-based publish /subscribe
messaging systems, described in Chapter 3, monitoring and control overlays described
in Chapter 4.3.3, as well as transactional and RPC style messaging systems. Addition-
ally, EVPath supports dynamic code generation techniques that allow us to deploy
at runtime customized operations into the various messaging systems to give applica-
tions greater control over their data streams. This research has caused much fruitful

back-and-forth with the core EVPath development process.
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CHAPTER II1

FLEXPATH: TYPE-BASED PUBLISH SUBSCRIBE FOR
HIGH-END IN SITU WORKFLOWS

3.1 Introduction

This chapter presents Flexpath, a type-based publish /subscribe infrastructure for cou-
pling high-end scientific applications with their online analytics services. The work
presented here serves as our initial look at in situ workflow construction and addresses
the need for data exchanges across parallel workflow components. While the initial
implementation presented here focused on “in transit” workflows, we were able to
extend the implementation for in situ workflows, as described in chapter 5.

Flexpath’s pub/sub approach makes possible runtime configurability, scalability,
and also fault tolerance, as the pub/sub abstraction allows for the decoupling of
diverse analytics components, permits multiple subscribers or publishers to share a
single data stream, and suppresses communications for cases in which there are no
subscribers to certain data streams (e.g., those not of current interest). This is par-
ticularly well suited for the in situ analytics approach, as the core simulation may
therefore be structured to make available a substantial array of internal data, know-
ing that only those parts that are needed at runtime will actually be exported. These
properties contrast with the typical assumptions made by communication infrastruc-
tures like MPI, where the domain of executing processes is initialized at launch and
cannot grow or shrink for the remainder of the execution.

With Flexpath, one can construct and dynamically manage or change the data
processing pipelines or workflows needed for runtime analysis of the large volumes of

this output data in ways that meet the following four design requirements of these

14



sorts of applications: (1) decouple analytics services from simulation codes, (2) main-
tain levels of performance similar to those obtained by analytics routines statically
embedded with simulations, (3) permit those pipelines to cross node and/or machine
boundaries, and (4) support the creation of higher level methods for managing these
pipelines. Sample management constructs built in our own previous work [23], for
example, have balanced pipeline operations to ensure QoS and have implemented
transactional constructs with the goal of providing ACID properties for select online
analytics [62, 46].

Flexpath’s pub/sub communication mechanism, key to meeting design objective
(1), obtains flexibility for component-component communications, without the perfor-
mance penalties incurred by traditional broker-based pub/sub infrastructures. This
technical contribution is achieved by using direct connections between interacting
components, including the scatter-gather or MxN communications needed across dif-
ferent communicating internally parallelized analytics components. This high per-
formance implementation for such peer-to-peer techniques utilizes a subscription im-
plementation, allowing readers to specify derived versions of messages, e.g., to re-
ceive only those slices of data objects they require, as well as registering dynamic
transformations of typed objects when there are mismatches between publishers and
subscribers, e.g. row to column order array conversions.

With regards to the need to maintain performance in cross-platform environments
(design objectives 2 and 3), Flexpath has been built to leverage multiple underlying
communication protocols, ranging from a shared memory protocol employed for on-
node communications, to the RDMA-based protocols existing on high end machines,
to the TCP/IP protocols required for linking remote collaborators. As is described in
Section 3.3, much of this comes from inheriting a multi-modal connection management
system through the EVPath framework. Finally, with regards to design object (4)’s

concerns for management, Flexpath’s approach allows for it to export monitoring
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data and management ’hooks” with which higher level management methods can be
realized. As will be seen later, we utilize some simple workflow-level management
schemas in this work, but future work will extend the complexity and robustness of
this feature of the system.

Conceptually, Flexpath’s development builds on extensive prior work on efficient
parallel I/O pipelines, including data staging methods for running analytics and vi-
sualization [9, 66, 25, 58], data streaming and the online QoS control of such data
streams [28, 51, 62], the aggressive use of source-based data reduction and filter-
ing [39, 66], and convenient ways to carry out remote data visualization [61, 20, 18].
For high end machines, challenges include dealing with network congestion [9], pro-
viding data reliability when operating at scale [46], making data “right” for use by
successive analytics codes without unnecessary data movement [10, 66], and dealing
with application dynamics, as when codes are dynamically activated or de-activated.
Such dynamics, in fact, have given rise to interesting methods used by modern data
visualization systems like Vislt contracts [21].

Driven by such prior work, Flexpath is designed as a communication substrate
that does not proscribe specific management methods. Instead, it makes possible
the efficient realization of alternative communication scheduling techniques [9] and /or
higher level methods for managing entire analytics workflows [23]. In contrast to web-
based or commercial data streaming infrastructures [51, 40, 63], it does not constrain
end users in how to write their analytics routines, so that they can leverage the
rich tools already existing for these purposes, like R or MatLab. Finally, leveraging
the ADIOS I/O APIs already in common use on petascale machines [45], Flexpath’s
implementation as an ADIOS ’transport method’ allows it to adopt and adapt many
off-line analytics pipelines that were originally structured as sets of independently
programmable and deployable analytics services using ADIOS as the interface of

choice [45].

16



Flexpath is deployed for use across a range of high end machines, including
ORNL’s Titan machine, Infiniband clusters, and commodity scientific computing en-
gines. This chapter experimentally evaluates its technical elements and approach with
two representative applications with significant scientific user communities, LAMMPS [53]
and GTS [2], coupled with their associated data analytics service flows. For this chap-
ter, experiments are run on Oak Ridge National Lab’s Sith machine and on smaller-
scale Linux clusters available at our own institution. Please see Chapter 2.1.1 for a
discussion on LAMMPS and Smartpointer.

GTS is a plasma fusion simulation with an implementation that exploits coarse
grained process level parallelism using MPI, and more fine-grained thread-level par-
allelism using OpenMP [2]. This particle-in-cell code has different output frequencies
for both particles and mesh-level statistics. In order to examine the dynamics in-
volved, in particular dangerous transient effects that might damage a real reactor
vessel, it is useful to dynamically evaluate and characterize particular trends on the
inner and outer edges of the plasma. Unlike the LAMMPS case, these transients are
not as algorithmically identifiable, so secondary analysis methods are used to infer
their existence, and then, much more detailed inspection involving direct interaction
with the physicists is used to further the investigation. The GTS analytics pipeline
used in this chapter computes parallel histograms of multiple grid-carried variables,
and runs parallel-coordinate visualizations to provide suitable data to those physicists.

The LAMMPS and GTS analytics workflows have some important shared char-
acteristics. In both examples, analytics codes are run as independent services, each
simply executing its functions on the data that is available. The operation of the
individual analysis routines are not affected by each other and generally, the codes
are unaware of the details of how or when the other codes are run. This results in an-
alytics workflows best described as sets of analytics services loosely coupled in terms

of space, time, and synchronization.
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3.2 Type-based Publish Subscribe for HPC Environments

Type-based publish /subscribe [29] is a pub/sub paradigm in which producers publish
objects classified by type to a communication substrate, and consumers subscribe to
them by specifying the types of objects in which they are interested. Here, type re-
flects both the structure of the published data as well as metadata extensions that can
be determined at runtime. This distinction, along with other technical contributions,
is part of what allows Flexpath to adopt a high performance direct-connect, rather
than brokered, infrastructure.

While Flexpath uses a type-based pub/sub model, end users are not required to
change their ADIOS codes or applications to adopt this new model. Instead, the
Flexpath implementation exploits the model’s several similarities with the standard
file I/O model already known to science users. In the file I/O model, science applica-
tions exchange data by using a shared filesystem as the data exchange medium [48],
and workflows are constructed through the use of intermediate files stored on disk.
As a familiar scientific scenario, consider the following: at each output epoch the par-
allel writers open a file, encode their data in the proper metadata-rich serialization
format, like NetCDF [42] or HDF5 [56], populate the write buffers, and finally, flush
them to disk. Similarly, for a given read epoch the (possibly parallel) readers open
the file, read metadata about the objects present in the file, create the appropriate
buffers, perform the reads, and then seek ahead to the next block of data, if avail-
able. Additional attractive elements of the file-based approach include the ability to
perform “seeks” to retrieve fine-grained slices of the available data, data durability
and persistence guarantees.

A detraction from this model is the synchronous nature of file-based I/0O and its
poor performance at large scales. Particularly, if there is a complex trade-off between
number of files, number of writers, and the layout of data within those files to be

most scientifically useful, the attempt to optimize any one file system parameter
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can yield sub-optimal results for the other. In the dynamic scientific investigations
targeted by this work, a mis-predicted optimization could have profound impact on
the viability of the runtime analysis if it were to use a traditional filesystem-based
approach. A key reason for introducing our asynchronous, type-based pub/sub has
been to avoid this disk bottleneck when linking simulations with dynamic sets of
analytics services[66, 25, 9].

The properties of a type-based pub/sub system, although superficially quite dif-
ferent from file I/O, map relatively well to the subset of such general functions that
are offered by high performance 1/0O libraries such as HDF5 or ADIOS. For exam-
ple, file names serve as the naming convention for establishing a pub/sub “channel”
between coupled applications, so that writers and readers can be logically mapped
between publishers and subscribers to a shared data set. A key realization about the
high performance I/O abstraction is that, since data is already laid out for the I/O
system utilizing many higher-level concepts of data structure (arrays, slabs, meshes,
etc.), a seek is not an arbitrary binary offset within the file. Instead, it maps quite
well to metadata subscriptions or type-based derivations within the scope of type-
based pub/sub. For example, a seek to a particular slice of a global array can also
be interpreted by the pub/sub as a parameterization of the peer-to-peer subscription
parameters. This structural, rather than byte-level, addressing of data in the high
performance space is key to aligning the two paradigms.

Beyond this mapping of file I/O to equivalent pub/sub actions, there are addi-
tional properties of the online analytics workflows targeted by Flexpath that make
them well suited for the type-based pub/sub paradigm. The input and output types
of each component in the workflow are well defined, giving rise to clean mappings
to equivalent pub/sub type descriptions. Additionally, since the components of the
workflow operate independently of each other, this favors an asynchronous commu-

nication model not subject to the issues with tightly synchronized data exchanges in
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which senders block when downstream receivers are still processing the previous in-
terval of data. This also supports the original design objective of being able to handle
a heterogeneous computational environment. Finally, for analytics components that
can change during the course of the run, key constituents of the types of workflows
we aim to address, this amounts to dynamic changes in the data flow. Our pub/sub
offers a model that allows such dynamics while not having to make the individual
components aware of such run-time complexities.

While conceptually attractive, the efficient implementation of type-based pub/sub
for high end applications and platforms poses significant challenges. To obtain high
performance for large data volumes, we cannot use overlay routing techniques and/or
move data to third-party brokers, as done in other traditional pub/sub implemen-
tations [16, 41, 38]. Second, unlike traditional type-based pub/sub, a single data
object represented by a type is a collection of messages matching this type obtained
from some large number of sources producing these messages, i.e., each process in
the parallel application produces a portion of a global array as well as scalar vari-
ables that describe both global knowledge and the process’s local view of the global
array. Thus, the definition of type has to be extended to include notions of both
local and global metadata parameters. Third, in the common MxN data exchanges
that occur among science codes, a subscriber only wants to receive certain slices of
the objects or in fact, objects transformed from one type to another. So, in addition
to specifying types, subscribers also need to specifiy derivations on types. As a final
complication, a type-based pub/sub infrastructure must have ways of dealing with
type augmentations at runtime in order to be useful for adaptive codes like S3D.

Naturally, there are also machine-specific challenges to an efficient implementa-
tion of pub/sub on large-scale supercomputers. Structuring a solution which can both
efficiently utilize highly specialized networking hardware and protocols, such as In-

finiband and Cray’s Gemini interconnect and simultaneously operate across multiple
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Figure 3: Traditional model of publish/subscribe vs. Flexpath model of pub-
lish/subscribe allowing for fine-grained data exchanges across parallel applications.
networking technologies, e.g. TCP/IP, in order to extend workflows across multi-
ple machines and geographies, requires great care. There are issues of placement,
throughput matching, and even security that must be addressed while maintaining
both high performance and the simple pub/sub abstraction.

In summary, scientific simulations with complex online analytics workflows can
benefit from the pub/sub paradigm, but given the non-trivial data exchange and I/O
characteristics of these applications, and the nature of the systems on which they run,
type-based publish/subscribe must be rethought to enable data exchanges at scale.
Connection management, type derivations, and subscription management all must be
re-addressed. We next explain the Flexpath architecture and implementation as it

addresses these challenges.

3.3 Design and Implementation

Figure 3 depicts the conceptual design of Flexpath and contrasts it with the stan-

dard broker-based pub/sub model. In Flexpath, direct connections are established
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between coordinators on opposing sides; when joining a channel, a subscriber selects
a publisher peer coordinator it uses to retrieve publisher metadata. This metadata is
used in conjunction with subscriber subscriptions to establish connections with pub-
lishers that own the requested data. Additionally, control messages are sent across
connected coordinators to perform coordinated control operations like the eviction of
expired data from the local data stores. We next describe some of the background

needed for understanding the implementation of this functionality.

3.3.1 Background Technologies
3.8.1.1 EVPath Overview

The Flexpath messaging infrastructure is built on the EVPath [28] event-based trans-
port middleware. EVPath supports the construction of active messaging overlay net-
works. User-defined data filtering and transformation functions reside in lightweight
“stones” that serve as processing points in the overlay, and stones are linked to form
overlay “paths”, where the processes hosting these stones may reside on the same
physical machine, on cluster nodes, or even on machines at different geographical
locations. The filtering and transformation functions run by stones are implemented
by registered call-back handlers written in C and statically associated with stones,
or as inline functions deployed at runtime generated with the CoD (C-on-Demand)
language. The types of EVPath stones used in the Flexpath implementation are the

following;:

o Terminal Stone: runs an application-registered call-back handler associated

with an event type; the handler is invoked upon receipt of such an event.

o Multi-Queue Stone: operates over a collection of typed events, and allows users
to implement policies like a tumbling window policy, or perform event transfor-

mations that span multiple event types.
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e DBridge Stone: is used for network transmission, for communication with stones

in a remote address space.

The additional stone types present in EVPath are described in [28].

Flexpath adopts from EVPath its methods for data serialization, termed Fast
Flexible Serialization (FFS) [27], which means that Flexpath events are comprised of
self-describing typed data elements, with types seen by all of the stones (and func-
tions) operating on those events. The basic types supported are similar to those
present in the C language, but with FFS, those types can be the building block for
event data comprised of complex graph structures. We note that functions coded with
CoD manipulating FFS encoded events can be generated at runtime and dynamically
deployed to stones, in contrast with handlers that are compiled and deployed stat-
ically. Finally, to operate across several diverse communication protocols, Flexpath
uses EVPath’s networking abstraction, termed Connection Manager(CM), which cur-
rently supports as lower level protocols TCP /IP sockets, and via Sandia’s NNTT [47],
also high performance protocols like Infiniband, Cray’s Gemini, and the Bluegene

interconnect.

3.8.1.2 ADIOS Interface

The Adaptable IO System (ADIOS) is an I/O componentization library that exposes
file-like read and write interfaces to applications, with underlying I/O methods in-
cluding disk based methods like POSIX and MPI-1IO, and “staging” methods like
Datatap[9], Dataspaces[25], and also Flexpath. With ADIOS, end users can simply
‘switch’ transports, without modifying their codes, using an external XML document
identifying those transports as well as other 1/O characteristics, like the variables
to be written, their array dimensions & offsets, etc. We have chosen ADIOS to be
the interface into Flexpath for two reasons: 1) For ease of use by the large number

of existing applications that use the ADIOS interfaces, and 2) as describe in section
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3.2, there is a natural translation from ADIOS file-based I/O interfaces and type

descriptions to Flexpath’s pub/sub approach.

3.3.2 Implementation
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Figure 4: Software Architecture of Flexpath Publishers

Figure 4 depicts the software architecture of Flexpath from the publisher’s per-
spective. The subscriber’s interface is similar, except that it is layered beneath the

ADIOS read interface.

Type Representation The publisher side of Flexpath obtains type information
about data from the ADIOS data descriptor, generated by parsing the XML document

during the adios_open call. This information is converted into a FFS format header
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uniquely identified by a “cookie” transmitted along with the data. Upon the arrival
of an event, if a receiver has not yet seen this cookie, the receiver issues a fetch
request to the sender to obtain the FFS descriptor. This scheme avoids the redundant

transmission of FFS metadata.

Publishing Data Publishers submit their data in Flexpath through the adios_write
call, which is called for each variable to be written. Flexpath copies the data into the
appropriate location in the FFS encoded buffer. This extra copy is not inherent to
the pub/sub model, but is performed to satisfy the safety requirement of the ADIOS
interface, which allows user codes to manage their own buffers. At the end of the out-
put epoch, publishers perform a publish operation, available through the adios_close
call, which submits the FFS encoded data to the local message coordinator. Addi-
tionally, on the publish operation, if there are any global arrays, we distribute each
publisher’s array offset metadata to all other publishers, so that the subscriber can
ask its peer publisher coordinator for this information directly. This metadata allows
us to extend the traditional definition of types to include local pieces of a larger global

object.

Subscriptions Subscriptions are realized in three steps. First, the subscriber in-
forms its local message coordinator about what variables and slices it needs. The
message coordinator then fetches the global offset information for the given epoch
from its peer writer coordinator and uses this information to determine from which
publishers data is needed. The subscriber message coordinator will then send to each
of those publisher coordinators a fetch message requesting the desired variables and
slices. The offset metadata exchange also serves as our notify abstraction; metadata
is only present for an output epoch if data for this epoch has been published.

In addition to the array slicing style subscriptions, we also allow for subscribers

to specify type transformations, to allow publishers and subscribers to resolve type
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mismatches. In the example listed in Chapter 2.1.1, the CSYM code actually wants
to receive some data in the form of a bonds-adjacency list, a more complex graph
structure, rather than only the bond-pair integer array published by the Bonds code.
With Flexpath, this is done via transform operators, represented as CoD code or as
a registered transform function. For this example, the transform function is run on

the subscriber side to avoid having to transmit both sets of data.

Message Coordinators Message Coordinators are implemented by EVPath stones,
CoD code, and with call-back handlers. On the publisher side, an EVPath multi-
queue stone serves as an entry point for incoming messages and as the dispatcher
for outgoing messages. Each publisher message coordinator maintains a local in-
memory data buffer for storing published data as well as the associated metadata. It
is this local data store, and separate threads for message processing and communica-
tion that allow Flexpath to have an asynchronous communication mode.. Additional
functionality in message coordinators maintains reference counts to understand when
data has been successfully received by all subscribers and perform subsequent data
eviction operations, etc.

The subscriber’s message coordinator is similar, except that it uses a terminal
stone and call back handlers to invoke necessary state changes, and that received data

is copied into the user’s receive buffer registered through the ADIOS read interface.

3.4 FExperimental Evaluation

Flexpath is evaluated experimentally using the Sith cluster hosted at Oak Ridge
National Labs, and on the Windu and Jedi clusters hosted at Georgia Tech. The Sith
machine is a 40 node cluster and each node is equipped with four 2.3 GHz 8 core
AMD Opteron processors and 64 GB of memory. The system offers QDR Infiniband
for Lustre and MPI traffic, and a 1Gb Ethernet link for communication across MPI

domains.
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Table 2: LAMMPS Pipeline Experimental Setup.

Data Size LAMMPS Helper Bonds
76 MB 128 1 2

153 MB 256 2 4

305 MB 512 4 8

610 MB 1024 8 16

Table 3: Data sizes and core counts for weak scaling experiments

The Windu and Vogue clusters operate as separate Infiniband domains and the
two clusters share a 1Gb Ethernet link for communication between the two. The
nodes in both clusters contain one 2.67Ghz Intel Xeon 12 core processor and 48Gb

ram.
3.4.1 Affect on Application Execution Time

This experiment measures the effect on application level performance when construct-
ing a workflow, using Flexpath as the data exchange mechanism. We measure time
spent on output operations for each component in the pipeline and compare Flex-
path’s performance with that of the MPI_Aggregate synchronous disk-based method
offered by the ADIOS interface. The MPI_Aggregate method is optimized for parallel
Lustre I/0O, and discussion on these optimizations is made available in [45].

We use weak scaling to show how the system behaves both in terms of larger num-
bers of participants and larger data volumes. Table 2 shows the data sizes LAMMPS
produces at each output epoch, and the number of cores on which each code is exe-
cuted. CSYM and CNA are serial codes that always run with an MPI size of 1, so
we exclude them from the table.

Figure 5 shows the total time each component in the LAMMPS analytics pipeline
spends on performing I/O over its full execution. The LAMMPS application expe-
riences a significant decrease in 1/O time; when running on 1024 cores, it spends
just over 1.3 seconds on I/O when using Flexpath vs. 117 seconds when using the

MPI_Aggregate method. This is directly due to Flexpath’s asynchronous nature.
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Figure 5: Total Time spent on I/O for LAMMPS and components of analytics
pipeline. The asynchronous I1/O offered by Flexpath drastically reduces the time an
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operations.

28



Asynchronous operation also engenders reductions in I/O time for the other com-
ponents in the pipeline, but the decrease is not as drastic, for several reasons: (1)
the analytics components run at smaller MPI sizes than the LAMMPS application,
so for each component process, Flexpath has a much larger volume of data to pro-
cess and move; and (2) the Bonds and CNA components run slower than the others,
so occasionally, there will be blocks in the analytics portion of the pipeline as the
coordinator data stores become full. It is blocking issues in scenarios like these that
motivate the notion of I/O Containers for managing analytics pipelines presented in
23].

Figure 6 depicts the overall improvements in runtimes for the LAMMPS and
GTS applications. The decrease in the time spent on I/O translates to decreased
run times. We note that there is some disparity between the reduced time spent
on I/O and the total reductions seen in run-times. This is because (i) Flexpath
is an active 1/O transport, so it will continue to operate and borrow CPU cycles
during the application’s normal execution; and (ii) with non-blocking asynchronous
I/0O, Flexpath data movements may collide with application level communications,
e.g., MPI communications. To alleviate these effects, we can leverage the scheduling
techniques described in [9], but in the experiments shown here, the decrease in I/O

overhead more than compensates for these potential side-effects of asynchronous,

non-blocking I/0.
3.4.2 Subscriptions and Metadata Distribution

The graph shown in Figure 7 shows the time it takes for an idle subscriber to register
itself with an existing data channel. In these experiments, the CNA code sits idle
and waits for an application-level control message from the CSYM code. After this
message is sent, CSYM idles, and CNA activates and joins the Bonds output channel.

The reason we see a linear increase in registration time here is because (i) the CNA
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code is just a serial code that must subscribe to all data from the Bonds application,
and (ii) because Flexpath uses direct connections, which requires the single CNA
process to establish a connection with each Bonds publisher. The time listed here
also includes the time it takes for the subscribers to send their initial data fetch
requests, as outlined in Section 3.3, but these costs are amortized when using the
non-blocking calls the ADIOS read API offers.

The ability to use subscriptions and application level controls to perform such
selective changes in data flow is an important feature when dealing with such large
data volumes. This is because without such functionality, data would be delivered
to subscribers before they need it and in addition, when they no longer need it.
Considering the CSYM /CNA example, without this functionality, when LAMMPS is
generating 610 MB of data, that would require nearly 1.2 GB of data to be transfered
each epoch.

Figure 8 shows the expected costs for collecting publisher metadata and the costs
expected for the subscribers in fetching this metadata from its publisher peer coor-
dinator. This global distribution of the metadata is one feature that allows us to
employ a direct-connect model without using any external metadata services. Since
these costs can potentially be induced after every epoch of data, it is important to
ensure that they are kept low. At 1024 publishers and 8 subscribers, we are spending
less than 15 milliseconds performing these operations. To further reduce these times,
it would be possible to distribute this metadata only when changes occur.

Considering that we use subscriptions to allow subscribers to receive fine-grained
slices of the published data, the overhead involved with distributing this metadata
is much smaller than the overhead of possibly moving large volumes of redundant or

unneeded data.

31



CMNA Connection Establishment Time
1.6

CNA Connection time —+——

Time (5)

O 1 1 1 1

12 4 8 15 32
Mo, Bonds Processes

Figure 7: The time needed for 1 CNA process to join the Bonds channel.

3.4.3 Application Level Throughput

Figure 9 shows the aggregate data exchange throughput for the Flexpath system at
increasing numbers of publishers and subscribers. For these experiments, we have
run a two stage pipeline between LAMMPS and Lammps Helper. We conduct these
experiments both on Sith and across the two Georgia Tech hosted clusters. The
graphs show that in both setups, due to Flexpath’s direct-connect model, we are able
to achieve linear scalability as we increase the number of publishers and subscribers.
This end-to-end scalability is achieved because of two key design points: (i) using
subscriptions, subscribers are presented with only the slices data they request, and
(ii) the use of direct connections between publishers and subscribers avoids extra data

movements induced from first moving data to external brokers. Our measurements
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for application level throughput include the round-trip times between a subscriber’s
fetch request to a publisher, the data transfer time, unmarshalling costs, handler

invokations, and copying the data into the user provided buffers.

33



Application Level Throughput
4.5 T T

Throughput (Gbs) —— |
4 - //_

25 / 4

15 F pd i

L |
05 E | |
128-1  256-2 512-4 1024-8

Core Arrangements

(a) SITH

Throughput (Gbs)

Application Level Throughput Across GT Clusters
2.4

T
Th i
roughput (Gbs) -
2.2 T

1.8 - s .

1.4 - -

Throughput (Gbs)
=t
o
I
AN
|

12 - .

0.8 | 4

06 | |
12-1 24-2 36-3 48-4

Core Arrangements

(b) GT

Figure 9: Application Level Throughput on Sith and across Georgia Tech clusters.

34



CHAPTER IV

SODA: SCIENCE-DRIVEN ORCHESTRATION OF DATA
ANALYTICS

4.1 SODA Overview

SODA (Fig. 10). represents the next level of abstraction for in situ workflow man-
agement, building off results of Flexpath. SODA permits developers to embed an-
alytics tasks into a componentized, dynamically managed execution and messaging
framework, called a workstation. Such workstations have well defined inputs and
outputs [45], can be parallel (MPI or threads), and may exhibit inter-workstation de-
pendencies. Entire I/O pipelines can be constructed by chaining workstations along
their I/O paths.

SODA offers controlled resource usage, per-component orchestration, and metric-
driven operation. Controlled resource usage means workstations provide and manage
resources for the component mapped to it. Per-component orchestration means that
a workstation can offer customized orchestration operations ensuring a component’s
local properties are not violated. Finally, metric-driven operation means that worksta-
tions are continually monitored to provide the runtime with the necessary information
needed to enforce user or application specific metrics.

SODA also provides fault-resilient management through transactional techniques
that guarantee control and orchestration actions taken by SODA do not place com-
ponents into inconsistent states [46]. For example, SODA can prevent resource use
until a different workstation has fully relinquished the resource. Such requirements
become important as I/O pipelines scale geographically [13] as network partitions or

data center outages can render parts of the pipeline inoperable.
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SODA benefits code usability by allowing code developers to focus on functionality
and algorithmic correctness and aleviates the need for the scientists who later use the

code from the expensive tuning process and profiling runs.
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Figure 10: High-level view of the SODA framework.

SODA, with its well-defined component interfaces and programmatic orchestration
API, exposes primitives for codifying SLAs by specifying appropriate actions to take
when certain conditions are detected. Each workstation performs condition detection
at runtime and events of interest are delivered to the orchestration hierarchy via a
continuous online monitoring middleware.

Using two high end applications, the LAMMPS [53] molecular dynamics and the
GTS [2] fusion simulations, along with different sets of analytics pipelines (Smart-
Pointer [61] and a wave-space analysis code, respectively), we evaluate SODA with

SLAs that include: (1) bottleneck reduction - a global performance-driven SLA that
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implements “elastic workstations” to remediate detected 1/O pipeline bottlenecks;
(2) data reactive - a workstation-level data-centric policy that changes component
behavior based on data feature detection; and (3) fault recovery - a set of policies to
handle an unexpected component departure such as analysis codes on an end-user
device (e.g, a laptop). Experimental evaluations show that active, SODA-based man-
agement can: (1) respond to runtime dynamics at different stack levels; (2) create
and enforce SLAs at multiple granularities in an I/O pipeline; and (3) operate at
large scales with low overheads.

SODA constitutes new functionality in the scientific data management domain.
Current 1/0 staging technologies do not offer support for dynamically managing
end-to-end properties of tightly coupled analytics running with high end codes. For
instance, earlier data staging work runs statically profiled analysis routines in config-
urations sized for worst case data volumes and processing needs [66]. Similarly, our
recent supercomputer simluation “in-situ” analytics work [67] schedules and manages
only the analytics actions taking place on individual compute nodes without concern
for the /O pipeline end-to-end properties affected by such nodes.

SODA, building off of Flexpath, is designed for ‘in transit” workflows and is mostly
concerned with coarse-grained orchestration operations where end-user goals can be
met by re-allocating staging resources. However, the SODA framework provides a
hierarchical management model and implementation which serves as a solid basis for

CoApp’s goals.

4.2 SODA Framework

SODA is a set of run-time abstractions for dynamically orchestrating science applica-
tions and their associated analytics executables. Analytics executables are encapsu-
lated in workstations that are connected along their I/O paths to form an I/0 pipeline.

Orchestration is conducted through an orchestration hierarchy and is guided by a
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flexible event-driven monitoring and control infrastructure. Fig. 10 depicts SODA’s

conceptual model.
4.2.1 Assumptions and Desired Properties

Given the assumptions outlined in Chapter 1 and the set of challenges and application
characteristics outlined above, SODA based pipeline orchestration must meet four
design goals. Given the large variety analytics code characteristics and the dynamics
they experience at runtime, it is impractical for a single entity to understand all
analytics in some composed 1/O pipelines. Therefore: (1) orchestration routines and
policies should be customizable on a per-workstation basis.

To make decisions at run-time, orchestration functions require information about
when and what actions should be performed. Gathering this data requires continu-
ously monitoring pipeline components for their progress, behavior, and the physical
resources they use. Using this information, orchestration actions can be invoked in
a timely manner. Therefore: (2) orchestration is guided by user-determined metrics
driving per-workstation and cross-workstation (i.e., global) orchestration policies.

Ideally, analytics pipeline components should be decoupled along the time and
space dimensions allowing correct operation depending only on necessary data avail-
ability (i.e., from disk or via the network). With well-defined input and output inter-
faces, analytics actions can be allowed to run independently as separate applications
(i.e., components), and enter and leave the pipeline as needed. This enables using
entirely different, dynamically swappable analytics codes without requiring them to
be integrated into a single executable. Therefore: (3) analytics codes should operate
i a componentized fashion.

Orchestration on one component can jeopardize the execution of other compo-

nents. For instance, consider trading resources between two analytics components
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when recovering from some detected bottleneck. A failure can occur if one compo-
nent, using incorrect resource state data, attempts to use a resource that has not
been fully relinquished by another component. Therefore: (4) orchestration opera-
tions must be reliable and be resilient to failure.

By meeting these design goals, SODA can be used to realize (1) customized per-
component and global management policies; (2) enabled by online monitoring of
the varied metrics of relevance to different policies; (3) componentized operation
consisting of swappable codes; and (4) made resilient to failure via transactional

control methods.

4.2.2 Conceptual Model
4.2.2.1 Workstations

A workstation, depicted in Fig. 11 allows analytics tasks to be embedded into a
dynamically managed messaging and execution framework. Indeed, it could be con-
sidered as a high-performance implementation of an application service within a Linux
Container. The workstation’s /O interfaces are similar in concept to those used in
modern Service Oriented Architectures (SOA). The workstation is comprised of a set
of active replicas and a workstation orchestrator overseeing its execution.

Active Replicas. Unlike the replication techniques used in fault tolerant sys-
tems where replicas have identical internal states[31], active replicas in workstations
are key to obtaining scalability: with traditional replication, each replica performs
redundant computations on the same data items whereas active replicas perform their
computations on different epochs of data assigned to them. For the use-case discussed
in Section 4.4.1, data is assigned to active replicas in a round-robin fashion, but addi-
tional communication patterns can be supported. Using active replicas, a workstation
orchestrator can increase its degree of parallelism by spawning a new replica. While
this is similar to how Map-Reduce jobs scale, note that an individual data epoch may

only be able to be processed by a fixed process count and that scalability comes from
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overlapping processing of different epochs.

Workstation Orchestrator. The workstation orchestrator provides several
functions. First, it collects and organizes relevant monitoring data from its active
replicas and delivers this information to a higher-level orchestrator. Second, it pro-
vides metadata services for its replicas and contains end-point information for replicas
in neighboring workstations. Third, it contains potentially custom management prim-
itive implementations, described next, which allow them to respond to management

requests from higher-level orchestrators.
4.2.2.2  Orchestration Constructs

Hierarchical orchestration affords three primary benefits. First, such hierarchies can
be scaled with ease [59]. Second, distinct per-workstation orchestrators can offer cus-
tomized management routines and separate their local, per-component management
states from global state about entire 1/O pipelines. Third, the hierarchy helps de-
fine authority. A global orchestrator is responsible for operations that re-organize
entire pipelines. Workstation orchestrators are responsible for operations affecting
only their components and resources and respond to management invocations from
higher-level (global) orchestrators.

The following core management primitives enable constructing higher-level poli-

cies and operations:

e Increase Workstation: allocate more resources to a workstation with the goal

of increasing scalability.

e Decrease Workstation: deallocate resources to a workstation that may be

relatively over-provisioned.

e Offline Workstation: remove all resources from a workstation and redirect
dataflow from upstream to disk because it is no longer feasible to run a work-

station online due to network partition or insufficient resources.
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While the per-workstation orchestrator actions listed above are invoked by a global
orchestrator, the concrete steps needed to execute these actions within a workstation

“increase”,

can be customized on a per-workstation basis. For example, when told to
a code that cannot operate on data epochs out of order could “increase” by Kkilling

its existing active replicas and spawning with a greater process count.

Mgmt
SLA _ — 3| Workstation |, =~ Policy
Orchestrator
Monitoring
and
Control
Messages

Data Flow

Compute Nodes

Figure 11: Workstation abstraction.

4.3 Implementation
4.3.1 Workstation
4.8.1.1 Active Replicas

The implementation of SODA workstations leverages the widely used ADIOS read
and write interfaces [45]. Using these interfaces, analytics codes can specify their
data requirements and establish communication via a virtual file name serving as
a named communication channel. To accommodate orchestration at runtime, the
Flexpath [22] ADIOS transport, which allows for online analytics routines to exchange
data, has been extended to accept and process management messages and state-

change notifications from the replicas’ designated orchestrator. We also modify the
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ADIOS interface to expose a communicator analytics applications can use to interact
directly with the workstation orchestrator.

Flexpath publishers (ADIOS writers) maintain a queue for each neighboring Flex-
path reader replica in a downstream workstation to hold data epochs. Writers then
assign data to these queues in a fashion determined by the reader workstation. The
current implementation supports round-robin assignment including the case where
one replica consumes all of the work for an existing replica. This is explained in more
detail in Chapter 4.4. Orchestration operations can also lead to internal load balanc-
ing actions to offload work from overly filled queues. Conversely, with a “decrease”

operation, it can re-assign existing work to the remaining replicas.
4.8.1.2  Orchestrators

Orchestrators are written to be run as stand-alone executables. Users can create
custom orchestrators and specify SLAs using a programmatic API described in Sec-
tion 4.3.2. When global orchestrators detect conditions of interest, they invoke com-
mands on workstation orchestrators and then distribute any important state changes
to subsequent workstation orchestrators that require knowledge of such state changes.
Workstation orchestrators are responsible for implementing the commands invoked
on them by global orchestrators and for performing internal actions on the resources

and replicas they manage.
4.3.2 Orchestration Interface

The basic primitives listed in Section 4.2.2.2 are exposed as a C interface. Developers
use this interface to create custom orchestrators if needed. SODA ships with some
default implementations to automate elasiticity and recovery from a failed replica.
To meet an SLA at a global orchestrator, the orchestrator can receive monitoring
information as events and carry out chained primitives to perform actions like resource

trading. When invoked, an orchestration primitive triggers a set of transactional
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protocols that indicate a participant’s progress and distribute any state changes.

In our current implementation on the Titan machine at Oak Ridge National Labs,
launching replicas is conducted as follows: the workstation orchestrator constructs an
aprun command as a text string writing this command to a file. The PBS job script
(a feature of the PBS job scheduler), regularly scans each workstation orchestrator’s
file for commands. When one is present, it reads and executes it. This implementa-
tion is due to the constraint that only the root node of the job, which executes the
PBS script, can launch MPI-enabled applications on the compute nodes. While this
illustration and the use case presented in Sec. 4.4.1 focus on output queue build up,
management could also be triggered by other factors such as memory consumption

or CPU utilization.
4.3.3 SODA Information Bus

Monitoring, control, and state change messages are delivered via the SODA Informa-

tion Bus, or SIB, implemented using the EVPath [28] event-driven messaging library.

Application/Analytics
ADIOS
SODA Info. Bus Flexpath
EVPath
1B Tep || Shared | Gemini
Mem

Figure 12: SODA software architecture.
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Orchestrators and replicas are connected via the SIB’s overlay graph where work-
station orchestrators serve two roles: (1) aggregation points for monitoring informa-
tion, execution metadata, and runtime state information before delivery to the global
orchestrator; and (2) as orchestration operation entry points into a workstation and
the delivery point for state change notifications (i.e., state that determines from who
replicas read data) from neighboring workstations.

Global orchestrators serve as the root of the SIB and accept and organize messages
from all other orchestrators. To ensure strong runtime state information consistency,
the current implementation passes all messages relating to state changes through the
root.

In the case of parallel replicas (i.e., MPI based analytics codes), rank 0 is desig-
nated as the message recipient from the workstation orchestrator. It then uses MPI
to disperse the messages to the remaining ranks. This takes advantage of MPI’s op-
timizations and reduces the number of connections a workstation orchestrator has to

maintain.
4.3.4 Fault Detection and Recovery

The current implementation detects faults in two ways. The first uses application-
level progress indicators delivered via periodic heartbeat messages from an application
replica to its workstation-level orchestrator. The second allows the orchestrator to
receive a notification from the kernel when the connection between an orchestrator and
a replica has been broken. Method 1 does not rely on a specific messaging technology
(e.g., sockets) and can work for a variety of underlying network interconnects with
the disadvantage that the orchestrator must propagate failure notifications through
the SIB to interested parties. Method 2 allows for any component interacting with
it (orchestrators or other replicas in the pipeline) to receive the notification without

waiting for failure alerts to propagate through the SIB. Both methods are explored

44



in our current investigation because they are familiar to end-users and have well-
understood characteristics. Future work will explore more robust fault detection [52,
17] and diagnostic [59] mechanisms.

The specifics of how to recover from a component fault is left to the user via API
calls in the associated orchestrator. For example, issuing an “offline_workstation”
operation or spawning a new replica on spare resources (an “increase_workstation”
operation). The SODA framework does provide some fixed options configured at
registration time specifying whether components can deal with data loss. For a visu-
alization component operating in a “streaming” fashion, it might be able to tolerate a
few missed frames. For these, we can redirect the data to other replicas that have not
failed or discard the data if none are available. For codes where missing output epochs
could render scientific results invalid, such as stateful codes, we allow for upstream
data publishers to buffer the data, either in memory or by leveraging on-node storage

(SSDs) via EVPath “storage stone” facilities, until the failed replica has recovered.

4.4 FExperimental Evaluation

Experimental evaluations are conducted using two machines: (i) the Titan super-
computer hosted at Oak Ridge National Labs and (ii) the Maquis cluster hosted at
Georgia Tech. Titan consists of 18,688 compute nodes each containing 16 cores and
32Gb memory for a total of 299,008 cores and a peek performance of over 20 petaflops.
The Maquis cluster is a 16 node Infiniband cluster with each node having two Intel
Xeon quad core processors and 8GB of RAM.

The LAMMPS molecular dynamics simulation and the SmartPointer analysis
toolkit serve as our application drivers for Titan. We construct two policies to demon-
strate the benefit of the SODA approach and to assess the active management over-

heads. We run the GT'S fusion simulation on Maquis and execute the spectral analysis
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(FFT) code on a machine at a remote location thereby allowing us to test the sys-
tem’s behavior when the pipeline is geographically distributed. We cannot conduct
geographic experiments on Titan as its security policies and firewall settings prevent

this.

4.4.1 Application Drivers
4.4.1.1 LAMMPS and SmartPointer
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Figure 13: 1/O Pipeline for LAMMPS with SODA

Figure 13 depicts the 1/O pipeline constructed for the LAMMPS (Large Scale
Atomic/Molecular Massively Parallel Simulator) [53] science application using the
SmartPointer analysis and visualization toolkit, both of which were discussed in Chap-

ters 2.1.1 and 2.1.1.1 respectively.
4.4.1.2 GTS and FFT Analysis Code

As an alternative application example, to demonstrate the more general utility of
SODA, we also evaluate our framework with GTS [2], a plasma fusion simulation
with an implementation that exploits coarse grained process level parallelism using
MPI and more fine-grained thread-level parallelism using OpenMP. This “particle in
cell” code has different output frequencies for both particles and mesh-level statis-

tics. To examine the dynamics involved, in particular dangerous transient effects that
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might damage a real reactor vessel, it is useful to dynamically evaluate and character-
ize particular trends on the inner and outer plasma edges. Unlike the LAMMPS case,
these transients are not as algorithmically identifiable. Secondary analysis methods
are used to infer their existence and then much more detailed inspection involving
direct interaction with the physicists is used to further the investigation. The GTS
analytics pipeline is a spectral code based on the AMD Core Math Libraries imple-

mentation of FFT that ingests the phi and Z-ion output arrays from the simulation.
4.4.2 Management Policies

For LAMMPS and its SmartPointer pipeline, we have constructed two policies:

Quality of Service (Global): the Bonds and CNA codes are slow components com-
pared to the LAMMPS simulation with CNA being the most expensive. Bonds exe-
cutes on every output epoch whereas CNA executes only when CSYM reports a crack.
Depending on the output frequency or how soon a crack is detected, these codes can
become bottlenecks in the pipeline. We create a policy that monitors queue lengths
such that if the global orchestrator detects a growing queue length reaching a size
threshold on some output workstation, we perform an “increase” operation spawn-
ing additional replicas for the slow component. In this pipeline, it is either Bonds
or CNA. This represents a global policy seeking to balance pipeline components to
ensure healthy end-to-end throughput. It also allows for the pipeline to run without
needing to carefully provision both Bonds and CNA codes; the system can handle
the provisioning when needed. While this illustration uses queue lengths, orchestra-
tion could also be triggered by other factors such as memory consumption or CPU
utilization.

Data-centric (Local): requires application introspection into the data based on the
CSYM and CNA components. In contrast to the first policy, the analysis functions

report the metric of interest (CSYM detects a crack) and the orchestration actions
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(kill CSYM and run CNA) are triggered by the workstation-level orchestrator. This
policy ensures data quality via correct execution of pipeline analysis functions.

For the GTS and FFT example, the analysis running on an end user’s machine
is connected with the simulation code over a wide area network. We evaluate work-
station output latency when faced with an unexpected component departure, e.g.,
when an end user terminates analysis. Three recovery polices are tested. Each in-
volves failure detection on the remote machine and spawning a recovery replica on the
cluster running the simulation. If components need a data guarantee, they can pay
the costs for it. Less critical codes can avoid these extra costs by tolerating missing
output epochs. The first policy allows for data loss while the second avoids it. In
these two cases, the recovery replica is launched in response to a failure notification.
The third policy takes advantage of over-provisioning by the workstation spawning an
additional FFT replica on the compute cluster that remains idle until its orchestrator

detects a failure.
4.4.3 Quality of Data Policy and Microbenchmarks

SODA-orchestrated I/0 is beneficial, but it also imposes additional overheads on I/O
pipelines. The following measurements assess the protocol overheads and compare
costs at different scales for operations invoked at different orchestration hierarchy
levels. The measurements shown elide the base constant cost of process instantiation
(e.g., for a workstation increase), as that cost is specific to the underlying machine’s
job scheduler rather than the implementation and protocols specific to SODA. On
the Titan machine, we have seen highly variable launch times, sometimes higher than
30 seconds.

Orchestration costs are governed both by the inherent properties of the man-
agement methods chosen and their underlying protocols and by the scales of inter-

acting workstations. The latter is due in part to the “direct connect” nature of
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Helper Size 2x16 4x32 8x64

Orchestrators 0.12s 0.126s 0.111s
Helper 0.039s 0.089s 0.158s
Csym/CNA 0.024s 0.031s 0.027s

Table 4: Increase Command Protocol Overhead

Bonds Size 1x256 2x256 3x256
Orchestrators 0.051s 0.074s 0.063s
Bonds 0.026s 0.05s 0.072s

Table 5: Data-Centric Command Protocol Overhead

the Flexpath transport used in the implementation of SODA: Flexpath obtains high
cross-workstation throughput by directly connecting the parallel entities of a previous
workstation to the parallel entities of a subsequent one. This also means, however,
that the cost of distributing certain state changes (e.g., workstation increase) is af-
fected by the size of the neighboring workstations as each of their parallel entities
must be notified about this state change.

Table 4 shows the modest protocol overheads for an increase operation on the
Bonds workstation. The row titled “Helper” represents the time it takes for the
Helper workstation to distribute the Bonds state change. This includes the time
it takes for the workstation orchestrator to send the state change to each replica
(rank 0), and the time it takes for rank 0 to broadcast this change to the other
ranks. The row titled “Orchestrators” is the total time spent for all messages between
the global and workstation orchestrators to trigger the operation, and to distribute
the state changes. As expected, use of an orchestration hierarchy allows for good
scalability, demonstrated by the fact that for measurement, we are increasing the
number of Lammps Helper processes by a factor of 4, but only see a growth of 2z in
terms of protocol cost. Since these management actions do not affect the number of
orchestrators, the communication between global and workstation-level is not affected

by scale.
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Table 5 shows the cost of the protocol used to enforce the workstation-level data-
centric policy, i.e., switch off CSYM and activate CNA. This represents a control
loop triggered by the workstation orchestrator (when CSYM detects a crack in the
modeled material) that results in a change in the data flow (Helper redirects its output
data to the CNA component). We see scalability traits similar to that of the increase
operation; the reason this command takes much less time to execute is because CNA

is a single replica serial component, so the size of the state message is much smaller.
4.4.4 Throughput Measurements: QoS Policy

This set of measurements demonstrates the utility of a representative performance-
based management policy. We compare the throughput of the SODA-orchestrated
/O pipeline against that of an unmanaged pipeline, where throughput is represented
as a time series in 30 second increments along the x axis, and the y axis represents
the count of output epochs emitted by the code during that 30 second interval.

Fig. 14 shows the baseline, unmanaged execution, for a LAMMPS simulation
running on 8192 cores and a pipeline comprised of 64 Lammps Helper cores, 256
Bonds cores, and 1 CSYM core. The graph shows that as the output queue for
Lammps Helper fills up, LAMMPS’ throughput drops significantly. This is because
it has to block on its output actions that must wait on queue space to free up.
LAMMPS’ throughput converges to that of Bonds, the slow component, effectively
dropping end-to-end throughput to a third of the ideal target.

Fig. 15 depicts the throughput improvements for a set of QoS-orchestrated runs
that demonstrate the SODA runtime’s ability to provide elasticity at scale. Exper-
iments are run at three scales, with the process counts displayed in Table 6. For
each experiment, the slow workstation is detected and increased by a replica with
the number of processes equal to the size of the initial replica. For these runs, the

crack in the material did not materialize until the end of the run, so that the main
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Figure 14: Throughput degradation for unmanaged pipeline.
LAMMPS Helper Bonds CSYM
Fig 15(a) 8192 64 256 to 768 1
Fig 15(b) 4096 32 128 to 384 1
Fig 15(c) 2048 16 64 to 192 1

Table 6: Core Counts for Throughput Experiments

component needing an increase was the Bonds code. Fig. 15(a) shows the through-
put improvements for running with 8192 Lammps cores. The vertical lines represent
when Bonds is increased. For this run, we see that after the first increase (two Bonds
replicas total), we see an improvement in Bonds throughput. However, an additional
increase is needed for Bonds to match the throughput of the LAMMPS simulation.
After this second increase (3 Bonds replicas, 768 cores total), we see that Bonds can
achieve a higher throughput than the LAMMPS application, as it now has sufficient
resources to start to drain the data that has built up in the queue.

Figure 15(b) shows a similar result, where after three increases, Bonds maintains
a slightly higher throughput than the LAMMPS simulation. However, speedup is

insufficient to fully drain the queue in Lammps Helper, so the Bonds code executes
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somewhat longer. We see a similar phenomenon in Fig. 15(c), where the global or-
chestrator does not increase the Bonds workstation by an additional replica because
the stated policy is to trigger an increase only when two conditions are met: (1) a
maximum queue length of 10 in one of the Helper output queues, and (2) a growing
maximum queue length for 3 consecutive measurements. For the latter two runs,
condition (2) did not trigger. This example illustrates the utility of explicit policy
specification. An alternative policy omitting the second condition would have trig-
gered the additional Bonds increase. An energy-conscious policy might prefer a slight
extension in execution time over the additional energy consumed by using additional
nodes.

Fig. 16 displays the changing queue length, the metric on which we base through-
put management, for an experiment with the same setup as in Fig. 15(a). This
represents the maximum queue length in the Lammps Helper workstation’s output
queue for the Bonds workstation. Here, the x axis represents the output epoch, and
the y axis represents the max queue count when that output epoch is inserted into
a queue. As is evident, the stated management policy is having the desired effect on

its metric of interest.
4.4.5 Fault Recovery Policy

The experimental results reported next have two purposes. First, we want to under-
stand how SODA’s fault recovery operations for an unexpected component departure
affect the applications relying on them. To quantify this, we look at workstation
latency, which measures the time it takes for a workstation to emit an epoch of data.
Second, we want to demonstrate the flexibility the SODA constructs offer to develop-
ers for choosing which tradeoffs make sense for their executions. For all three cases,
we use a heartbeat to detect a component’s departure, where heartbeats are config-

ured to run in 10 second intervals, and a component is considered failed after missing
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three consecutive heartbeats.

Fig. 17 displays the changes in workstation latency for three different fault-recovery
mechanisms. The z-axis represents the epoch number for a workstation, and the y-
axis represents the length of time between a step and the previous step. The first
time step for each has a high latency, since we use the application start time as the
base.

The first graph, Fig. 17(a), shows the workstation latency when recovering from
a fault, but allowing for data loss, which is represented by the discontinuity for the
FFT line. This has the lowest latency across all three because the previous (in other
words, the older) time steps are simply dropped. Allowing for dropped epochs of data
becomes more even more beneficial with configurations where it is infeasible, in terms
of memory requirements, to buffer multiple timesteps of data.

The second and third graphs show the changes in latency when avoiding data
loss. As expected, we see a higher latency than when allowing for data loss as the
older timesteps stay in the queue. The third graph has a lower latency during the
failure and recovery phases, because the over-provisioning of the codes allowed the
FFT replicas to register with the the orchestrators and get the necessary metadata
to join the stream at the start of the pipeline execution. This process accounts for
the roughly 6 seconds difference between the third and fourth graphs.

In all three measurements, the dominating factors concerning latency are the
heartbeat intervals, the number of missed heartbeats used to detect a failure, and the
GTS application’s own I1/O cycle. For the latter, this is a result of the Flexpath pub-
lisher component checking for notifications from the workstation orchestrator when
calls are made into the ADIOS interface. As the graph shows for the GTS latency,
I/O epochs occur about every 8 seconds. Lower latency could be obtained by using

shorter heartbeat intervals.
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4.4.6 Discussion

SODA-orchestrated 1/O pipelines provide elasticity at scale, data-centric manage-
ment opportunities, and configurable fault recovery options for the online analytics
pipelines constructed for high end simulations. Through active replication, elastic
workstations can automatically adjust their data processing throughput to match
application output rates and the behavior of other workstations with which they
have been composed. Performance-driven policies like those pertaining to through-
put can be replaced with alternative policies concerned with end-to-end latency, caps
on energy use, or others, without affecting the implementations of individual analy-
sis components. By exposing SODA controls to applications, orchestrators’ actions
can be based on the receipt of application-specific events, thus enabling a variety of
application-specific SLAs and management policies. By taking advantage of a de-
coupled pub/sub data movement substrate with internal buffering capabilities, we
can provide flexible recovery options to applications so they can handle faults like
unexpected replica departures.

The performance results shown above demonstrate the superiority of managed vs.
unmanaged I/0O, guided by simple policies realized with low cost management struc-
tures. While able to scale to the high end machines currently available to our research,
the current management policies implemented for SODA assume each workstation
running on its own dedicated resources, separate from those used by the application.
Management actions that involve scheduling or resource sharing [67] remain part of

our future work.

4.5 Conclusions

The SODA framework presented in this chapter permits users to embed their scien-
tific data analytics tasks into a dynamically managed execution environment that (1)

continually monitors analytics components for metrics of interest, (2) allows users to

o4



specify management policies and enforcement operations at different granularities of
the pipeline, (3) provides elasticity at scale for their analytics tasks, and (4) does so
efficiently with low management overheads. The utility of SODA is demonstrated
with three policies associated with 1/O pipelines consisting of realistic science appli-
cations and analytics pipelines: (1) a global “quality of service” policy permits an
/O pipeline to recover from a poor initial resource allocation; (2) a “quality of data”
policy operating at workstation-level allows for new analytics tasks to be injected
into the pipeline to respond to the richness of features discovered in the data; and (3)
fault recovery policies handle an unexpected component departure in a geographically

distributed pipeline.
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CHAPTER V

COAPPS: MIDDLEWARE FOR IN SITU ANALYTICS

5.1 CoApps Overview

CoApps is a demonstration of a full-featured, orchestrated, in situ workflow. By using
CoApps, users can run their workflow components in all styles of in situ without need-
ing to change their code to use different middleware or run times targeted for specific
in situ definitions. Building off the dynamic nature of the previous work, CoApps
can use position independence to perform resource sharing and node consolidation to
better meet user driven goals.

CoApps derives from, and shares concepts with, the more familiar programming
construct of co-routines. Like co-routines, CoApps are capable of holding state across
invocations and they enable fine-grained control over their execution, meaning you can
yield and resume them as needed without corrupting their internal state or correctness
of results. CoApps are also capable of invoking other CoApps (like recursive workflow
models) and returning results to the parent process. These features do not preclude
CoApps from sharing the address space with the parent process and operating as
more traditional co-routines, or even as standard in-line functions.

In contrast to co-routines, the CoApps abstraction is designed to let analysis com-
ponents operate in a completely separate process space from the parent application
allowing for concurrency. By giving analysis components some degree of indepen-
dence, we can also manage them separately from the parent application. For exam-
ple, we can independently scale them or even implement them to use hardware or
run times the core simulation is not equipped to use, such as using the GPU in a

CPU-optimized environment or visa-versa.
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At an abstract view, CoApps have some resemblance to the functionality Linux
Containers (LXC) [30, 4], and their native management frameworks like Docker[11],
offer. One critical distinction is that we seek to do everything in user space instead of
relying on virtualization technologies. There are several important reasons we do this.
First, such virtualization technology is not readily available on a large number of HPC
leadership machines, like Titan at Oak Ridge National lab. Second, by doing it all in
user space, we can give applications and end users direct control over their resources to
give them great flexibility in how they manage them. A primary goal of virtualization
technologies is to provide a guarantee of isolation as physical resources are shared
across users, while the goal of CoApps is to provide for position independence and
collocation of analysis workflow components. In fact, there is nothing preventing
CoApps from being embedded and deployed using virtualization technologies; CoApps
would provide the application connectivity and SLA management and virtualization

technologies could enable cross-user node sharing and isolation properties.
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Figure 18: High-level view of the CoApps Run Time.

Figure 18 depicts the conceptual view of CoApps implemented within the SODA
orchestration framework. CoApps generalizes the active replica concept from SODA

by taking into consideration collocation opportunities when making orchestration
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decisions. To enable this, we had to make several modifications to the initial SODA

model, both in the assumptions made and the software artifacts.

5.2 CoApps Design and Implementation

A key assumption made in the initial SODA model was that nodes were relatively
small and homogeneous, and resources would be allocated at whole node granularities.
As we move towards exascale, researchers are testing platforms with a fewer number
of relatively large nodes [1, 5|, containing a variety of hardware, making the one-
application per node model sub-optimal. CoApps enables workflows to operate in this
newer environment by enhancing the SODA model to enable collocation of workflow
components. To do this, the SODA framework had to be extended in three concrete
ways. First we needed communication mechanisms to enable position independence
so workflow components can operate in all definitions of in situ and have to provide
strategies to avoid communication interference that arises during collocation. Second,
we need better launching mechanisms than the coarse-grained batch schedulers found
on current generation supercomputers. Finally, we need orchestration and monitoring
constructs to discover and take advantage of collocation opportunities. In particular,
we need to monitor platform utilization to identify spare resources. The first two

extensions are discussed in Chapter 5.2.1 and the third in Chapter 5.2.2.
5.2.1 Communication Mechanisms and Launching

To achieve position independence, CoApps had to make several modifications to the
SODA /Flexpath framework in regards to communication, both within a workflow
component (i.e., MPI style communication) and across them.

Typically, supercomputer users rely on mechanisms such as “aprun” or “mpirun”
to launch their codes, but many supercomputers have strict limitations such that only
one application’s ranks/processes can be executing on a node. It is crucial to our for-

mulation of the CoApp model that we be able consolidate multiple applications on a
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Figure 19: MPI Relay communication with processes launched with fork/exec

node. To get around these restrictions, we rely on standard fork/exec when launching
codes for node-sharing, but we lose the forked application’s ability to use a standard
MPI communicator. When collocating codes on the same physical node, there are
issues of added network traffic which may cause contention leading to severe perfor-
mance penalties for the main simulation[9]. To address both the launch and network
contention issues, we created MPIRelay, depicted in figure 19, which “intercepts” an
application’s MPI call (the MPIRelay client) and relays it to the parent application
owning a fully functioning MPI communicator (the MPIRelay server), which then
performs the MPI operation on behalf of the child process.

MPIRelay provides two modes of operation based on the multithreaded options

MPT implementations offer. In the fully threaded mode (MPI.THREAD_MULTIPLE),
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MPI allows for any thread to make calls on an MPI communicator, and if using
one of those implementations, MPIRelay _server will create a separate thread to pro-
cess the MPIRelay client’s requests. For MPI implementations that do not support
multithreading, we queue the requests from the client, and provide a function, pro-
cess_mpi_requests, that the user can periodically call that will process the requests on
the queue.

The lowest MPI rank on each node operates as the MPIRelay_server and registers
itself with their Workstation Orchestration from which it receives command messages
specifying the application to fork/exec and its arguments. The server then spawns
the child process sending to it the child’s “MPI rank”, the world size of the child
application, and the server’s communication end point. The child processes then call
MPIRelay _init with these arguments, receive an MPIRelay communicator, and then
proceed as normal.

To address communication interference, we use application-level hints, delivered
via the ADIOS interface. Using hints, the higher-priority application can indicate
when it is entering or leaving a communication-heavy phase. Upon entering, a flag is
set and all communication from the child process is delayed until the flag is set back to
off. When the flag is turned off, the client’s MPI communications are then processed.
The current implementation allows the child process’s MPI communication to finish
before subsequent communication is halted, so there will be some overlap, but our
results show substantial improvement over the unmitigated case.

MPIRelay is implemented using the EVPath messaging system and exports a
similar interface to that of MPI (i.e., instead of MPI Bcast, it is MPIRelay _Bcast).
The current implementation supports blocking calls and some non-blocking calls
(MPI_Isend and MPI_ Irecv). Future work will put a standard MPI interface on top

of MPIRelay so applications will not have to make any code changes.

63



5.2.2 Monitoring and Control

The CoApps model is more robust than the initial SODA model for two reasons. First,
it can enable collocation of workflow components. Second, it can enable per-node op-
timizations that SODA previously couldn’t, such as communication interference, or
even integrating with other interference management run times such as [67, 33]. To
allow for our run time orchestration hierarchy to make decisions about collocation,
we had to modify the SODA information bus to monitor and collect node-level in-
formation. In the current implementation, we use PAPI based monitoring for CUDA
enabled GPUs and rely on polling the proc filesytem for CPU usage information.

The information bus collects this information at the end of every simulation out-
put phase, within the ADIOS interface, and delivers it to the orchestration hierarchy,
which keeps a history as well as the completion time for that epoch. Tracking com-
pletion time is important as from it, we can track progress and we can determine if
our orchestration decision, i.e., deciding to collocate two components, is a bad one as
it will cause the epoch completion time to increase.

This information is exposed to orchestrators through the SODA programmatic
API and using this information, and the orchestration commands, users can create
rules that check for conditions and then issue actions when these rules are met.
One example that we demonstrate in Chapter 5.3 is that after collocation, we notice
that the epoch completion time for the simulation starts to increase past a user
defined threshold of 10%. The run time then chooses a different collocation strategy
by collocating two analysis components together on a node separate from the core
simulation.

While the current implementation extended the ADIOS API to include markers
to indicate when applications are using the network, we also expect that hints can be
used to indicate a wide variety of special conditions, such as when an application is

entering an adaptive mesh-refinement phase. Enabling such functionality would allow
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the run time to better understand behavior that deviates from the steady state.

5.3 Ezxzperimental Evaluation

The experiments are are evaluated on Oak Ridge National Laboratory’s Titan ma-
chine, described in 4.4 as well as on Falcon, a local Linux cluster at Georgia Tech.
Unlike the earlier experiments on Titan for this thesis, here we use Titan’s NVIDIA
Tesla K20 GPUs when making node consolidation options. Conversely, Falcon is an
80 node infiniband cluster with each node containing 12 cores and 24GB of RAM.

LAMMPS and Superglue are used to demonstrate CoApps ability to reason about
performance and resource utilization and make collocation decisions accordingly.
These experiments are run on Titan at scales ranging from 4096 processes to 16384
processes (one process per core).

For the overhead and interference management experiments, we use I/O kernel
applications to stress the limits of MPIRelay and also to generate large amounts
of interference as the LAMMPS + Superglue experiments do not generate significant
communication interference. These experiments measuring communication overheads
in comparison to standard MPI were conducted on Titan, and the evaluation of MPI
Relay’s interference management was conducted on Falcon in order to show that the

approach is capable of operating on different classes of clusters.
5.3.1 Node Consolidation

LAMMPS and Superglue is used to evaluate CoApps ability to make co-allocation
decisions. In all instances, the workflow is initially deployed with LAMMPS exe-
cuting at 16 processes per node and the workflow components (select, magnitude,
and histogram) are deployed on separate nodes in the staging area at a ratio of 128
Lammps processes to one select and one magnitude process, and 64 Lammps processes
to 1 histogram process. CoApps then monitors, on a per-epoch basis, the resource

utilization and the time the components spend on processing and waiting for data.
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Using the latter two metrics allows us to reason about each component’s progress and
performance.

We use straight-forward orchestration rules to demonstrate the functionality and
utility of the system; if the summation of resource usage between the two components
does not exceed 100%, and if the throughput of the components (measured as epochs
of data processed per minute) are similar within 5%, we attempt to do a consolidation.
The rules used in these experiments also specify a threshold such that if we cause
the simulation to slowdown by more than 5%, we undo the consolidation and try
a different arrangement. While these rules might not work for all use cases, it is
worth pointing out that using the programmatic API, one could create and try many
different rules or even have smarter orchestration policies; the focus of this thesis isn’t
on the policies itself, but rather on the demonstration of management and agility at
scale.

In these experiments, CoApps detects that the compute nodes have free GPU
cycles and that the analysis components spend over 75% of their time waiting for
data, so it decides to run all three components in situ on the compute nodes with
LAMMPS.

Figures 20(a), 21(a), and 22(a) depict the GPU utilization during each epoch
for the compute nodes and the staging nodes. The compute nodes initially have no
GPU utilization as LAMMPS is running on only the CPU, while the staging area is
executing the GPU enabled histogram. In each instance, when we move to the in
situ case, the GPU usage on the compute nodes increases, but it is less than what
it was in the staging area. This is because we have changed the ratio of histogram
processes to Lammps processes; we moved from a ratio of 64:1 to 16:1. The large
spikes in latency and GPU usage immediately following every reorganization happens
each time the Thrust-GPU-enabled histogram makes the first call to the GPU, and

this is repeatable when running these codes without the CoApps middleware.
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Figures 20(b), 21(b), and 22(b) show the component latency, which is a measure
of how long it takes the component to output an epoch of data. For graph clarity, we
only show the latency for Lammps and for the histogram code; select and magnitude
run in less than a second for each epoch of data. In all instances, we see that when
collocating the analysis with the simulation, we generate interference between 10 and
15%, above our threshold of 5%. CoApps detects this slowdown on the simulation
and then moves the analysis codes off of the simulation nodes onto a set of staging
nodes, but keeping the three components collocated on the staging nodes instead of
running on separate nodes. By doing so, we were able to run the same workflow, and
keep the same level of throughput, while decreasing the number of staging nodes by

50%.
5.3.2 MPI Relay Evaluation

MPI Relay is evaluated in two parts. The first part, shown in figures 23, 24, and
25, compares the communication overhead of using MPI Relay and compares it with
native MPI, and the second part (fig. 26 demonstrates the effectiveness of the inter-
ference management strategy.

Since MPI Relay ultimately relies on MPI, it is impossible for Relay to beat native
MPI. The bulk of the additional costs of using MPI Relay are due to the round trip
time of sending data to and from the simulation. In all cases though, the costs of
using MPI Relay grow along with the costs of using MPI. While having additional
overhead is less than ideal, we feel it is acceptable as the analysis components are
often considered optional second class citizens compared to the sacrosanct simulation.
The overheads may be improved with a more robust shared memory transport for
EVPath.

To evaluate MPI Relay’s interference management, we rely on using an I/O kernel

that generates a lot of MPI traffic of mixed message sizes ranging from a few bytes
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to 10MB. We run two instances of this I/O kernel, one serving as the high-priority
application owning a full MPI communicator, and the other using MPI Relay. The
goal of the interference management is to reduce the amount of perturbation on
the high-priority application’s communication. Figure 26 is structured as follows.
Native is how much time collectively the 1/O kernel spent on communicating when
it was running by itself, with nothing running in situ. The bars labeled “Collocated”
show how the communication time increases when we run another application in situ
using MPI Relay, and finally, the bars titled “Interference” depict the communication
time with interference management turned on. In all cases, we are able to reduce the
overheads by over 50%. One reason for the remaining overhead is that we do not have
any way to stop on-going MPI communication, and for transmitting large messages,
this can be costly. Additionally, the traffic within a node may also cause problems as

MPI and MPI Relay will both collide for intra-node communication.
5.3.3 Discussion

The results presented in this chapter demonstrate the utility of CoApps at both on
enterprise class machines and on smaller university scale clusters. The benefits of
CoApps is shown in in two parts: (1) its flexibility to make collocation decisions and
detect and recover from “bad” collocation decisions due to interference or potentially
other issues; and (2) manage communication interference during collocation. While in
these experiments, collocating the analysis with the simulation induced a performance
penalty, CoApps was able to collocate the analysis codes with each other and reduce
the number of staging resources by 50%. To increase the viability for collocation, it
would be possible to integrate other in situ management run times, such as [67, 33,

37, 55, 50] into our system, but we leave this for future work.
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CHAPTER VI

RELATED WORK

6.0.1 Communication Mechanisms and Code Coupling

Scalable pub/sub implementations created outside the HPC domain tend to con-
sider workloads comprised of large numbers of small, potentially unrelated, messages.
BlueDove [43] from IBM is an attribute-based pub/sub implementation for elastic
Cloud-based applications, intending to use the Cassandra data store. Since it deals
with small messages, it is able to benefit from the routing of messages to external dis-
patcher servers that also perform subscription matching before delivering the messages
to the subscribers. Flexpath differs in its focus on structured, potentially complex
and voluminous data events transmitted between publishers and subscribers, with its
consequent use of direct connections between both. This is also the case for [16, 41],
which are pub/sub systems that aim to overcome some of the inefficiencies found with
routing messages and subscriptions through processing overlay networks: publisher
messages are first pushed to content brokers, and subscriber subscriptions are then
routed through the network to find the correct overlay node that has matching data.

In the HPC space, the work presented in [38] outlines a content-based pub/sub
infrastructure layered on top of the Dataspaces [25] substrate. The work allows for
introspection into the data, and subscribers can register to receive sub-samples of the
events based on avg/min/max values computed from the data while it is in-flight.
Flexpath differs by (1) using a direct connect model to avoid the extra data move-
ments involved with publishing data to an external broker, as in the shared-space
abstraction offered by Dataspaces; and (2) offering a subscription model that can go

beyond standard array-slicing and chunking to allow publishers and subscribers to
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produce and consume complex data, including graphs or arrays of complex types;
it also permits codes that may have type-mismatches between publishers and sub-

scribers to exchange data.

6.0.2 Orchestration, Big Data Systems, and Workflow Management

Previous work on datacenter management and for “big data” systems uses techniques
like elasticity and replication to provide scalability and fault tolerance [35, 49, 65, 6],
but do not address directly the end-to-end behaviors and resource restrictions of the
parallel analytics pipelines SODA/CoApps manages. Specifically, with the CoApps
model, we can realize the diverse orchestration semantics needed for such pipelines ex-
pressed with SLAs and drive orchestration actions that implement the limited types of
elasticity permitted by the HPC machine, the degree of reactivity needed for effective
pipeline use, and the desired end-to-end behaviors, such as throughput or latency.

While CoApps may appear like a limited hypervisor, it is not concerned with
node-level partitioning and running multiple entities with performance and security
isolation. SODA workstations are more akin to “resource islands” explored for high
end multicore processors [57]. They differ in the explicit orchestration policies and
actions specification and in enabling custom and application-specific methods for
managing analytics pipelines.

Other HPC-centric work on managing analytics and visualization pipelines [37]
provides adaptation policies at different stack layers (cross-layer adaptation) targeting
an adaptive mesh refinement (AMR) code. It focuses on specific policies at different
layers, to ensure minimal time to solution, whereas our work investigates the mechan-
ics and abstractions of management that would be suitable for analytics pipelines;
the policies discussed in [37] are examples of additional policies suitable for imple-

mentation with the CoApps framework.
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Initial results [24] demonstrate some of the concepts discussed here, but the work
presented in this paper (1) extends upon the model and orchestration constructs, (2)
explores a wider variety of use cases, including an understanding of how state and
metadata are managed (i.e., quality of data and fault recovery), (3) describes how
SLAs are defined and how policies are constructed to enforce them, and (4) extends
the concepts to pipeline that span multiple machines by leveraging the Flexpath [22]
staging solution operating across a variety of interconnects. Our earlier solution was

implemented with the Cray Portals API [15] and only operated on high end machines.
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CHAPTER VII

FUTURE WORK

The CoApps abstraction provides a significant improvement over traditional analytics
methods for large scale science applications. There are still, however, many directions
in which the work in this thesis can be augmented and advanced. In particular,
CoApps requires additional efforts in addressing a wider array of hardware expected
to be found on next generation platforms such as other accelerators, burst buffers,
and NVRam technologies. Additionally widescale adoption of new technologies is
highly dependent on programmability and CoApps should take advantage of newer

programming models [12] and workflow construction languages such as Swift [60].

7.1 Utilizing New Hardware Technologies

Another hot area of research in this space is burst buffer technology. The primary goal
of this technology is to shield applications from the performance losses when writing to
global storage systems. Instead, data is captured on node-local storage devices before
eventually making its way to global storage. Following on this, “active burst buffers”
seek to provide the types of in situ analysis we discussed in this thesis with some
added persistence benefits in the data path. Indeed our communication mechanisms
could be augmented to use NVRam or burst buffers to provide greater functionality
such as out-of-core analysis support. We should also leverage the persistence features
of these technologies to explore better ways at addressing fault tolerance.

There are a number of other run times that aim to manage the lower level hardware
to provide features such as multi-tenancy [33] or manage interference [67]. Following
on the results presented in this thesis, integrating other these other run times into

this framework would provide greater in situ and colocation opportunities.
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7.2 Programmability and Usability

The scope of this thesis did not include an in-depth discussion of the programming
model for workflow construction and management. On-going work relating to parti-
tioned global address space (PGAS) models for code coupling is an important model
to consider given that recent work has explored how PGAS can leverage deep-memory
hierarchies for persistence and other properties.

Domain specific languages like Swift and Legion are also of interest. Currently,
CoApps makes use of shell scripts and Linux system calls for launching and reorga-
nizing workflow components, but languages like Swift provide a much more natural
and programmatic way of describing and executing workflows.

Parallel programming models like Legion and OCR also provide additional parallel
computing models not made readily available using MPI such as task-based paralel-
lism. Supporting different models for parallelism fits into the CoApps model as a key

goal of the orchestration hierarchy is to allow for customized management.
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CHAPTER VIII

CONCLUSION

The immense data volumes have become a significant performance bottleneck for high
performance scientific applications and dealing with them requires a paradigm shift
in both the applications and the platforms running them. In this thesis, we detail our
vision on how we can bridge the gap between these two orthogonal paradigm shits
using the CoApps model for in situ analytics. CoApps combine low-overhead data
movement using the Flexpath code coupling transport, coarse grain orchestration via
the SODA framework, and fine-grained colocation and resource management using
the CoApps run time, to enable a wide variety of management and re-organization
opportunities at run time.

The use of CoApps extends the locations where analytics functions can execute by
providing end users with a way to write their code generically, via the ADIOS api, and
letting the orchestration hierarchy determine an optimal placement to meet their wide
ranging end goals. Using MPIRelay, end users can also avoid technical /administrative
limitations when using in situ analytics on high-end machines and can also ensure
healthy performance by taking advantage of the communication interference it offers.

In summary, CoApps has been demonstrated to be a viable piece of the solution
towards scalable in situ analytics for the next generation of leadership class machines
and the applications that use them. The combination of efficient code coupling,
location independent analytics components, and colocation are all brought together
in providing new functionality to large scale science workflow. This functionality has
been demonstrated to go beyond static workflows relying on resource overprovisioning,

to offering end users with a more functional way to use exascale resources. Parts of
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this research have already been adopted as part of the official ADIOS release package

and has been presented as live demos at key conferences, such as Supercomputing.
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