
MIDDLEWARE FOR LARGE SCALE IN SITU
ANALYTICS WORKFLOWS

A Thesis
Presented to

The Academic Faculty

by

Jai Dayal

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
December 2016

Copyright c© 2016 by Jai Dayal

MIDDLEWARE FOR LARGE SCALE IN SITU
ANALYTICS WORKFLOWS

Approved by:

Dr. Matthew Wolf, Committee Chair
Computer Science and Mathematics
Division
Oak Ridge National Laboratory

Professor Ada Gavrilovska
School of Computer Science
Georgia Institute of Technology

Professor Karsten Schwan, Advisor
School of Computer Science
Georgia Institute of Technology

Professor Santosh Pande
School of Computer Science
Georgia Institute of Technology

Professor Ling Liu
School of Computer Science
Georgia Institute of Technology

Dr. Gerald Lofstead
Computer Science Research Institute
Sandia National Laboratories

Date Approved: October 28, 2016

To my wife, parents, and in-laws.

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisors, Professor Karsten Schwan and

Dr. Matthew Wolf. I am honored to be their student and their patience, knowl-

edge, and pedagogical skills will serve as guiding principals for the rest of my career.

Karsten’s loss was devastating for all of us, but without Matt’s dedication to the

students, my dissertation would have not been possible.

I’d like to give thanks to Greg Eisenhauer for his endless moral and technical

support over the last years. It was nice to know that if I had to pull an all nighter,

he’d be willing to as well. Similarly, I would like to give a special thanks to Jay

Lofstead for the years of collaboration, internship opportunities, invaluable advice as

well as being an excellent host whenever I am in Albuquerque.

My fellow students and friends, Alex Merritt, Anshuman Goswami, and Hasan

Abbasi all deserve thanks as they provided numerous hours of entertainment as well

as technical and research advice over the years. My time at Georgia Tech was greatly

enjoyable because of their friendship.

Additionally, I’d like to thank Professors Ling Liu, Ada Gavrilovska, and Santosh

Pande for being on my thesis committee and providing stability during unstable times

with Karsten’s passing.

Susie McClain deserves high praise for all of her efforts on making sure all the im-

portant details are taken care of and always providing assistance to me when needed.

Finally, I’d like to thank my wife and family for their endless support and patience

as they often have had to put their lives on hold while I navigated my way through

the program.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

1.1 Trend: In Situ Analytics and Hardware Heterogeneity 1

1.2 Thesis Statement . 5

1.3 Thesis Contributions . 6

1.4 Impact of Future Technologies . 6

1.5 CoApps Research Overview . 6

II MOTIVATING APPLICATIONS AND FOUNDATIONAL TECH-
NOLOGIES . 8

2.1 Motivating Applications . 8

2.1.1 LAMMPS . 8

2.1.2 GTCP . 10

2.1.3 SuperGlue Reusable Analysis Workflow 11

2.2 Foundational Technologies . 12

2.2.1 ADIOS . 12

2.2.2 EVPath . 13

III FLEXPATH: TYPE-BASED PUBLISH SUBSCRIBE FOR HIGH-
END IN SITU WORKFLOWS . 14

3.1 Introduction . 14

3.2 Type-based Publish Subscribe for HPC Environments 18

3.3 Design and Implementation . 21

3.3.1 Background Technologies . 22

v

3.3.2 Implementation . 24

3.4 Experimental Evaluation . 26

3.4.1 Affect on Application Execution Time 27

3.4.2 Subscriptions and Metadata Distribution 29

3.4.3 Application Level Throughput 32

IV SODA: SCIENCE-DRIVEN ORCHESTRATION OF DATA ANA-
LYTICS . 35

4.1 SODA Overview . 35

4.2 SODA Framework . 37

4.2.1 Assumptions and Desired Properties 38

4.2.2 Conceptual Model . 39

4.3 Implementation . 41

4.3.1 Workstation . 41

4.3.2 Orchestration Interface . 42

4.3.3 SODA Information Bus . 43

4.3.4 Fault Detection and Recovery 44

4.4 Experimental Evaluation . 45

4.4.1 Application Drivers . 46

4.4.2 Management Policies . 47

4.4.3 Quality of Data Policy and Microbenchmarks 48

4.4.4 Throughput Measurements: QoS Policy 50

4.4.5 Fault Recovery Policy . 52

4.4.6 Discussion . 54

4.5 Conclusions . 54

V COAPPS: MIDDLEWARE FOR IN SITU ANALYTICS 59

5.1 CoApps Overview . 59

5.2 CoApps Design and Implementation 61

5.2.1 Communication Mechanisms and Launching 61

5.2.2 Monitoring and Control . 64

vi

5.3 Experimental Evaluation . 65

5.3.1 Node Consolidation . 65

5.3.2 MPI Relay Evaluation . 70

5.3.3 Discussion . 73

VI RELATED WORK . 74

6.0.1 Communication Mechanisms and Code Coupling 74

6.0.2 Orchestration, Big Data Systems, and Workflow Management 75

VII FUTURE WORK . 77

7.1 Utilizing New Hardware Technologies 77

7.2 Programmability and Usability . 78

VIIICONCLUSION . 79

REFERENCES . 81

vii

LIST OF TABLES

1 Characteristics of SmartPointer Analysis Actions 10

2 LAMMPS Pipeline Experimental Setup. 27

3 Data sizes and core counts for weak scaling experiments 27

4 Increase Command Protocol Overhead 49

5 Data-Centric Command Protocol Overhead 49

6 Core Counts for Throughput Experiments 51

viii

LIST OF FIGURES

1 Projected Node Architecture for an Exascale Machine 3

2 LAMMPS and SmartPointer Analysis Pipeline 10

3 Traditional model of publish/subscribe vs. Flexpath model of pub-
lish/subscribe allowing for fine-grained data exchanges across parallel
applications. 21

4 Software Architecture of Flexpath Publishers 24

5 Total Time spent on I/O for LAMMPS and components of analytics
pipeline. The asynchronous I/O offered by Flexpath drastically reduces
the time an application spends on I/O operations. 28

6 Total Execution Times for LAMMPS and GTS applications. 30

7 The time needed for 1 CNA process to join the Bonds channel. 32

8 Time spent on collecting and distributing publisher metadata for one
epoch. 33

9 Application Level Throughput on Sith and across Georgia Tech clusters. 34

10 High-level view of the SODA framework. 36

11 Workstation abstraction. 41

12 SODA software architecture. 43

13 I/O Pipeline for LAMMPS with SODA 46

14 Throughput degradation for unmanaged pipeline. 51

15 QoS Policy: throughput improvements. 56

16 Change in max queue length for Helper Workstation. 57

17 Failure recovery policy affect on latency 58

18 High-level view of the CoApps Run Time. 60

19 MPI Relay communication with processes launched with fork/exec . . 62

20 Node Consolidation (GPU utilization and component latency) at 4096
cores . 67

21 Node Consolidation (GPU utilization and component latency) at 8192
cores . 68

22 Node Consolidation (GPU utilization and component latency) at 16384
cores . 69

ix

23 Comparison of Broadcast Times for MPI vs. MPI Relay transferring
a 1GB buffer . 71

24 Comparison of Gather Times for MPI vs. MPI Relay tranferring 10KB
buffers . 71

25 Comparison of All Gather Times for MPI vs. MPI Relay transferring
10KB buffers . 72

26 Interference Management using MPI Relay on University Linux Cluster 72

x

SUMMARY

The trend to exascale is causing researchers to rethink the entire computa-

tional science stack, as future generation machines will contain both diverse hardware

environments and run times that manage them. Additionally, the science applications

themselves are stepping away from the traditional bulk-synchronous model and are

moving towards a more dynamic and decoupled environment where analysis routines

are run in situ alongside the large scale simulations.

This thesis presents CoApps, a middleware that allows in situ science analytics

applications to operate in a location-flexible manner. Additionally, CoApps explores

methods to extract information from, and issue management operations to, lower

level run times that are managing the diverse hardware expected to be found on next

generation exascale machines. This work leverages experience with several extremely

scalable applications in materials and fusion, and has been evaluated on machines

ranging from local Linux clusters to the supercomputer Titan.

xi

CHAPTER I

INTRODUCTION

1.1 Trend: In Situ Analytics and Hardware Heterogeneity

On current generation petascale supercomputers, large-scale science applications like

GTC [2] and S3D [34] are already stressing the limits of the capabilities these ma-

chines provide. By offering diverse hardware architectures, such as inter-mixed CPUs

and accelerators, deep memory hierarchies, and multi-tiered storage systems, users

can now scale their science applications to conduct science at larger scales and finer

resolutions. Scaling to petascale sizes can be problematic as data produced at such

large volumes and high velocities can overwhelm storage systems leading to significant

performance bottlenecks. As we move beyond petascale towards exascale infrastruc-

tures, this trend only intensifies.

While these immense scales and data volumes have given science end users bet-

ter insights into the phenomena they are investigating, before such insights can be

gleaned, the data must often go through an expensive and complex analysis and visu-

alization process. The desire to scale analytics workflows to handle such data volumes,

and to better take advantage of the new hardware found on modern machines, has

caused researchers to investigate new methods for conducting computational science

to help avoid the existing scalability bottlenecks. In particular, science and analysis

workflows are moving away from relying solely on storage systems as the intermediary

for the data, to instead using models where analysis workflows run concurrently, or

“in situ” with the core simulation ingesting data live as it is being produced. In situ

is a Latin phrase used in a number of science and engineer fields that means “on site”

or “in place.” In computational science, in situ analysis means to analyze the data

1

in the same location as it is produced, which has been taken to more generally mean

the data is analyzed before it is sent to storage. An open question for science end

users then is what is the proper location to execute this analysis code in relation to

the simulation: (1) as separate processes on the same set of compute nodes as the

simulation, either sharing cores or on dedicated cores; (2) as separate processes on a

set of dedicated “staging” nodes; (3) being treated as standard in-line functions that

share the simulation’s address space; and (4) as traditional post-run analysis using

storage as the medium.

Beyond addressing storage-related performance challenges, in situ analytics offer

science users new functionality for better understanding the scientific simulations

being run. This includes using analytics to (1) continuously ascertaining simulation

validity, (2) gaining rapid insights into the scientific processes being simulated (online

visualization), (3) managing ensembles of simulations, or even (4) enabling methods

for application steering.

Additionally, several programming models [12, 60], run times [19, 67, 33, 26], and

operating systems [32, 54] have been developed to provide science end users with

better ways to develop their analytics to take advantage of the growing number of

hardware components. Figure 1 depicts an example of what a supercomputer node

is projected to look like at exascale. The individual components of this example are

not particularly relevant for this thesis, but what should be noted is the large variety

of hardware and software subsystems that end users will have at their diposal on an

exascale machine.

While the research supporting these developments is already showing great promise,

there are still several challenges in terms of “bridging the gap” between the workflow

components and the underlying hardware resources. Analytics algorithms all have dif-

ferent scaling characteristics, resilience properties, and any given algorithm can also

have different versions targeted for specific hardware (i.e., a histogram function can

2

Figure 1: Projected Node Architecture for an Exascale Machine

3

have a CPU or a GPU implementation). Relying on the end-user to properly profile

and schedule the workflow components on the different hardware is time consuming

and error prone, only to be exacerbated at exascale.

Further, dynamics can also occur at run time causing initial resource allocations

to become sub-optimal. Such dynamism can occur for several reasons; poor initial

resource allocation to the workflow components leading to performance bottlenecks,

hardware and software failures, the nature of the changing data may change the run-

time, etc. At the current state of the art, science end users over-provision for worst

case scenarios leading to wasted resources.

The focus of this thesis is to design middleware constructs for in situ analytics

workflows that enables proactive and reactive response to run time dynamics in or-

der to meet user-driven performance and science goals. Specifically, I am presenting

CoApps and its enabling technical components that will provide: (1) communica-

tion mechanisms so that workflow components can operate in a location independent

manner; (2) an execution mechanism that can make use of different implementations

of analytics algorithms to enable smarter placement decisions; (3) provide a program-

matic API to allow users to create beyond simple, best effort service level agreements

(SLAs) that the middleware can enforce at run time.

The communication mechanisms address both inter-component and intra-component

needs, the latter stemming from colocation limitations found on many high-end ma-

chines. The execution framework chooses at run time from the different hardware

implementations of the analytics components in an effort to improve consolidation

opportunities and better meet end-user goals. The programming API allows infor-

mation about the state of the workflow to be gathered and evaluated and allows the

end-user to specify control operations to take when certain conditions or triggers are

met.

The CoApps approach rests on assumptions that hold true for many large-scale

4

scientific applications and their associated analytics workflows. These assumptions

do not always match those found in enterprise or “big data” frameworks like [64, 6, 3]

in terms of their data characteristics, execution models, and degrees of parallelism.

• Functional Dependencies. Analytics codes expect to ingest data matching

specific formats and layouts. These analytics functions may need to transform

data to meet algorithmic correctness and/or to export an analysis function’s

discoveries into the data itself. Given these dependencies in the data-plane,

functions in an analytics pipeline may or may not require in-order operation.

• Heterogeneous Codes. Analytics can have heterogeneous architectures and

have a wide range of execution models, fault tolerance, and scaling characteris-

tics.

• Stringent Resource Constraints. Resources are typically assigned to the

compute job statically. Analysis codes are given “spare” resources, i.e., spare

CPU cycles on simulation nodes [67, 14], reserved staging nodes [9, 25], or

those on smaller, auxiliary clusters perhaps in different physical locations. An-

alytics pipelines, therefore, must operate with these limited resources, without

interfering with the simulations and their output actions including by delaying

simulation completion or adversely affecting other jobs running on the same

platforms.

1.2 Thesis Statement

In situ analytics provide a high performance path for modern scientific applications

and workflows running on leadership class machines. For such applications, enabling

in situ analytics to be proactive and reactive to runtime dynamics creates inherently

scalable workflows that can be managed at runtime to better utilize machine resources,

improve application performance, and to better meet end-user goals.

5

1.3 Thesis Contributions

There are four principle contributions of this thesis. First, this thesis introduces the

CoApps abstraction, which enables colocation of workflow components. Second, this

thesis introduces communication mechanisms that enable location independence as

well as the reorganization of in situ workflow components at run time. These tech-

niques include both inter- and intra-component messaging and data exchanges as well

as the co-management of network resources. Third, this thesis provides an execution

environment to make use of different hardware implementations of workflow compo-

nents when making decisions on colocation. Finally, we explore these abstractions

and mechanisms using real science codes operating on current high-end petascale

supercomputers as well as smaller university scale clusters.

1.4 Impact of Future Technologies

This thesis provides a software, and more specifically a middleware, for the run time

management of in situ science analytics as we approach exascale limits. Hardware,

and the lower-level run times that management, also provide solutions for improving

the scalability and programmability of science workflows. New technologies such as

burst buffers and non-volatile memory (NVRAMS) are seeking to address the I/O

challenges at exascale, however these approach are complimentary to the approach

presented in this thesis. In particular fast persistent storage hardware can improve

our resilience and data exchange capabilities. This is discussed further in section 7.

1.5 CoApps Research Overview

The remainder of this thesis presents a progressive narrative of the requirements and

performance of the CoApps system, starting with some canonical science applications,

through our development of in situ workflows to the CoApps abstraction.

Chapter 2 outlines several driving applications that largely served as motivating

6

use cases for CoApps, and in situ workflows in general. There, we present science

applications, their analysis workflows and some of the unique challenges they repre-

sent for the CoApps abstraction. We also present some of the core technologies we

use as part of our CoApps implementation. Chapter 3 describes our work on leverag-

ing a publish/subscribe infrastructure to design a communication, or code-coupling,

mechanism for “on line” science workflows. Chapter 4 builds on this initial concept

and describes abstractions and control protocols for orchestration. This work focuses

on coarse grained policies mostly with re-arranging workflow components in a stag-

ing area and does not directly deal with per compute node attributes. Chapter 5

presents the complete CoApps abstraction and run time. It describes how location

independence is achievable at run time, presents new launching and communication

mechanisms for node-sharing in situ cases, and also describes what additional infor-

mation and control structures are needed to make more fine-grained per compute node

decisions at run time. Chapter 7 discusses future work, Chapter 6 discusses related

work on in situ workflows and orchestration/management in general, and Chapter 8

concludes the thesis.

7

CHAPTER II

MOTIVATING APPLICATIONS AND FOUNDATIONAL

TECHNOLOGIES

CoApps provides a new paradigm for programming, deploying and executing in situ

scientific workflows on leadership scale applications. The design principles have been

developed in collaboration with scientific application developers, and with the scien-

tists using these applications. We will look at some of these motivating application,

and also describe the workflow management challenges raised by each. The CoApps

abstraction can be considered to be one way of addressing these challenges.

2.1 Motivating Applications

2.1.1 LAMMPS

LAMMPS[53] is a molecular dynamics simulation used across a number of science

domains ranging from materials engineering to physics to biology. Depending on the

particular input parameters used with it, it can have a wide variety of performance

characteristics. It is written with MPI and performs force and energy calculations on

discrete atomic particles. After a number of user-defined epochs, it outputs the atom-

istic simulation data (e.g., atom types and positions) with the size of this data ranging

fom megabytes to terabytes depending on the science being investigated. LAMMPS

can also take advantage of common hardware runtimes such as CUDA and OpenMP

and other extensions are available to use newer accelerator based technologies such

as Xeon Phi.

8

2.1.1.1 SmartPointer

SmartPointer[61] is a representative analytics pipeline interpreting LAMMPS output

data to detect and then scientifically explore plastic deformation and crack genesis.

In such scenarios, the material being simulated is steadily stressed until it first starts

to break. The scientific question being asked is how to understand the geometry of

the region around that initial break. This means that the purpose of the molecular

dynamics simulation is to bring the data set to some self-consistent, interesting state,

at which point substantial additional analytics and characterization need to take

place. The SmartPointer analytics toolkit implements these functions to determine

where and when plastic deformation occurs and to generate relevant information as

the material is cracked. Table 1 summarizes the computational characteristics of

the individual SmartPointer components, and the list below explains each in greater

detail. Figure 2 depicts this example workflow.

This workflow provides us with several interesting orchestration challenges as it

requires application introspection into the data based on the CSYM and CNA compo-

nents. In contrast to purely performance based policies, the analysis functions report

the metric of interest (CSYM detects a crack) and the orchestration actions (kill

CSYM and run CNA) are defined by and triggered by the applications. This type

of data-centric policy ensures data quality via correct execution of pipeline analysis

functions.

• Lammps Helper : serves as an aggregator and filter of the raw LAMMPS data.

• Bonds : subscribes to aggregated data from Lammps helper at each time-step,

and performs an all-nearest neighbor calculation to determine which atoms are

bonded together in order to publish a bond-pair array as its output.

• Csym: the central symmetry analysis routine operates on an array of bond-pairs

from bonds, and also a bond adjacency list (a graph structure) to determine if

9

LAMMPS

LAMMPS
Helper

Bonds

CNA

CSYM

Storage

Figure 2: LAMMPS and SmartPointer Analysis Pipeline

Table 1: Characteristics of SmartPointer Analysis Actions
Complexity Data Model Stateful

Helper O(n) Array No
Bonds O(n2) Array, Parallel No
CSym O(n) Complex Yes
CNA O(n3) Array No

there is a deformation in the material. This code maintains the initial bonds

adjacency state for the duration of its run.

• CNA: common neighbor analysis executes whenever CSYM determines that a

deformation in the material has occurred. CNA is compute-intensive and is

executed on the bond pairs array to perform a structural characterization on

the data, to determine the conditions under which the crack occurred.

2.1.2 GTCP

GTCP[44], simulates a toroidally-confined plasma such as is found in Tokamak fusion

reactors. In order to simulate such reactor environments, the code uses a Particle-in-

Cell technique, where the electric and magnetic fields within the domain are stored

on a mesh, but the ions of the plasma are represented by discrete particles. There

are challenges with analyzing both the particle and mesh-carried variables, but for

the purposes of this work, we have focused on the mesh ones. As such, the output

of the simulation is a 3D array with the dimensions representing: (a) toroidal ranks

10

(toroidal slice number), (b) grid point numbers, and (c) property indices (ie magnetic

field components, pressure, temperature). An example workflow that has motivated

much of our development involves generating a per-timestep histogram that shows

the distribution of per-gridpoint parallel pressure across the entire simulation. From

GTCPs output, the particular quantities of interest must be extracted and then a

histogram generated.

2.1.3 SuperGlue Reusable Analysis Workflow

SuperGlue[8] is a set of “off the self” analysis tools that are designed to be generic

enough to be reusable for a large variety of different workflows. There are a number

of analysis routines that can be chained together to form arbitrary workflows and

users use configuration files to customize the workflow to the specific application.

SuperGlue components are coupled together using the ADIOS framework, discussed

in Chapter 2.2.1.

From the larger number of SuperGlue components available, we use the following:

• Select : Given an input stream that includes an n-dimensional array, Select

extracts specific indices from one of the dimensions. The output array of this

function has the same number of dimensions, but has a smaller number of

elements.

• Dim-Reduce: removes one dimension from its input array by absorbing it into

another dimension without modifying the total size of the data. The other

dimensions are left unchanged.

• Magnitude: calculates the magnitudes of the vectors from the values of their

individual components and outputs a 1D array of the new values.

• Histogram: Computes a histogram over the elements in the array. The his-

togram component is implemented using the Thrust Parallel Algorithms Library

11

(cite thrust) and runs on CPUs as well as accelerators such as GPUs.

The interesting part of this workflow, from an orchestration perspective, is that

some of the components, i.e., the histogram component, have both CPU and GPU

implementations available, giving us greater options to explore improving utilization

hetergenous for hetergenous hardware. With current state of the art tools and de-

ployment methods, end users are required to provision the workflow resources accord-

ingly and often may choose sub-optimal arrangements. By offering different hardware

implementations of workflow components, we have a greater number of placement op-

tions available to try to improve our ability to meet end-user goals.

2.2 Foundational Technologies

While CoApps is a significant change in the paradigm of workflow and data manage-

ment for high performance applications, their development has been realized through

the use of existing technologies that provide key characteristics necessary for the

CoApps paradigm. Two components, ADIOS and EVPath, have played a significant

roll in the implementation for the CoApps abstraction.

2.2.1 ADIOS

The Adaptable IO System (ADIOS) is an I/O componentization library that ex-

poses file-like read and write interfaces to applications, with underlying I/O meth-

ods including disk based methods like POSIX and MPI-IO, and “staging” methods

like Datatap[9], Dataspaces[25], and also Flexpath[22], an enabling technology for

CoApps, which is further described in Chapter 3. With ADIOS, end users can simply

‘switch’ transports, without modifying their codes, using an external XML document.

This allows us to identify those transports as well as other I/O characteristics, like

the variables to be written, their array dimensions & offsets, etc. We have chosen

ADIOS to be the interface into Flexpath for two reasons: 1) For ease of use by the

12

large number of existing applications that use the ADIOS interfaces, and 2) it pro-

vides a service-oriented interface for science applications allowing them to be written

generically and deployed anywhere without extensive code changes or re-compilation

efforts.

2.2.2 EVPath

EVPath [28] is a constructor for typed messaging systems. Using EVPath allows us

to construct a number of underlying messaging infrastructures needed to realize the

CoApp inplementation. Using EVpath, we have created type-based publish/subscribe

messaging systems, described in Chapter 3, monitoring and control overlays described

in Chapter 4.3.3, as well as transactional and RPC style messaging systems. Addition-

ally, EVPath supports dynamic code generation techniques that allow us to deploy

at runtime customized operations into the various messaging systems to give applica-

tions greater control over their data streams. This research has caused much fruitful

back-and-forth with the core EVPath development process.

13

CHAPTER III

FLEXPATH: TYPE-BASED PUBLISH SUBSCRIBE FOR

HIGH-END IN SITU WORKFLOWS

3.1 Introduction

This chapter presents Flexpath, a type-based publish/subscribe infrastructure for cou-

pling high-end scientific applications with their online analytics services. The work

presented here serves as our initial look at in situ workflow construction and addresses

the need for data exchanges across parallel workflow components. While the initial

implementation presented here focused on “in transit” workflows, we were able to

extend the implementation for in situ workflows, as described in chapter 5.

Flexpath’s pub/sub approach makes possible runtime configurability, scalability,

and also fault tolerance, as the pub/sub abstraction allows for the decoupling of

diverse analytics components, permits multiple subscribers or publishers to share a

single data stream, and suppresses communications for cases in which there are no

subscribers to certain data streams (e.g., those not of current interest). This is par-

ticularly well suited for the in situ analytics approach, as the core simulation may

therefore be structured to make available a substantial array of internal data, know-

ing that only those parts that are needed at runtime will actually be exported. These

properties contrast with the typical assumptions made by communication infrastruc-

tures like MPI, where the domain of executing processes is initialized at launch and

cannot grow or shrink for the remainder of the execution.

With Flexpath, one can construct and dynamically manage or change the data

processing pipelines or workflows needed for runtime analysis of the large volumes of

this output data in ways that meet the following four design requirements of these

14

sorts of applications: (1) decouple analytics services from simulation codes, (2) main-

tain levels of performance similar to those obtained by analytics routines statically

embedded with simulations, (3) permit those pipelines to cross node and/or machine

boundaries, and (4) support the creation of higher level methods for managing these

pipelines. Sample management constructs built in our own previous work [23], for

example, have balanced pipeline operations to ensure QoS and have implemented

transactional constructs with the goal of providing ACID properties for select online

analytics [62, 46].

Flexpath’s pub/sub communication mechanism, key to meeting design objective

(1), obtains flexibility for component-component communications, without the perfor-

mance penalties incurred by traditional broker-based pub/sub infrastructures. This

technical contribution is achieved by using direct connections between interacting

components, including the scatter-gather or MxN communications needed across dif-

ferent communicating internally parallelized analytics components. This high per-

formance implementation for such peer-to-peer techniques utilizes a subscription im-

plementation, allowing readers to specify derived versions of messages, e.g., to re-

ceive only those slices of data objects they require, as well as registering dynamic

transformations of typed objects when there are mismatches between publishers and

subscribers, e.g. row to column order array conversions.

With regards to the need to maintain performance in cross-platform environments

(design objectives 2 and 3), Flexpath has been built to leverage multiple underlying

communication protocols, ranging from a shared memory protocol employed for on-

node communications, to the RDMA-based protocols existing on high end machines,

to the TCP/IP protocols required for linking remote collaborators. As is described in

Section 3.3, much of this comes from inheriting a multi-modal connection management

system through the EVPath framework. Finally, with regards to design object (4)’s

concerns for management, Flexpath’s approach allows for it to export monitoring

15

data and management ’hooks’ with which higher level management methods can be

realized. As will be seen later, we utilize some simple workflow-level management

schemas in this work, but future work will extend the complexity and robustness of

this feature of the system.

Conceptually, Flexpath’s development builds on extensive prior work on efficient

parallel I/O pipelines, including data staging methods for running analytics and vi-

sualization [9, 66, 25, 58], data streaming and the online QoS control of such data

streams [28, 51, 62], the aggressive use of source-based data reduction and filter-

ing [39, 66], and convenient ways to carry out remote data visualization [61, 20, 18].

For high end machines, challenges include dealing with network congestion [9], pro-

viding data reliability when operating at scale [46], making data “right” for use by

successive analytics codes without unnecessary data movement [10, 66], and dealing

with application dynamics, as when codes are dynamically activated or de-activated.

Such dynamics, in fact, have given rise to interesting methods used by modern data

visualization systems like VisIt contracts [21].

Driven by such prior work, Flexpath is designed as a communication substrate

that does not proscribe specific management methods. Instead, it makes possible

the efficient realization of alternative communication scheduling techniques [9] and/or

higher level methods for managing entire analytics workflows [23]. In contrast to web-

based or commercial data streaming infrastructures [51, 40, 63], it does not constrain

end users in how to write their analytics routines, so that they can leverage the

rich tools already existing for these purposes, like R or MatLab. Finally, leveraging

the ADIOS I/O APIs already in common use on petascale machines [45], Flexpath’s

implementation as an ADIOS ’transport method’ allows it to adopt and adapt many

off-line analytics pipelines that were originally structured as sets of independently

programmable and deployable analytics services using ADIOS as the interface of

choice [45].

16

Flexpath is deployed for use across a range of high end machines, including

ORNL’s Titan machine, Infiniband clusters, and commodity scientific computing en-

gines. This chapter experimentally evaluates its technical elements and approach with

two representative applications with significant scientific user communities, LAMMPS [53]

and GTS [2], coupled with their associated data analytics service flows. For this chap-

ter, experiments are run on Oak Ridge National Lab’s Sith machine and on smaller-

scale Linux clusters available at our own institution. Please see Chapter 2.1.1 for a

discussion on LAMMPS and Smartpointer.

GTS is a plasma fusion simulation with an implementation that exploits coarse

grained process level parallelism using MPI, and more fine-grained thread-level par-

allelism using OpenMP [2]. This particle-in-cell code has different output frequencies

for both particles and mesh-level statistics. In order to examine the dynamics in-

volved, in particular dangerous transient effects that might damage a real reactor

vessel, it is useful to dynamically evaluate and characterize particular trends on the

inner and outer edges of the plasma. Unlike the LAMMPS case, these transients are

not as algorithmically identifiable, so secondary analysis methods are used to infer

their existence, and then, much more detailed inspection involving direct interaction

with the physicists is used to further the investigation. The GTS analytics pipeline

used in this chapter computes parallel histograms of multiple grid-carried variables,

and runs parallel-coordinate visualizations to provide suitable data to those physicists.

The LAMMPS and GTS analytics workflows have some important shared char-

acteristics. In both examples, analytics codes are run as independent services, each

simply executing its functions on the data that is available. The operation of the

individual analysis routines are not affected by each other and generally, the codes

are unaware of the details of how or when the other codes are run. This results in an-

alytics workflows best described as sets of analytics services loosely coupled in terms

of space, time, and synchronization.

17

3.2 Type-based Publish Subscribe for HPC Environments

Type-based publish/subscribe [29] is a pub/sub paradigm in which producers publish

objects classified by type to a communication substrate, and consumers subscribe to

them by specifying the types of objects in which they are interested. Here, type re-

flects both the structure of the published data as well as metadata extensions that can

be determined at runtime. This distinction, along with other technical contributions,

is part of what allows Flexpath to adopt a high performance direct-connect, rather

than brokered, infrastructure.

While Flexpath uses a type-based pub/sub model, end users are not required to

change their ADIOS codes or applications to adopt this new model. Instead, the

Flexpath implementation exploits the model’s several similarities with the standard

file I/O model already known to science users. In the file I/O model, science applica-

tions exchange data by using a shared filesystem as the data exchange medium [48],

and workflows are constructed through the use of intermediate files stored on disk.

As a familiar scientific scenario, consider the following: at each output epoch the par-

allel writers open a file, encode their data in the proper metadata-rich serialization

format, like NetCDF [42] or HDF5 [56], populate the write buffers, and finally, flush

them to disk. Similarly, for a given read epoch the (possibly parallel) readers open

the file, read metadata about the objects present in the file, create the appropriate

buffers, perform the reads, and then seek ahead to the next block of data, if avail-

able. Additional attractive elements of the file-based approach include the ability to

perform “seeks” to retrieve fine-grained slices of the available data, data durability

and persistence guarantees.

A detraction from this model is the synchronous nature of file-based I/O and its

poor performance at large scales. Particularly, if there is a complex trade-off between

number of files, number of writers, and the layout of data within those files to be

most scientifically useful, the attempt to optimize any one file system parameter

18

can yield sub-optimal results for the other. In the dynamic scientific investigations

targeted by this work, a mis-predicted optimization could have profound impact on

the viability of the runtime analysis if it were to use a traditional filesystem-based

approach. A key reason for introducing our asynchronous, type-based pub/sub has

been to avoid this disk bottleneck when linking simulations with dynamic sets of

analytics services[66, 25, 9].

The properties of a type-based pub/sub system, although superficially quite dif-

ferent from file I/O, map relatively well to the subset of such general functions that

are offered by high performance I/O libraries such as HDF5 or ADIOS. For exam-

ple, file names serve as the naming convention for establishing a pub/sub “channel”

between coupled applications, so that writers and readers can be logically mapped

between publishers and subscribers to a shared data set. A key realization about the

high performance I/O abstraction is that, since data is already laid out for the I/O

system utilizing many higher-level concepts of data structure (arrays, slabs, meshes,

etc.), a seek is not an arbitrary binary offset within the file. Instead, it maps quite

well to metadata subscriptions or type-based derivations within the scope of type-

based pub/sub. For example, a seek to a particular slice of a global array can also

be interpreted by the pub/sub as a parameterization of the peer-to-peer subscription

parameters. This structural, rather than byte-level, addressing of data in the high

performance space is key to aligning the two paradigms.

Beyond this mapping of file I/O to equivalent pub/sub actions, there are addi-

tional properties of the online analytics workflows targeted by Flexpath that make

them well suited for the type-based pub/sub paradigm. The input and output types

of each component in the workflow are well defined, giving rise to clean mappings

to equivalent pub/sub type descriptions. Additionally, since the components of the

workflow operate independently of each other, this favors an asynchronous commu-

nication model not subject to the issues with tightly synchronized data exchanges in

19

which senders block when downstream receivers are still processing the previous in-

terval of data. This also supports the original design objective of being able to handle

a heterogeneous computational environment. Finally, for analytics components that

can change during the course of the run, key constituents of the types of workflows

we aim to address, this amounts to dynamic changes in the data flow. Our pub/sub

offers a model that allows such dynamics while not having to make the individual

components aware of such run-time complexities.

While conceptually attractive, the efficient implementation of type-based pub/sub

for high end applications and platforms poses significant challenges. To obtain high

performance for large data volumes, we cannot use overlay routing techniques and/or

move data to third-party brokers, as done in other traditional pub/sub implemen-

tations [16, 41, 38]. Second, unlike traditional type-based pub/sub, a single data

object represented by a type is a collection of messages matching this type obtained

from some large number of sources producing these messages, i.e., each process in

the parallel application produces a portion of a global array as well as scalar vari-

ables that describe both global knowledge and the process’s local view of the global

array. Thus, the definition of type has to be extended to include notions of both

local and global metadata parameters. Third, in the common MxN data exchanges

that occur among science codes, a subscriber only wants to receive certain slices of

the objects or in fact, objects transformed from one type to another. So, in addition

to specifying types, subscribers also need to specifiy derivations on types. As a final

complication, a type-based pub/sub infrastructure must have ways of dealing with

type augmentations at runtime in order to be useful for adaptive codes like S3D.

Naturally, there are also machine-specific challenges to an efficient implementa-

tion of pub/sub on large-scale supercomputers. Structuring a solution which can both

efficiently utilize highly specialized networking hardware and protocols, such as In-

finiband and Cray’s Gemini interconnect and simultaneously operate across multiple

20

Publisher

Publisher

Publisher
Message Broker

Subscriber

Subscriber

Subscriber

publish

publish

publish

subscribe

Overlay

Event Storage

Subscription
Matching

Notification

Notification

Metadata

Connection
Mgmt

(a) Traditional Pub/Sub

Message Broker

Publisher

pu
bl

is
h

Event Storage
Connection Mgmt

Metadata

Subscriber

Message Broker

Publisher

pu
bl

is
h

Event Storage
Connection Mgmt

Metadata

Subscriber

Message Coordinator

Publisher

pu
bl

is
h

Event Storage

Connection Mgmt

Metadata
Message Broker

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Broker

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Broker

Subscriber

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Message Coordinator

Subscriber

S
ub

sc
rib

e

Subscription
Matching

Connection Mgmt
Metadata

N
otify

Events, subscriptions, metadata

(b) Flexpath Pub/Sub

Figure 3: Traditional model of publish/subscribe vs. Flexpath model of pub-
lish/subscribe allowing for fine-grained data exchanges across parallel applications.

networking technologies, e.g. TCP/IP, in order to extend workflows across multi-

ple machines and geographies, requires great care. There are issues of placement,

throughput matching, and even security that must be addressed while maintaining

both high performance and the simple pub/sub abstraction.

In summary, scientific simulations with complex online analytics workflows can

benefit from the pub/sub paradigm, but given the non-trivial data exchange and I/O

characteristics of these applications, and the nature of the systems on which they run,

type-based publish/subscribe must be rethought to enable data exchanges at scale.

Connection management, type derivations, and subscription management all must be

re-addressed. We next explain the Flexpath architecture and implementation as it

addresses these challenges.

3.3 Design and Implementation

Figure 3 depicts the conceptual design of Flexpath and contrasts it with the stan-

dard broker-based pub/sub model. In Flexpath, direct connections are established

21

between coordinators on opposing sides; when joining a channel, a subscriber selects

a publisher peer coordinator it uses to retrieve publisher metadata. This metadata is

used in conjunction with subscriber subscriptions to establish connections with pub-

lishers that own the requested data. Additionally, control messages are sent across

connected coordinators to perform coordinated control operations like the eviction of

expired data from the local data stores. We next describe some of the background

needed for understanding the implementation of this functionality.

3.3.1 Background Technologies

3.3.1.1 EVPath Overview

The Flexpath messaging infrastructure is built on the EVPath [28] event-based trans-

port middleware. EVPath supports the construction of active messaging overlay net-

works. User-defined data filtering and transformation functions reside in lightweight

“stones” that serve as processing points in the overlay, and stones are linked to form

overlay “paths”, where the processes hosting these stones may reside on the same

physical machine, on cluster nodes, or even on machines at different geographical

locations. The filtering and transformation functions run by stones are implemented

by registered call-back handlers written in C and statically associated with stones,

or as inline functions deployed at runtime generated with the CoD (C-on-Demand)

language. The types of EVPath stones used in the Flexpath implementation are the

following:

• Terminal Stone: runs an application-registered call-back handler associated

with an event type; the handler is invoked upon receipt of such an event.

• Multi-Queue Stone: operates over a collection of typed events, and allows users

to implement policies like a tumbling window policy, or perform event transfor-

mations that span multiple event types.

22

• Bridge Stone: is used for network transmission, for communication with stones

in a remote address space.

The additional stone types present in EVPath are described in [28].

Flexpath adopts from EVPath its methods for data serialization, termed Fast

Flexible Serialization (FFS) [27], which means that Flexpath events are comprised of

self-describing typed data elements, with types seen by all of the stones (and func-

tions) operating on those events. The basic types supported are similar to those

present in the C language, but with FFS, those types can be the building block for

event data comprised of complex graph structures. We note that functions coded with

CoD manipulating FFS encoded events can be generated at runtime and dynamically

deployed to stones, in contrast with handlers that are compiled and deployed stat-

ically. Finally, to operate across several diverse communication protocols, Flexpath

uses EVPath’s networking abstraction, termed Connection Manager(CM), which cur-

rently supports as lower level protocols TCP/IP sockets, and via Sandia’s NNTI [47],

also high performance protocols like Infiniband, Cray’s Gemini, and the Bluegene

interconnect.

3.3.1.2 ADIOS Interface

The Adaptable IO System (ADIOS) is an I/O componentization library that exposes

file-like read and write interfaces to applications, with underlying I/O methods in-

cluding disk based methods like POSIX and MPI-IO, and “staging” methods like

Datatap[9], Dataspaces[25], and also Flexpath. With ADIOS, end users can simply

‘switch’ transports, without modifying their codes, using an external XML document

identifying those transports as well as other I/O characteristics, like the variables

to be written, their array dimensions & offsets, etc. We have chosen ADIOS to be

the interface into Flexpath for two reasons: 1) For ease of use by the large number

of existing applications that use the ADIOS interfaces, and 2) as describe in section

23

3.2, there is a natural translation from ADIOS file-based I/O interfaces and type

descriptions to Flexpath’s pub/sub approach.

3.3.2 Implementation

Publisher

Application

ADIOS API

Flexpath Publisher

Buffer
Mgmt

Metadata
Mgmt

Subscription
Spec.

Message Coordinator

EVPath

NNTI TCP/IP ENET

Connection
Mgmt

Shared
Mem

Figure 4: Software Architecture of Flexpath Publishers

Figure 4 depicts the software architecture of Flexpath from the publisher’s per-

spective. The subscriber’s interface is similar, except that it is layered beneath the

ADIOS read interface.

Type Representation The publisher side of Flexpath obtains type information

about data from the ADIOS data descriptor, generated by parsing the XML document

during the adios open call. This information is converted into a FFS format header

24

uniquely identified by a “cookie” transmitted along with the data. Upon the arrival

of an event, if a receiver has not yet seen this cookie, the receiver issues a fetch

request to the sender to obtain the FFS descriptor. This scheme avoids the redundant

transmission of FFS metadata.

Publishing Data Publishers submit their data in Flexpath through the adios write

call, which is called for each variable to be written. Flexpath copies the data into the

appropriate location in the FFS encoded buffer. This extra copy is not inherent to

the pub/sub model, but is performed to satisfy the safety requirement of the ADIOS

interface, which allows user codes to manage their own buffers. At the end of the out-

put epoch, publishers perform a publish operation, available through the adios close

call, which submits the FFS encoded data to the local message coordinator. Addi-

tionally, on the publish operation, if there are any global arrays, we distribute each

publisher’s array offset metadata to all other publishers, so that the subscriber can

ask its peer publisher coordinator for this information directly. This metadata allows

us to extend the traditional definition of types to include local pieces of a larger global

object.

Subscriptions Subscriptions are realized in three steps. First, the subscriber in-

forms its local message coordinator about what variables and slices it needs. The

message coordinator then fetches the global offset information for the given epoch

from its peer writer coordinator and uses this information to determine from which

publishers data is needed. The subscriber message coordinator will then send to each

of those publisher coordinators a fetch message requesting the desired variables and

slices. The offset metadata exchange also serves as our notify abstraction; metadata

is only present for an output epoch if data for this epoch has been published.

In addition to the array slicing style subscriptions, we also allow for subscribers

to specify type transformations, to allow publishers and subscribers to resolve type

25

mismatches. In the example listed in Chapter 2.1.1, the CSYM code actually wants

to receive some data in the form of a bonds-adjacency list, a more complex graph

structure, rather than only the bond-pair integer array published by the Bonds code.

With Flexpath, this is done via transform operators, represented as CoD code or as

a registered transform function. For this example, the transform function is run on

the subscriber side to avoid having to transmit both sets of data.

Message Coordinators Message Coordinators are implemented by EVPath stones,

CoD code, and with call-back handlers. On the publisher side, an EVPath multi-

queue stone serves as an entry point for incoming messages and as the dispatcher

for outgoing messages. Each publisher message coordinator maintains a local in-

memory data buffer for storing published data as well as the associated metadata. It

is this local data store, and separate threads for message processing and communica-

tion that allow Flexpath to have an asynchronous communication mode.. Additional

functionality in message coordinators maintains reference counts to understand when

data has been successfully received by all subscribers and perform subsequent data

eviction operations, etc.

The subscriber’s message coordinator is similar, except that it uses a terminal

stone and call back handlers to invoke necessary state changes, and that received data

is copied into the user’s receive buffer registered through the ADIOS read interface.

3.4 Experimental Evaluation

Flexpath is evaluated experimentally using the Sith cluster hosted at Oak Ridge

National Labs, and on the Windu and Jedi clusters hosted at Georgia Tech. The Sith

machine is a 40 node cluster and each node is equipped with four 2.3 GHz 8 core

AMD Opteron processors and 64 GB of memory. The system offers QDR Infiniband

for Lustre and MPI traffic, and a 1Gb Ethernet link for communication across MPI

domains.

26

Table 2: LAMMPS Pipeline Experimental Setup.
Data Size LAMMPS Helper Bonds
76 MB 128 1 2
153 MB 256 2 4
305 MB 512 4 8
610 MB 1024 8 16

Table 3: Data sizes and core counts for weak scaling experiments

The Windu and Vogue clusters operate as separate Infiniband domains and the

two clusters share a 1Gb Ethernet link for communication between the two. The

nodes in both clusters contain one 2.67Ghz Intel Xeon 12 core processor and 48Gb

ram.

3.4.1 Affect on Application Execution Time

This experiment measures the effect on application level performance when construct-

ing a workflow, using Flexpath as the data exchange mechanism. We measure time

spent on output operations for each component in the pipeline and compare Flex-

path’s performance with that of the MPI Aggregate synchronous disk-based method

offered by the ADIOS interface. The MPI Aggregate method is optimized for parallel

Lustre I/O, and discussion on these optimizations is made available in [45].

We use weak scaling to show how the system behaves both in terms of larger num-

bers of participants and larger data volumes. Table 2 shows the data sizes LAMMPS

produces at each output epoch, and the number of cores on which each code is exe-

cuted. CSYM and CNA are serial codes that always run with an MPI size of 1, so

we exclude them from the table.

Figure 5 shows the total time each component in the LAMMPS analytics pipeline

spends on performing I/O over its full execution. The LAMMPS application expe-

riences a significant decrease in I/O time; when running on 1024 cores, it spends

just over 1.3 seconds on I/O when using Flexpath vs. 117 seconds when using the

MPI Aggregate method. This is directly due to Flexpath’s asynchronous nature.

27

(a) Lammps

(b) Lammps Helper

(c) Bonds

Figure 5: Total Time spent on I/O for LAMMPS and components of analytics
pipeline. The asynchronous I/O offered by Flexpath drastically reduces the time an
application spends on I/O operations.

28

Asynchronous operation also engenders reductions in I/O time for the other com-

ponents in the pipeline, but the decrease is not as drastic, for several reasons: (1)

the analytics components run at smaller MPI sizes than the LAMMPS application,

so for each component process, Flexpath has a much larger volume of data to pro-

cess and move; and (2) the Bonds and CNA components run slower than the others,

so occasionally, there will be blocks in the analytics portion of the pipeline as the

coordinator data stores become full. It is blocking issues in scenarios like these that

motivate the notion of I/O Containers for managing analytics pipelines presented in

[23].

Figure 6 depicts the overall improvements in runtimes for the LAMMPS and

GTS applications. The decrease in the time spent on I/O translates to decreased

run times. We note that there is some disparity between the reduced time spent

on I/O and the total reductions seen in run-times. This is because (i) Flexpath

is an active I/O transport, so it will continue to operate and borrow CPU cycles

during the application’s normal execution; and (ii) with non-blocking asynchronous

I/O, Flexpath data movements may collide with application level communications,

e.g., MPI communications. To alleviate these effects, we can leverage the scheduling

techniques described in [9], but in the experiments shown here, the decrease in I/O

overhead more than compensates for these potential side-effects of asynchronous,

non-blocking I/O.

3.4.2 Subscriptions and Metadata Distribution

The graph shown in Figure 7 shows the time it takes for an idle subscriber to register

itself with an existing data channel. In these experiments, the CNA code sits idle

and waits for an application-level control message from the CSYM code. After this

message is sent, CSYM idles, and CNA activates and joins the Bonds output channel.

The reason we see a linear increase in registration time here is because (i) the CNA

29

(a) LAMMPS

(b) GTS

Figure 6: Total Execution Times for LAMMPS and GTS applications.

30

code is just a serial code that must subscribe to all data from the Bonds application,

and (ii) because Flexpath uses direct connections, which requires the single CNA

process to establish a connection with each Bonds publisher. The time listed here

also includes the time it takes for the subscribers to send their initial data fetch

requests, as outlined in Section 3.3, but these costs are amortized when using the

non-blocking calls the ADIOS read API offers.

The ability to use subscriptions and application level controls to perform such

selective changes in data flow is an important feature when dealing with such large

data volumes. This is because without such functionality, data would be delivered

to subscribers before they need it and in addition, when they no longer need it.

Considering the CSYM/CNA example, without this functionality, when LAMMPS is

generating 610 MB of data, that would require nearly 1.2 GB of data to be transfered

each epoch.

Figure 8 shows the expected costs for collecting publisher metadata and the costs

expected for the subscribers in fetching this metadata from its publisher peer coor-

dinator. This global distribution of the metadata is one feature that allows us to

employ a direct-connect model without using any external metadata services. Since

these costs can potentially be induced after every epoch of data, it is important to

ensure that they are kept low. At 1024 publishers and 8 subscribers, we are spending

less than 15 milliseconds performing these operations. To further reduce these times,

it would be possible to distribute this metadata only when changes occur.

Considering that we use subscriptions to allow subscribers to receive fine-grained

slices of the published data, the overhead involved with distributing this metadata

is much smaller than the overhead of possibly moving large volumes of redundant or

unneeded data.

31

Figure 7: The time needed for 1 CNA process to join the Bonds channel.

3.4.3 Application Level Throughput

Figure 9 shows the aggregate data exchange throughput for the Flexpath system at

increasing numbers of publishers and subscribers. For these experiments, we have

run a two stage pipeline between LAMMPS and Lammps Helper. We conduct these

experiments both on Sith and across the two Georgia Tech hosted clusters. The

graphs show that in both setups, due to Flexpath’s direct-connect model, we are able

to achieve linear scalability as we increase the number of publishers and subscribers.

This end-to-end scalability is achieved because of two key design points: (i) using

subscriptions, subscribers are presented with only the slices data they request, and

(ii) the use of direct connections between publishers and subscribers avoids extra data

movements induced from first moving data to external brokers. Our measurements

32

Figure 8: Time spent on collecting and distributing publisher metadata for one
epoch.

for application level throughput include the round-trip times between a subscriber’s

fetch request to a publisher, the data transfer time, unmarshalling costs, handler

invokations, and copying the data into the user provided buffers.

33

(a) SITH

(b) GT

Figure 9: Application Level Throughput on Sith and across Georgia Tech clusters.

34

CHAPTER IV

SODA: SCIENCE-DRIVEN ORCHESTRATION OF DATA

ANALYTICS

4.1 SODA Overview

SODA (Fig. 10). represents the next level of abstraction for in situ workflow man-

agement, building off results of Flexpath. SODA permits developers to embed an-

alytics tasks into a componentized, dynamically managed execution and messaging

framework, called a workstation. Such workstations have well defined inputs and

outputs [45], can be parallel (MPI or threads), and may exhibit inter-workstation de-

pendencies. Entire I/O pipelines can be constructed by chaining workstations along

their I/O paths.

SODA offers controlled resource usage, per-component orchestration, and metric-

driven operation. Controlled resource usage means workstations provide and manage

resources for the component mapped to it. Per-component orchestration means that

a workstation can offer customized orchestration operations ensuring a component’s

local properties are not violated. Finally, metric-driven operation means that worksta-

tions are continually monitored to provide the runtime with the necessary information

needed to enforce user or application specific metrics.

SODA also provides fault-resilient management through transactional techniques

that guarantee control and orchestration actions taken by SODA do not place com-

ponents into inconsistent states [46]. For example, SODA can prevent resource use

until a different workstation has fully relinquished the resource. Such requirements

become important as I/O pipelines scale geographically [13] as network partitions or

data center outages can render parts of the pipeline inoperable.

35

SODA benefits code usability by allowing code developers to focus on functionality

and algorithmic correctness and aleviates the need for the scientists who later use the

code from the expensive tuning process and profiling runs.

Workstation
Orchestrator

Workstation
Orchestrator

Workstation
Orchestrator

Workstation
Orchestrator

Global
Orchestrator

Analysis Analysis Analysis

Simulation

Storage

Workstation

Workstation Workstation Workstation

Data Movement

Monitoring and
Control Messages

Legend

Figure 10: High-level view of the SODA framework.

SODA, with its well-defined component interfaces and programmatic orchestration

API, exposes primitives for codifying SLAs by specifying appropriate actions to take

when certain conditions are detected. Each workstation performs condition detection

at runtime and events of interest are delivered to the orchestration hierarchy via a

continuous online monitoring middleware.

Using two high end applications, the LAMMPS [53] molecular dynamics and the

GTS [2] fusion simulations, along with different sets of analytics pipelines (Smart-

Pointer [61] and a wave-space analysis code, respectively), we evaluate SODA with

SLAs that include: (1) bottleneck reduction - a global performance-driven SLA that

36

implements “elastic workstations” to remediate detected I/O pipeline bottlenecks;

(2) data reactive - a workstation-level data-centric policy that changes component

behavior based on data feature detection; and (3) fault recovery - a set of policies to

handle an unexpected component departure such as analysis codes on an end-user

device (e.g, a laptop). Experimental evaluations show that active, SODA-based man-

agement can: (1) respond to runtime dynamics at different stack levels; (2) create

and enforce SLAs at multiple granularities in an I/O pipeline; and (3) operate at

large scales with low overheads.

SODA constitutes new functionality in the scientific data management domain.

Current I/O staging technologies do not offer support for dynamically managing

end-to-end properties of tightly coupled analytics running with high end codes. For

instance, earlier data staging work runs statically profiled analysis routines in config-

urations sized for worst case data volumes and processing needs [66]. Similarly, our

recent supercomputer simluation “in-situ” analytics work [67] schedules and manages

only the analytics actions taking place on individual compute nodes without concern

for the I/O pipeline end-to-end properties affected by such nodes.

SODA, building off of Flexpath, is designed for ‘in transit” workflows and is mostly

concerned with coarse-grained orchestration operations where end-user goals can be

met by re-allocating staging resources. However, the SODA framework provides a

hierarchical management model and implementation which serves as a solid basis for

CoApp’s goals.

4.2 SODA Framework

SODA is a set of run-time abstractions for dynamically orchestrating science applica-

tions and their associated analytics executables. Analytics executables are encapsu-

lated in workstations that are connected along their I/O paths to form an I/O pipeline.

Orchestration is conducted through an orchestration hierarchy and is guided by a

37

flexible event-driven monitoring and control infrastructure. Fig. 10 depicts SODA’s

conceptual model.

4.2.1 Assumptions and Desired Properties

Given the assumptions outlined in Chapter 1 and the set of challenges and application

characteristics outlined above, SODA based pipeline orchestration must meet four

design goals. Given the large variety analytics code characteristics and the dynamics

they experience at runtime, it is impractical for a single entity to understand all

analytics in some composed I/O pipelines. Therefore: (1) orchestration routines and

policies should be customizable on a per-workstation basis.

To make decisions at run-time, orchestration functions require information about

when and what actions should be performed. Gathering this data requires continu-

ously monitoring pipeline components for their progress, behavior, and the physical

resources they use. Using this information, orchestration actions can be invoked in

a timely manner. Therefore: (2) orchestration is guided by user-determined metrics

driving per-workstation and cross-workstation (i.e., global) orchestration policies.

Ideally, analytics pipeline components should be decoupled along the time and

space dimensions allowing correct operation depending only on necessary data avail-

ability (i.e., from disk or via the network). With well-defined input and output inter-

faces, analytics actions can be allowed to run independently as separate applications

(i.e., components), and enter and leave the pipeline as needed. This enables using

entirely different, dynamically swappable analytics codes without requiring them to

be integrated into a single executable. Therefore: (3) analytics codes should operate

in a componentized fashion.

Orchestration on one component can jeopardize the execution of other compo-

nents. For instance, consider trading resources between two analytics components

38

when recovering from some detected bottleneck. A failure can occur if one compo-

nent, using incorrect resource state data, attempts to use a resource that has not

been fully relinquished by another component. Therefore: (4) orchestration opera-

tions must be reliable and be resilient to failure.

By meeting these design goals, SODA can be used to realize (1) customized per-

component and global management policies; (2) enabled by online monitoring of

the varied metrics of relevance to different policies; (3) componentized operation

consisting of swappable codes; and (4) made resilient to failure via transactional

control methods.

4.2.2 Conceptual Model

4.2.2.1 Workstations

A workstation, depicted in Fig. 11 allows analytics tasks to be embedded into a

dynamically managed messaging and execution framework. Indeed, it could be con-

sidered as a high-performance implementation of an application service within a Linux

Container. The workstation’s I/O interfaces are similar in concept to those used in

modern Service Oriented Architectures (SOA). The workstation is comprised of a set

of active replicas and a workstation orchestrator overseeing its execution.

Active Replicas. Unlike the replication techniques used in fault tolerant sys-

tems where replicas have identical internal states[31], active replicas in workstations

are key to obtaining scalability: with traditional replication, each replica performs

redundant computations on the same data items whereas active replicas perform their

computations on different epochs of data assigned to them. For the use-case discussed

in Section 4.4.1, data is assigned to active replicas in a round-robin fashion, but addi-

tional communication patterns can be supported. Using active replicas, a workstation

orchestrator can increase its degree of parallelism by spawning a new replica. While

this is similar to how Map-Reduce jobs scale, note that an individual data epoch may

only be able to be processed by a fixed process count and that scalability comes from

39

overlapping processing of different epochs.

Workstation Orchestrator. The workstation orchestrator provides several

functions. First, it collects and organizes relevant monitoring data from its active

replicas and delivers this information to a higher-level orchestrator. Second, it pro-

vides metadata services for its replicas and contains end-point information for replicas

in neighboring workstations. Third, it contains potentially custom management prim-

itive implementations, described next, which allow them to respond to management

requests from higher-level orchestrators.

4.2.2.2 Orchestration Constructs

Hierarchical orchestration affords three primary benefits. First, such hierarchies can

be scaled with ease [59]. Second, distinct per-workstation orchestrators can offer cus-

tomized management routines and separate their local, per-component management

states from global state about entire I/O pipelines. Third, the hierarchy helps de-

fine authority. A global orchestrator is responsible for operations that re-organize

entire pipelines. Workstation orchestrators are responsible for operations affecting

only their components and resources and respond to management invocations from

higher-level (global) orchestrators.

The following core management primitives enable constructing higher-level poli-

cies and operations:

• Increase Workstation: allocate more resources to a workstation with the goal

of increasing scalability.

• Decrease Workstation: deallocate resources to a workstation that may be

relatively over-provisioned.

• Offline Workstation: remove all resources from a workstation and redirect

dataflow from upstream to disk because it is no longer feasible to run a work-

station online due to network partition or insufficient resources.

40

While the per-workstation orchestrator actions listed above are invoked by a global

orchestrator, the concrete steps needed to execute these actions within a workstation

can be customized on a per-workstation basis. For example, when told to “increase”,

a code that cannot operate on data epochs out of order could “increase” by killing

its existing active replicas and spawning with a greater process count.

Codes

Compute Nodes

Workstation
Orchestrator

Codes

Monitoring
and

Control
Messages

Mgmt
Policy

SLA

Data Flow

Figure 11: Workstation abstraction.

4.3 Implementation

4.3.1 Workstation

4.3.1.1 Active Replicas

The implementation of SODA workstations leverages the widely used ADIOS read

and write interfaces [45]. Using these interfaces, analytics codes can specify their

data requirements and establish communication via a virtual file name serving as

a named communication channel. To accommodate orchestration at runtime, the

Flexpath [22] ADIOS transport, which allows for online analytics routines to exchange

data, has been extended to accept and process management messages and state-

change notifications from the replicas’ designated orchestrator. We also modify the

41

ADIOS interface to expose a communicator analytics applications can use to interact

directly with the workstation orchestrator.

Flexpath publishers (ADIOS writers) maintain a queue for each neighboring Flex-

path reader replica in a downstream workstation to hold data epochs. Writers then

assign data to these queues in a fashion determined by the reader workstation. The

current implementation supports round-robin assignment including the case where

one replica consumes all of the work for an existing replica. This is explained in more

detail in Chapter 4.4. Orchestration operations can also lead to internal load balanc-

ing actions to offload work from overly filled queues. Conversely, with a “decrease”

operation, it can re-assign existing work to the remaining replicas.

4.3.1.2 Orchestrators

Orchestrators are written to be run as stand-alone executables. Users can create

custom orchestrators and specify SLAs using a programmatic API described in Sec-

tion 4.3.2. When global orchestrators detect conditions of interest, they invoke com-

mands on workstation orchestrators and then distribute any important state changes

to subsequent workstation orchestrators that require knowledge of such state changes.

Workstation orchestrators are responsible for implementing the commands invoked

on them by global orchestrators and for performing internal actions on the resources

and replicas they manage.

4.3.2 Orchestration Interface

The basic primitives listed in Section 4.2.2.2 are exposed as a C interface. Developers

use this interface to create custom orchestrators if needed. SODA ships with some

default implementations to automate elasiticity and recovery from a failed replica.

To meet an SLA at a global orchestrator, the orchestrator can receive monitoring

information as events and carry out chained primitives to perform actions like resource

trading. When invoked, an orchestration primitive triggers a set of transactional

42

protocols that indicate a participant’s progress and distribute any state changes.

In our current implementation on the Titan machine at Oak Ridge National Labs,

launching replicas is conducted as follows: the workstation orchestrator constructs an

aprun command as a text string writing this command to a file. The PBS job script

(a feature of the PBS job scheduler), regularly scans each workstation orchestrator’s

file for commands. When one is present, it reads and executes it. This implementa-

tion is due to the constraint that only the root node of the job, which executes the

PBS script, can launch MPI-enabled applications on the compute nodes. While this

illustration and the use case presented in Sec. 4.4.1 focus on output queue build up,

management could also be triggered by other factors such as memory consumption

or CPU utilization.

4.3.3 SODA Information Bus

Monitoring, control, and state change messages are delivered via the SODA Informa-

tion Bus, or SIB, implemented using the EVPath [28] event-driven messaging library.

ADIOS

Flexpath SODA Info. Bus

Application/Analytics

EVPath

IB TCP Shared
Mem Gemini

Figure 12: SODA software architecture.

43

Orchestrators and replicas are connected via the SIB’s overlay graph where work-

station orchestrators serve two roles: (1) aggregation points for monitoring informa-

tion, execution metadata, and runtime state information before delivery to the global

orchestrator; and (2) as orchestration operation entry points into a workstation and

the delivery point for state change notifications (i.e., state that determines from who

replicas read data) from neighboring workstations.

Global orchestrators serve as the root of the SIB and accept and organize messages

from all other orchestrators. To ensure strong runtime state information consistency,

the current implementation passes all messages relating to state changes through the

root.

In the case of parallel replicas (i.e., MPI based analytics codes), rank 0 is desig-

nated as the message recipient from the workstation orchestrator. It then uses MPI

to disperse the messages to the remaining ranks. This takes advantage of MPI’s op-

timizations and reduces the number of connections a workstation orchestrator has to

maintain.

4.3.4 Fault Detection and Recovery

The current implementation detects faults in two ways. The first uses application-

level progress indicators delivered via periodic heartbeat messages from an application

replica to its workstation-level orchestrator. The second allows the orchestrator to

receive a notification from the kernel when the connection between an orchestrator and

a replica has been broken. Method 1 does not rely on a specific messaging technology

(e.g., sockets) and can work for a variety of underlying network interconnects with

the disadvantage that the orchestrator must propagate failure notifications through

the SIB to interested parties. Method 2 allows for any component interacting with

it (orchestrators or other replicas in the pipeline) to receive the notification without

waiting for failure alerts to propagate through the SIB. Both methods are explored

44

in our current investigation because they are familiar to end-users and have well-

understood characteristics. Future work will explore more robust fault detection [52,

17] and diagnostic [59] mechanisms.

The specifics of how to recover from a component fault is left to the user via API

calls in the associated orchestrator. For example, issuing an “offline workstation”

operation or spawning a new replica on spare resources (an “increase workstation”

operation). The SODA framework does provide some fixed options configured at

registration time specifying whether components can deal with data loss. For a visu-

alization component operating in a “streaming” fashion, it might be able to tolerate a

few missed frames. For these, we can redirect the data to other replicas that have not

failed or discard the data if none are available. For codes where missing output epochs

could render scientific results invalid, such as stateful codes, we allow for upstream

data publishers to buffer the data, either in memory or by leveraging on-node storage

(SSDs) via EVPath “storage stone” facilities, until the failed replica has recovered.

4.4 Experimental Evaluation

Experimental evaluations are conducted using two machines: (i) the Titan super-

computer hosted at Oak Ridge National Labs and (ii) the Maquis cluster hosted at

Georgia Tech. Titan consists of 18,688 compute nodes each containing 16 cores and

32Gb memory for a total of 299,008 cores and a peek performance of over 20 petaflops.

The Maquis cluster is a 16 node Infiniband cluster with each node having two Intel

Xeon quad core processors and 8GB of RAM.

The LAMMPS molecular dynamics simulation and the SmartPointer analysis

toolkit serve as our application drivers for Titan. We construct two policies to demon-

strate the benefit of the SODA approach and to assess the active management over-

heads. We run the GTS fusion simulation on Maquis and execute the spectral analysis

45

(FFT) code on a machine at a remote location thereby allowing us to test the sys-

tem’s behavior when the pipeline is geographically distributed. We cannot conduct

geographic experiments on Titan as its security policies and firewall settings prevent

this.

4.4.1 Application Drivers

4.4.1.1 LAMMPS and SmartPointer

LAMMPS
Helper

Bonds

CNA

CSYM

LAMMPS

LAMMPS
Orchestrator

Helper
Orchestrator

Bonds
Orchestrator

CSYM
Orchestrator

Global
Orchestrator

Figure 13: I/O Pipeline for LAMMPS with SODA

Figure 13 depicts the I/O pipeline constructed for the LAMMPS (Large Scale

Atomic/Molecular Massively Parallel Simulator) [53] science application using the

SmartPointer analysis and visualization toolkit, both of which were discussed in Chap-

ters 2.1.1 and 2.1.1.1 respectively.

4.4.1.2 GTS and FFT Analysis Code

As an alternative application example, to demonstrate the more general utility of

SODA, we also evaluate our framework with GTS [2], a plasma fusion simulation

with an implementation that exploits coarse grained process level parallelism using

MPI and more fine-grained thread-level parallelism using OpenMP. This “particle in

cell” code has different output frequencies for both particles and mesh-level statis-

tics. To examine the dynamics involved, in particular dangerous transient effects that

46

might damage a real reactor vessel, it is useful to dynamically evaluate and character-

ize particular trends on the inner and outer plasma edges. Unlike the LAMMPS case,

these transients are not as algorithmically identifiable. Secondary analysis methods

are used to infer their existence and then much more detailed inspection involving

direct interaction with the physicists is used to further the investigation. The GTS

analytics pipeline is a spectral code based on the AMD Core Math Libraries imple-

mentation of FFT that ingests the phi and Z-ion output arrays from the simulation.

4.4.2 Management Policies

For LAMMPS and its SmartPointer pipeline, we have constructed two policies:

Quality of Service (Global): the Bonds and CNA codes are slow components com-

pared to the LAMMPS simulation with CNA being the most expensive. Bonds exe-

cutes on every output epoch whereas CNA executes only when CSYM reports a crack.

Depending on the output frequency or how soon a crack is detected, these codes can

become bottlenecks in the pipeline. We create a policy that monitors queue lengths

such that if the global orchestrator detects a growing queue length reaching a size

threshold on some output workstation, we perform an “increase” operation spawn-

ing additional replicas for the slow component. In this pipeline, it is either Bonds

or CNA. This represents a global policy seeking to balance pipeline components to

ensure healthy end-to-end throughput. It also allows for the pipeline to run without

needing to carefully provision both Bonds and CNA codes; the system can handle

the provisioning when needed. While this illustration uses queue lengths, orchestra-

tion could also be triggered by other factors such as memory consumption or CPU

utilization.

Data-centric (Local): requires application introspection into the data based on the

CSYM and CNA components. In contrast to the first policy, the analysis functions

report the metric of interest (CSYM detects a crack) and the orchestration actions

47

(kill CSYM and run CNA) are triggered by the workstation-level orchestrator. This

policy ensures data quality via correct execution of pipeline analysis functions.

For the GTS and FFT example, the analysis running on an end user’s machine

is connected with the simulation code over a wide area network. We evaluate work-

station output latency when faced with an unexpected component departure, e.g.,

when an end user terminates analysis. Three recovery polices are tested. Each in-

volves failure detection on the remote machine and spawning a recovery replica on the

cluster running the simulation. If components need a data guarantee, they can pay

the costs for it. Less critical codes can avoid these extra costs by tolerating missing

output epochs. The first policy allows for data loss while the second avoids it. In

these two cases, the recovery replica is launched in response to a failure notification.

The third policy takes advantage of over-provisioning by the workstation spawning an

additional FFT replica on the compute cluster that remains idle until its orchestrator

detects a failure.

4.4.3 Quality of Data Policy and Microbenchmarks

SODA-orchestrated I/O is beneficial, but it also imposes additional overheads on I/O

pipelines. The following measurements assess the protocol overheads and compare

costs at different scales for operations invoked at different orchestration hierarchy

levels. The measurements shown elide the base constant cost of process instantiation

(e.g., for a workstation increase), as that cost is specific to the underlying machine’s

job scheduler rather than the implementation and protocols specific to SODA. On

the Titan machine, we have seen highly variable launch times, sometimes higher than

30 seconds.

Orchestration costs are governed both by the inherent properties of the man-

agement methods chosen and their underlying protocols and by the scales of inter-

acting workstations. The latter is due in part to the “direct connect” nature of

48

Helper Size 2x16 4x32 8x64
Orchestrators 0.12s 0.126s 0.111s
Helper 0.039s 0.089s 0.158s
Csym/CNA 0.024s 0.031s 0.027s

Table 4: Increase Command Protocol Overhead

Bonds Size 1x256 2x256 3x256
Orchestrators 0.051s 0.074s 0.063s
Bonds 0.026s 0.05s 0.072s

Table 5: Data-Centric Command Protocol Overhead

the Flexpath transport used in the implementation of SODA: Flexpath obtains high

cross-workstation throughput by directly connecting the parallel entities of a previous

workstation to the parallel entities of a subsequent one. This also means, however,

that the cost of distributing certain state changes (e.g., workstation increase) is af-

fected by the size of the neighboring workstations as each of their parallel entities

must be notified about this state change.

Table 4 shows the modest protocol overheads for an increase operation on the

Bonds workstation. The row titled “Helper” represents the time it takes for the

Helper workstation to distribute the Bonds state change. This includes the time

it takes for the workstation orchestrator to send the state change to each replica

(rank 0), and the time it takes for rank 0 to broadcast this change to the other

ranks. The row titled “Orchestrators” is the total time spent for all messages between

the global and workstation orchestrators to trigger the operation, and to distribute

the state changes. As expected, use of an orchestration hierarchy allows for good

scalability, demonstrated by the fact that for measurement, we are increasing the

number of Lammps Helper processes by a factor of 4, but only see a growth of 2x in

terms of protocol cost. Since these management actions do not affect the number of

orchestrators, the communication between global and workstation-level is not affected

by scale.

49

Table 5 shows the cost of the protocol used to enforce the workstation-level data-

centric policy, i.e., switch off CSYM and activate CNA. This represents a control

loop triggered by the workstation orchestrator (when CSYM detects a crack in the

modeled material) that results in a change in the data flow (Helper redirects its output

data to the CNA component). We see scalability traits similar to that of the increase

operation; the reason this command takes much less time to execute is because CNA

is a single replica serial component, so the size of the state message is much smaller.

4.4.4 Throughput Measurements: QoS Policy

This set of measurements demonstrates the utility of a representative performance-

based management policy. We compare the throughput of the SODA-orchestrated

I/O pipeline against that of an unmanaged pipeline, where throughput is represented

as a time series in 30 second increments along the x axis, and the y axis represents

the count of output epochs emitted by the code during that 30 second interval.

Fig. 14 shows the baseline, unmanaged execution, for a LAMMPS simulation

running on 8192 cores and a pipeline comprised of 64 Lammps Helper cores, 256

Bonds cores, and 1 CSYM core. The graph shows that as the output queue for

Lammps Helper fills up, LAMMPS’ throughput drops significantly. This is because

it has to block on its output actions that must wait on queue space to free up.

LAMMPS’ throughput converges to that of Bonds, the slow component, effectively

dropping end-to-end throughput to a third of the ideal target.

Fig. 15 depicts the throughput improvements for a set of QoS-orchestrated runs

that demonstrate the SODA runtime’s ability to provide elasticity at scale. Exper-

iments are run at three scales, with the process counts displayed in Table 6. For

each experiment, the slow workstation is detected and increased by a replica with

the number of processes equal to the size of the initial replica. For these runs, the

crack in the material did not materialize until the end of the run, so that the main

50

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
h
ro

u
g
h
p
u
t

(N
o
.
E
p
o
ch

s)

Interval (30 sec)

Unmanaged Pipeline Execution

LAMMPS (8192)
Bonds (256)

Figure 14: Throughput degradation for unmanaged pipeline.

LAMMPS Helper Bonds CSYM
Fig 15(a) 8192 64 256 to 768 1
Fig 15(b) 4096 32 128 to 384 1
Fig 15(c) 2048 16 64 to 192 1

Table 6: Core Counts for Throughput Experiments

component needing an increase was the Bonds code. Fig. 15(a) shows the through-

put improvements for running with 8192 Lammps cores. The vertical lines represent

when Bonds is increased. For this run, we see that after the first increase (two Bonds

replicas total), we see an improvement in Bonds throughput. However, an additional

increase is needed for Bonds to match the throughput of the LAMMPS simulation.

After this second increase (3 Bonds replicas, 768 cores total), we see that Bonds can

achieve a higher throughput than the LAMMPS application, as it now has sufficient

resources to start to drain the data that has built up in the queue.

Figure 15(b) shows a similar result, where after three increases, Bonds maintains

a slightly higher throughput than the LAMMPS simulation. However, speedup is

insufficient to fully drain the queue in Lammps Helper, so the Bonds code executes

51

somewhat longer. We see a similar phenomenon in Fig. 15(c), where the global or-

chestrator does not increase the Bonds workstation by an additional replica because

the stated policy is to trigger an increase only when two conditions are met: (1) a

maximum queue length of 10 in one of the Helper output queues, and (2) a growing

maximum queue length for 3 consecutive measurements. For the latter two runs,

condition (2) did not trigger. This example illustrates the utility of explicit policy

specification. An alternative policy omitting the second condition would have trig-

gered the additional Bonds increase. An energy-conscious policy might prefer a slight

extension in execution time over the additional energy consumed by using additional

nodes.

Fig. 16 displays the changing queue length, the metric on which we base through-

put management, for an experiment with the same setup as in Fig. 15(a). This

represents the maximum queue length in the Lammps Helper workstation’s output

queue for the Bonds workstation. Here, the x axis represents the output epoch, and

the y axis represents the max queue count when that output epoch is inserted into

a queue. As is evident, the stated management policy is having the desired effect on

its metric of interest.

4.4.5 Fault Recovery Policy

The experimental results reported next have two purposes. First, we want to under-

stand how SODA’s fault recovery operations for an unexpected component departure

affect the applications relying on them. To quantify this, we look at workstation

latency, which measures the time it takes for a workstation to emit an epoch of data.

Second, we want to demonstrate the flexibility the SODA constructs offer to develop-

ers for choosing which tradeoffs make sense for their executions. For all three cases,

we use a heartbeat to detect a component’s departure, where heartbeats are config-

ured to run in 10 second intervals, and a component is considered failed after missing

52

three consecutive heartbeats.

Fig. 17 displays the changes in workstation latency for three different fault-recovery

mechanisms. The x-axis represents the epoch number for a workstation, and the y-

axis represents the length of time between a step and the previous step. The first

time step for each has a high latency, since we use the application start time as the

base.

The first graph, Fig. 17(a), shows the workstation latency when recovering from

a fault, but allowing for data loss, which is represented by the discontinuity for the

FFT line. This has the lowest latency across all three because the previous (in other

words, the older) time steps are simply dropped. Allowing for dropped epochs of data

becomes more even more beneficial with configurations where it is infeasible, in terms

of memory requirements, to buffer multiple timesteps of data.

The second and third graphs show the changes in latency when avoiding data

loss. As expected, we see a higher latency than when allowing for data loss as the

older timesteps stay in the queue. The third graph has a lower latency during the

failure and recovery phases, because the over-provisioning of the codes allowed the

FFT replicas to register with the the orchestrators and get the necessary metadata

to join the stream at the start of the pipeline execution. This process accounts for

the roughly 6 seconds difference between the third and fourth graphs.

In all three measurements, the dominating factors concerning latency are the

heartbeat intervals, the number of missed heartbeats used to detect a failure, and the

GTS application’s own I/O cycle. For the latter, this is a result of the Flexpath pub-

lisher component checking for notifications from the workstation orchestrator when

calls are made into the ADIOS interface. As the graph shows for the GTS latency,

I/O epochs occur about every 8 seconds. Lower latency could be obtained by using

shorter heartbeat intervals.

53

4.4.6 Discussion

SODA-orchestrated I/O pipelines provide elasticity at scale, data-centric manage-

ment opportunities, and configurable fault recovery options for the online analytics

pipelines constructed for high end simulations. Through active replication, elastic

workstations can automatically adjust their data processing throughput to match

application output rates and the behavior of other workstations with which they

have been composed. Performance-driven policies like those pertaining to through-

put can be replaced with alternative policies concerned with end-to-end latency, caps

on energy use, or others, without affecting the implementations of individual analy-

sis components. By exposing SODA controls to applications, orchestrators’ actions

can be based on the receipt of application-specific events, thus enabling a variety of

application-specific SLAs and management policies. By taking advantage of a de-

coupled pub/sub data movement substrate with internal buffering capabilities, we

can provide flexible recovery options to applications so they can handle faults like

unexpected replica departures.

The performance results shown above demonstrate the superiority of managed vs.

unmanaged I/O, guided by simple policies realized with low cost management struc-

tures. While able to scale to the high end machines currently available to our research,

the current management policies implemented for SODA assume each workstation

running on its own dedicated resources, separate from those used by the application.

Management actions that involve scheduling or resource sharing [67] remain part of

our future work.

4.5 Conclusions

The SODA framework presented in this chapter permits users to embed their scien-

tific data analytics tasks into a dynamically managed execution environment that (1)

continually monitors analytics components for metrics of interest, (2) allows users to

54

specify management policies and enforcement operations at different granularities of

the pipeline, (3) provides elasticity at scale for their analytics tasks, and (4) does so

efficiently with low management overheads. The utility of SODA is demonstrated

with three policies associated with I/O pipelines consisting of realistic science appli-

cations and analytics pipelines: (1) a global “quality of service” policy permits an

I/O pipeline to recover from a poor initial resource allocation; (2) a “quality of data”

policy operating at workstation-level allows for new analytics tasks to be injected

into the pipeline to respond to the richness of features discovered in the data; and (3)

fault recovery policies handle an unexpected component departure in a geographically

distributed pipeline.

55

0

1

2

3

4

5

6

7

8

0 3 6 9 12 15 18 21 24 27 30 33

T
h
ro

u
g

h
p
u
t

(N
o
.
E
p
o
ch

s)

Interval (30 sec)

QoS Policy: Throughput Improvement

LAMMPS (8192)
Bonds (256)

(a) 8192 LAMMPS cores with 1 to 3 Bonds replicas of size 256

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
h
ro

u
g

h
p
u
t

(N
o
.
E
p
o
ch

s)

Interval (30 sec)

QoS Policy: Throughput Improvement

LAMMPS (4096)
Bonds (128)

(b) 4096 LAMMPS cores with 1 to 3 Bonds replicas of size 128

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

T
h
ro

u
g

h
p
u
t

(N
o
.
E
p
o
ch

s)

Interval (30 sec)

QoS Policy: Throughput Improvement

LAMMPS (2048)
Bonds (64)

(c) 2048 LAMMPS cores with 1 to 4 Bonds replicas of size 64

Figure 15: QoS Policy: throughput improvements.

56

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

M
a
x
 Q

u
e
u
e
 L

e
n
g
th

Interval

Queue Length of Helper Output Queue

Max Queue Size for Bonds Queue

Figure 16: Change in max queue length for Helper Workstation.

57

 0

 10

 20

 30

 40

 50

 0 50 100

La
te

n
cy

 (
S

)

Output Epoch #

Fault Recovery Policy: Data Loss

GTS (96 procs)
FFT (4 procs)

(a) Fault Policy: Data Loss

 0

 10

 20

 30

 40

 50

 0 50 100

La
te

n
cy

 (
S

)

Output Epoch #

Fault Recovery Policy: No Data Loss

GTS (96 procs)
FFT (4 procs)

(b) Fault Policy: No Data Loss

 0

 10

 20

 30

 40

 50

 0 50 100

La
te

n
cy

 (
S

)

Output Epoch #

Fault Recovery Policy: No Data Loss, Overprovision

GTS (96 procs)
FFT (4 procs)

(c) Fault Policy: Overprovisioning

Figure 17: Failure recovery policy affect on latency

58

CHAPTER V

COAPPS: MIDDLEWARE FOR IN SITU ANALYTICS

5.1 CoApps Overview

CoApps is a demonstration of a full-featured, orchestrated, in situ workflow. By using

CoApps, users can run their workflow components in all styles of in situ without need-

ing to change their code to use different middleware or run times targeted for specific

in situ definitions. Building off the dynamic nature of the previous work, CoApps

can use position independence to perform resource sharing and node consolidation to

better meet user driven goals.

CoApps derives from, and shares concepts with, the more familiar programming

construct of co-routines. Like co-routines, CoApps are capable of holding state across

invocations and they enable fine-grained control over their execution, meaning you can

yield and resume them as needed without corrupting their internal state or correctness

of results. CoApps are also capable of invoking other CoApps (like recursive workflow

models) and returning results to the parent process. These features do not preclude

CoApps from sharing the address space with the parent process and operating as

more traditional co-routines, or even as standard in-line functions.

In contrast to co-routines, the CoApps abstraction is designed to let analysis com-

ponents operate in a completely separate process space from the parent application

allowing for concurrency. By giving analysis components some degree of indepen-

dence, we can also manage them separately from the parent application. For exam-

ple, we can independently scale them or even implement them to use hardware or

run times the core simulation is not equipped to use, such as using the GPU in a

CPU-optimized environment or visa-versa.

59

At an abstract view, CoApps have some resemblance to the functionality Linux

Containers (LXC) [30, 4], and their native management frameworks like Docker[11],

offer. One critical distinction is that we seek to do everything in user space instead of

relying on virtualization technologies. There are several important reasons we do this.

First, such virtualization technology is not readily available on a large number of HPC

leadership machines, like Titan at Oak Ridge National lab. Second, by doing it all in

user space, we can give applications and end users direct control over their resources to

give them great flexibility in how they manage them. A primary goal of virtualization

technologies is to provide a guarantee of isolation as physical resources are shared

across users, while the goal of CoApps is to provide for position independence and

collocation of analysis workflow components. In fact, there is nothing preventing

CoApps from being embedded and deployed using virtualization technologies; CoApps

would provide the application connectivity and SLA management and virtualization

technologies could enable cross-user node sharing and isolation properties.

Node

CoreCore .(.(. Core GPUCore GPU

Hybrid(OS

Landrush Goldrush MPI Flexpath.(.(.

Workstation(Workstation(Workstation(
comm.
policy

Scheduling
policy

CoApps(Runtime Ctrl3&
Introspection

Legend

Application Application Application

Figure 18: High-level view of the CoApps Run Time.

Figure 18 depicts the conceptual view of CoApps implemented within the SODA

orchestration framework. CoApps generalizes the active replica concept from SODA

by taking into consideration collocation opportunities when making orchestration

60

decisions. To enable this, we had to make several modifications to the initial SODA

model, both in the assumptions made and the software artifacts.

5.2 CoApps Design and Implementation

A key assumption made in the initial SODA model was that nodes were relatively

small and homogeneous, and resources would be allocated at whole node granularities.

As we move towards exascale, researchers are testing platforms with a fewer number

of relatively large nodes [1, 5], containing a variety of hardware, making the one-

application per node model sub-optimal. CoApps enables workflows to operate in this

newer environment by enhancing the SODA model to enable collocation of workflow

components. To do this, the SODA framework had to be extended in three concrete

ways. First we needed communication mechanisms to enable position independence

so workflow components can operate in all definitions of in situ and have to provide

strategies to avoid communication interference that arises during collocation. Second,

we need better launching mechanisms than the coarse-grained batch schedulers found

on current generation supercomputers. Finally, we need orchestration and monitoring

constructs to discover and take advantage of collocation opportunities. In particular,

we need to monitor platform utilization to identify spare resources. The first two

extensions are discussed in Chapter 5.2.1 and the third in Chapter 5.2.2.

5.2.1 Communication Mechanisms and Launching

To achieve position independence, CoApps had to make several modifications to the

SODA/Flexpath framework in regards to communication, both within a workflow

component (i.e., MPI style communication) and across them.

Typically, supercomputer users rely on mechanisms such as “aprun” or “mpirun”

to launch their codes, but many supercomputers have strict limitations such that only

one application’s ranks/processes can be executing on a node. It is crucial to our for-

mulation of the CoApp model that we be able consolidate multiple applications on a

61

Rank	0

Rank	N

No
de

	1

Client	A,	0

N+1

No
de

	2

Client	A,	1

Legend

Client	B,	1

Client	B,	0

- Relay	Comm

- Split	MPI	Comm

- Client/Server	msgs

- MPI	Comm

- MPI	msgs

Figure 19: MPI Relay communication with processes launched with fork/exec

node. To get around these restrictions, we rely on standard fork/exec when launching

codes for node-sharing, but we lose the forked application’s ability to use a standard

MPI communicator. When collocating codes on the same physical node, there are

issues of added network traffic which may cause contention leading to severe perfor-

mance penalties for the main simulation[9]. To address both the launch and network

contention issues, we created MPIRelay, depicted in figure 19, which “intercepts” an

application’s MPI call (the MPIRelay client) and relays it to the parent application

owning a fully functioning MPI communicator (the MPIRelay server), which then

performs the MPI operation on behalf of the child process.

MPIRelay provides two modes of operation based on the multithreaded options

MPI implementations offer. In the fully threaded mode (MPI THREAD MULTIPLE),

62

MPI allows for any thread to make calls on an MPI communicator, and if using

one of those implementations, MPIRelay server will create a separate thread to pro-

cess the MPIRelay client’s requests. For MPI implementations that do not support

multithreading, we queue the requests from the client, and provide a function, pro-

cess mpi requests, that the user can periodically call that will process the requests on

the queue.

The lowest MPI rank on each node operates as the MPIRelay server and registers

itself with their Workstation Orchestration from which it receives command messages

specifying the application to fork/exec and its arguments. The server then spawns

the child process sending to it the child’s “MPI rank”, the world size of the child

application, and the server’s communication end point. The child processes then call

MPIRelay init with these arguments, receive an MPIRelay communicator, and then

proceed as normal.

To address communication interference, we use application-level hints, delivered

via the ADIOS interface. Using hints, the higher-priority application can indicate

when it is entering or leaving a communication-heavy phase. Upon entering, a flag is

set and all communication from the child process is delayed until the flag is set back to

off. When the flag is turned off, the client’s MPI communications are then processed.

The current implementation allows the child process’s MPI communication to finish

before subsequent communication is halted, so there will be some overlap, but our

results show substantial improvement over the unmitigated case.

MPIRelay is implemented using the EVPath messaging system and exports a

similar interface to that of MPI (i.e., instead of MPI Bcast, it is MPIRelay Bcast).

The current implementation supports blocking calls and some non-blocking calls

(MPI Isend and MPI Irecv). Future work will put a standard MPI interface on top

of MPIRelay so applications will not have to make any code changes.

63

5.2.2 Monitoring and Control

The CoApps model is more robust than the initial SODA model for two reasons. First,

it can enable collocation of workflow components. Second, it can enable per-node op-

timizations that SODA previously couldn’t, such as communication interference, or

even integrating with other interference management run times such as [67, 33]. To

allow for our run time orchestration hierarchy to make decisions about collocation,

we had to modify the SODA information bus to monitor and collect node-level in-

formation. In the current implementation, we use PAPI based monitoring for CUDA

enabled GPUs and rely on polling the proc filesytem for CPU usage information.

The information bus collects this information at the end of every simulation out-

put phase, within the ADIOS interface, and delivers it to the orchestration hierarchy,

which keeps a history as well as the completion time for that epoch. Tracking com-

pletion time is important as from it, we can track progress and we can determine if

our orchestration decision, i.e., deciding to collocate two components, is a bad one as

it will cause the epoch completion time to increase.

This information is exposed to orchestrators through the SODA programmatic

API and using this information, and the orchestration commands, users can create

rules that check for conditions and then issue actions when these rules are met.

One example that we demonstrate in Chapter 5.3 is that after collocation, we notice

that the epoch completion time for the simulation starts to increase past a user

defined threshold of 10%. The run time then chooses a different collocation strategy

by collocating two analysis components together on a node separate from the core

simulation.

While the current implementation extended the ADIOS API to include markers

to indicate when applications are using the network, we also expect that hints can be

used to indicate a wide variety of special conditions, such as when an application is

entering an adaptive mesh-refinement phase. Enabling such functionality would allow

64

the run time to better understand behavior that deviates from the steady state.

5.3 Experimental Evaluation

The experiments are are evaluated on Oak Ridge National Laboratory’s Titan ma-

chine, described in 4.4 as well as on Falcon, a local Linux cluster at Georgia Tech.

Unlike the earlier experiments on Titan for this thesis, here we use Titan’s NVIDIA

Tesla K20 GPUs when making node consolidation options. Conversely, Falcon is an

80 node infiniband cluster with each node containing 12 cores and 24GB of RAM.

LAMMPS and Superglue are used to demonstrate CoApps ability to reason about

performance and resource utilization and make collocation decisions accordingly.

These experiments are run on Titan at scales ranging from 4096 processes to 16384

processes (one process per core).

For the overhead and interference management experiments, we use I/O kernel

applications to stress the limits of MPIRelay and also to generate large amounts

of interference as the LAMMPS + Superglue experiments do not generate significant

communication interference. These experiments measuring communication overheads

in comparison to standard MPI were conducted on Titan, and the evaluation of MPI

Relay’s interference management was conducted on Falcon in order to show that the

approach is capable of operating on different classes of clusters.

5.3.1 Node Consolidation

LAMMPS and Superglue is used to evaluate CoApps ability to make co-allocation

decisions. In all instances, the workflow is initially deployed with LAMMPS exe-

cuting at 16 processes per node and the workflow components (select, magnitude,

and histogram) are deployed on separate nodes in the staging area at a ratio of 128

Lammps processes to one select and one magnitude process, and 64 Lammps processes

to 1 histogram process. CoApps then monitors, on a per-epoch basis, the resource

utilization and the time the components spend on processing and waiting for data.

65

Using the latter two metrics allows us to reason about each component’s progress and

performance.

We use straight-forward orchestration rules to demonstrate the functionality and

utility of the system; if the summation of resource usage between the two components

does not exceed 100%, and if the throughput of the components (measured as epochs

of data processed per minute) are similar within 5%, we attempt to do a consolidation.

The rules used in these experiments also specify a threshold such that if we cause

the simulation to slowdown by more than 5%, we undo the consolidation and try

a different arrangement. While these rules might not work for all use cases, it is

worth pointing out that using the programmatic API, one could create and try many

different rules or even have smarter orchestration policies; the focus of this thesis isn’t

on the policies itself, but rather on the demonstration of management and agility at

scale.

In these experiments, CoApps detects that the compute nodes have free GPU

cycles and that the analysis components spend over 75% of their time waiting for

data, so it decides to run all three components in situ on the compute nodes with

LAMMPS.

Figures 20(a), 21(a), and 22(a) depict the GPU utilization during each epoch

for the compute nodes and the staging nodes. The compute nodes initially have no

GPU utilization as LAMMPS is running on only the CPU, while the staging area is

executing the GPU enabled histogram. In each instance, when we move to the in

situ case, the GPU usage on the compute nodes increases, but it is less than what

it was in the staging area. This is because we have changed the ratio of histogram

processes to Lammps processes; we moved from a ratio of 64:1 to 16:1. The large

spikes in latency and GPU usage immediately following every reorganization happens

each time the Thrust-GPU-enabled histogram makes the first call to the GPU, and

this is repeatable when running these codes without the CoApps middleware.

66

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

G
PU

 U
til

iz
at

io
n

Output Epoch #

GPU Utilization for Staging and Compute Nodes

Compute Node GPU Usage
Staging Node GPU Usage

(a) GPU Utilization for Compute Nodes and Staging Nodes for Lammps + Superglue

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0 5 10 15 20 25 30 35 40

La
te

nc
y

(S
)

Output Epoch #

Per-timestep Latency

LAMMPS (4096 processes)
Histogram (Various Sizes)

(b) Per-timestep latency for Lammps + Superglue

Figure 20: Node Consolidation (GPU utilization and component latency) at 4096
cores

67

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

G
PU

 U
til

iz
at

io
n

Output Epoch #

GPU Utilization for Staging and Compute Nodes

Compute Node GPU Usage
Staging Node GPU Usage

(a) GPU Utilization for Compute Nodes and Staging Nodes for Lammps + Superglue

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0 5 10 15 20 25 30 35 40

La
te

nc
y

(S
)

Output Epoch #

Per-timestep Latency

LAMMPS (8192 processes)
Histogram (Various Sizes)

(b) Per-timestep latency for Lammps + Superglue

Figure 21: Node Consolidation (GPU utilization and component latency) at 8192
cores

68

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

G
PU

 U
til

iz
at

io
n

Output Epoch #

GPU Utilization for Staging and Compute Nodes

Compute Node GPU Usage
Staging Node GPU Usage

(a) GPU Utilization for Compute Nodes and Staging Nodes for Lammps + Superglue

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 0 5 10 15 20 25 30 35 40

La
te

nc
y

(S
)

Output Epoch #

Per-timestep Latency

LAMMPS (16384 processes)
Histogram (Various Sizes)

(b) Per-timestep latency for Lammps + Superglue

Figure 22: Node Consolidation (GPU utilization and component latency) at 16384
cores

69

Figures 20(b), 21(b), and 22(b) show the component latency, which is a measure

of how long it takes the component to output an epoch of data. For graph clarity, we

only show the latency for Lammps and for the histogram code; select and magnitude

run in less than a second for each epoch of data. In all instances, we see that when

collocating the analysis with the simulation, we generate interference between 10 and

15%, above our threshold of 5%. CoApps detects this slowdown on the simulation

and then moves the analysis codes off of the simulation nodes onto a set of staging

nodes, but keeping the three components collocated on the staging nodes instead of

running on separate nodes. By doing so, we were able to run the same workflow, and

keep the same level of throughput, while decreasing the number of staging nodes by

50%.

5.3.2 MPI Relay Evaluation

MPI Relay is evaluated in two parts. The first part, shown in figures 23, 24, and

25, compares the communication overhead of using MPI Relay and compares it with

native MPI, and the second part (fig. 26 demonstrates the effectiveness of the inter-

ference management strategy.

Since MPI Relay ultimately relies on MPI, it is impossible for Relay to beat native

MPI. The bulk of the additional costs of using MPI Relay are due to the round trip

time of sending data to and from the simulation. In all cases though, the costs of

using MPI Relay grow along with the costs of using MPI. While having additional

overhead is less than ideal, we feel it is acceptable as the analysis components are

often considered optional second class citizens compared to the sacrosanct simulation.

The overheads may be improved with a more robust shared memory transport for

EVPath.

To evaluate MPI Relay’s interference management, we rely on using an I/O kernel

that generates a lot of MPI traffic of mixed message sizes ranging from a few bytes

70

 0

 2

 4

 6

 8

 10

 12

 14

 16

256 512 1024

Ti
m

e
(S

)

Node Counts

Bcast Times for MPI vs. MPIRelay

Native
Relay

Figure 23: Comparison of Broadcast Times for MPI vs. MPI Relay transferring a
1GB buffer

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

256 512 1024

Ti
m

e
(S

)

Node Counts

Gather Times for MPI vs. MPIRelay

Native
Relay

Figure 24: Comparison of Gather Times for MPI vs. MPI Relay tranferring 10KB
buffers

71

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

256 512 1024

Ti
m

e
(S

)

Node Counts

AllGather Times for MPI vs. MPIRelay

Native
Relay

Figure 25: Comparison of All Gather Times for MPI vs. MPI Relay transferring
10KB buffers

 0

 10

 20

 30

 40

 50

 60

 70

 80

16 32 64

Ti
m

e
(S

)

Node Counts

Interference Management using MPI Relay

Native
Colocated

Interference

Figure 26: Interference Management using MPI Relay on University Linux Cluster

72

to 10MB. We run two instances of this I/O kernel, one serving as the high-priority

application owning a full MPI communicator, and the other using MPI Relay. The

goal of the interference management is to reduce the amount of perturbation on

the high-priority application’s communication. Figure 26 is structured as follows.

Native is how much time collectively the I/O kernel spent on communicating when

it was running by itself, with nothing running in situ. The bars labeled “Collocated”

show how the communication time increases when we run another application in situ

using MPI Relay, and finally, the bars titled “Interference” depict the communication

time with interference management turned on. In all cases, we are able to reduce the

overheads by over 50%. One reason for the remaining overhead is that we do not have

any way to stop on-going MPI communication, and for transmitting large messages,

this can be costly. Additionally, the traffic within a node may also cause problems as

MPI and MPI Relay will both collide for intra-node communication.

5.3.3 Discussion

The results presented in this chapter demonstrate the utility of CoApps at both on

enterprise class machines and on smaller university scale clusters. The benefits of

CoApps is shown in in two parts: (1) its flexibility to make collocation decisions and

detect and recover from “bad” collocation decisions due to interference or potentially

other issues; and (2) manage communication interference during collocation. While in

these experiments, collocating the analysis with the simulation induced a performance

penalty, CoApps was able to collocate the analysis codes with each other and reduce

the number of staging resources by 50%. To increase the viability for collocation, it

would be possible to integrate other in situ management run times, such as [67, 33,

37, 55, 50] into our system, but we leave this for future work.

73

CHAPTER VI

RELATED WORK

6.0.1 Communication Mechanisms and Code Coupling

Scalable pub/sub implementations created outside the HPC domain tend to con-

sider workloads comprised of large numbers of small, potentially unrelated, messages.

BlueDove [43] from IBM is an attribute-based pub/sub implementation for elastic

Cloud-based applications, intending to use the Cassandra data store. Since it deals

with small messages, it is able to benefit from the routing of messages to external dis-

patcher servers that also perform subscription matching before delivering the messages

to the subscribers. Flexpath differs in its focus on structured, potentially complex

and voluminous data events transmitted between publishers and subscribers, with its

consequent use of direct connections between both. This is also the case for [16, 41],

which are pub/sub systems that aim to overcome some of the inefficiencies found with

routing messages and subscriptions through processing overlay networks: publisher

messages are first pushed to content brokers, and subscriber subscriptions are then

routed through the network to find the correct overlay node that has matching data.

In the HPC space, the work presented in [38] outlines a content-based pub/sub

infrastructure layered on top of the Dataspaces [25] substrate. The work allows for

introspection into the data, and subscribers can register to receive sub-samples of the

events based on avg/min/max values computed from the data while it is in-flight.

Flexpath differs by (1) using a direct connect model to avoid the extra data move-

ments involved with publishing data to an external broker, as in the shared-space

abstraction offered by Dataspaces; and (2) offering a subscription model that can go

beyond standard array-slicing and chunking to allow publishers and subscribers to

74

produce and consume complex data, including graphs or arrays of complex types;

it also permits codes that may have type-mismatches between publishers and sub-

scribers to exchange data.

6.0.2 Orchestration, Big Data Systems, and Workflow Management

Previous work on datacenter management and for “big data” systems uses techniques

like elasticity and replication to provide scalability and fault tolerance [35, 49, 65, 6],

but do not address directly the end-to-end behaviors and resource restrictions of the

parallel analytics pipelines SODA/CoApps manages. Specifically, with the CoApps

model, we can realize the diverse orchestration semantics needed for such pipelines ex-

pressed with SLAs and drive orchestration actions that implement the limited types of

elasticity permitted by the HPC machine, the degree of reactivity needed for effective

pipeline use, and the desired end-to-end behaviors, such as throughput or latency.

While CoApps may appear like a limited hypervisor, it is not concerned with

node-level partitioning and running multiple entities with performance and security

isolation. SODA workstations are more akin to “resource islands” explored for high

end multicore processors [57]. They differ in the explicit orchestration policies and

actions specification and in enabling custom and application-specific methods for

managing analytics pipelines.

Other HPC-centric work on managing analytics and visualization pipelines [37]

provides adaptation policies at different stack layers (cross-layer adaptation) targeting

an adaptive mesh refinement (AMR) code. It focuses on specific policies at different

layers, to ensure minimal time to solution, whereas our work investigates the mechan-

ics and abstractions of management that would be suitable for analytics pipelines;

the policies discussed in [37] are examples of additional policies suitable for imple-

mentation with the CoApps framework.

75

Initial results [24] demonstrate some of the concepts discussed here, but the work

presented in this paper (1) extends upon the model and orchestration constructs, (2)

explores a wider variety of use cases, including an understanding of how state and

metadata are managed (i.e., quality of data and fault recovery), (3) describes how

SLAs are defined and how policies are constructed to enforce them, and (4) extends

the concepts to pipeline that span multiple machines by leveraging the Flexpath [22]

staging solution operating across a variety of interconnects. Our earlier solution was

implemented with the Cray Portals API [15] and only operated on high end machines.

76

CHAPTER VII

FUTURE WORK

The CoApps abstraction provides a significant improvement over traditional analytics

methods for large scale science applications. There are still, however, many directions

in which the work in this thesis can be augmented and advanced. In particular,

CoApps requires additional efforts in addressing a wider array of hardware expected

to be found on next generation platforms such as other accelerators, burst buffers,

and NVRam technologies. Additionally widescale adoption of new technologies is

highly dependent on programmability and CoApps should take advantage of newer

programming models [12] and workflow construction languages such as Swift [60].

7.1 Utilizing New Hardware Technologies

Another hot area of research in this space is burst buffer technology. The primary goal

of this technology is to shield applications from the performance losses when writing to

global storage systems. Instead, data is captured on node-local storage devices before

eventually making its way to global storage. Following on this, “active burst buffers”

seek to provide the types of in situ analysis we discussed in this thesis with some

added persistence benefits in the data path. Indeed our communication mechanisms

could be augmented to use NVRam or burst buffers to provide greater functionality

such as out-of-core analysis support. We should also leverage the persistence features

of these technologies to explore better ways at addressing fault tolerance.

There are a number of other run times that aim to manage the lower level hardware

to provide features such as multi-tenancy [33] or manage interference [67]. Following

on the results presented in this thesis, integrating other these other run times into

this framework would provide greater in situ and colocation opportunities.

77

7.2 Programmability and Usability

The scope of this thesis did not include an in-depth discussion of the programming

model for workflow construction and management. On-going work relating to parti-

tioned global address space (PGAS) models for code coupling is an important model

to consider given that recent work has explored how PGAS can leverage deep-memory

hierarchies for persistence and other properties.

Domain specific languages like Swift and Legion are also of interest. Currently,

CoApps makes use of shell scripts and Linux system calls for launching and reorga-

nizing workflow components, but languages like Swift provide a much more natural

and programmatic way of describing and executing workflows.

Parallel programming models like Legion and OCR also provide additional parallel

computing models not made readily available using MPI such as task-based paralel-

lism. Supporting different models for parallelism fits into the CoApps model as a key

goal of the orchestration hierarchy is to allow for customized management.

78

CHAPTER VIII

CONCLUSION

The immense data volumes have become a significant performance bottleneck for high

performance scientific applications and dealing with them requires a paradigm shift

in both the applications and the platforms running them. In this thesis, we detail our

vision on how we can bridge the gap between these two orthogonal paradigm shits

using the CoApps model for in situ analytics. CoApps combine low-overhead data

movement using the Flexpath code coupling transport, coarse grain orchestration via

the SODA framework, and fine-grained colocation and resource management using

the CoApps run time, to enable a wide variety of management and re-organization

opportunities at run time.

The use of CoApps extends the locations where analytics functions can execute by

providing end users with a way to write their code generically, via the ADIOS api, and

letting the orchestration hierarchy determine an optimal placement to meet their wide

ranging end goals. Using MPIRelay, end users can also avoid technical/administrative

limitations when using in situ analytics on high-end machines and can also ensure

healthy performance by taking advantage of the communication interference it offers.

In summary, CoApps has been demonstrated to be a viable piece of the solution

towards scalable in situ analytics for the next generation of leadership class machines

and the applications that use them. The combination of efficient code coupling,

location independent analytics components, and colocation are all brought together

in providing new functionality to large scale science workflow. This functionality has

been demonstrated to go beyond static workflows relying on resource overprovisioning,

to offering end users with a more functional way to use exascale resources. Parts of

79

this research have already been adopted as part of the official ADIOS release package

and has been presented as live demos at key conferences, such as Supercomputing.

80

REFERENCES

[1] “Coral supercomputers.”

[2] “Gts gyrokinetic pic code.”

[3] “Hadoop: http://hadoop.apache.org.”

[4] “Lxc-linux containers.”

[5] “Oak ridge national labs summit machine.”

[6] “Storm: Distributed and fault-tolerant realtime computation.”

[7] IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid Com-
puting, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016, IEEE Computer
Society, 2016.

[8] “Superglue: Standardizing glue components for hpc workflows,” September 2016.

[9] Abbasi, H., Wolf, M., Eisenhauer, G., Klasky, S., Schwan, K., and
Zheng, F., “DataStager: scalable data staging services for petascale applica-
tions,” Cluster Computing, vol. 13, pp. 277–290, 2010. 10.1007/s10586-010-0135-
6.

[10] Abbasi, H., Wolf, M., Schwan, K., Eisenhauer, G., and Hilton, A.,
“XChange: coupling parallel applications in a dynamic environment,” in CLUS-
TER, pp. 471–480, IEEE Computer Society, 2004.

[11] AbdelBaky, M., Montes, J. D., Parashar, M., Unuvar, M., and Stein-
der, M., “Docker containers across multiple clouds and data centers,” in 8th
IEEE/ACM International Conference on Utility and Cloud Computing, UCC
2015, Limassol, Cyprus, December 7-10, 2015 (Raicu, I., Rana, O. F., and
Buyya, R., eds.), pp. 368–371, IEEE Computer Society, 2015.

[12] Bauer, M., Treichler, S., Slaughter, E., and Aiken, A., “Legion: ex-
pressing locality and independence with logical regions,” in SC Conference on
High Performance Computing Networking, Storage and Analysis, SC ’12, Salt
Lake City, UT, USA - November 11 - 15, 2012 (Hollingsworth, J. K., ed.),
p. 66, IEEE/ACM, 2012.

[13] Borgdorff, J. and et. al, “Distributed multiscale computing with MUSCLE
2, the multiscale coupling library and environment,” CoRR, vol. abs/1311.5740,
2013.

81

[14] Boyuka, D. and et al, “Transparent in situ data transformations in adios,”
in CCGrid, pp. 256–266, May 2014.

[15] Brightwell, R. and et. al, “Implementation and performance of portals 3.3
on the cray XT3,” in Cluster, pp. 1–10, 2005.

[16] Carzaniga, A., Rutherford, M., and Wolf, A., “A Routing Scheme
for Content-Based Networking,” in INFOCOM 2004. Twenty-third AnnualJoint
Conference of the IEEE Computer and Communications Societies, vol. 2,
pp. 918–928 vol.2, 2004.

[17] Castro, M. and Liskov, B., “Practical byzantine fault tolerance,” in Proceed-
ings of the Third Symposium on Operating Systems Design and Implementation,
OSDI ’99, (Berkeley, CA, USA), pp. 173–186, USENIX Association, 1999.

[18] Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J. P., and Favre,
J. M., “Remote Large Data Visualization in the ParaView Framework,” in
EGPGV, pp. 163–170, 2006.

[19] Chandrasekar, K., Seshasayee, B., Gavrilovska, A., and Schwan,
K., “Task characterization-driven scheduling of multiple applications in a task-
based runtime,” in Proceedings of the First International Workshop on Extreme
Scale Programming Models and Middleware, ESPM 2015, Austin, Texas, USA,
November 15, 2015 (Panda, D. K., Schulz, K. W., Hamidouche, K., and
Subramoni, H., eds.), pp. 52–55, ACM, 2015.

[20] Childs, H., Duchaineau, M. A., and Ma, K.-L., “A Scalable, Hybrid
Scheme for Volume Rendering Massive Data Sets,” in EGPGV (Heirich, A.,
Raffin, B., and dos Santos, L. P. P., eds.), pp. 153–161, Eurographics
Association, 2006.

[21] Childs, H., Geveci, B., Schroeder, W. J., Meredith, J. S., Moreland,
K., Sewell, C., Kuhlen, T., and Bethel, E. W., “Research Challenges for
Visualization Software,” IEEE Computer, vol. 46, no. 5, pp. 34–42, 2013.

[22] Dayal, J., Bratcher, D., Eisenhauer, G., Schwan, K., Wolf, M.,
Zhang, X., Abbasi, H., Klasky, S., and Podhorszki, N., “Flexpath:
Type-based publish/subscribe system for large-scale science analytics,” in 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, pp. 246–255, IEEE Com-
puter Society, 2014.

[23] Dayal, J., Cao, J., Eisenhauer, G., Schwan, K., Wolf, M., Zheng,
F., Abbasi, H., Klasky, S., Podhorszki, N., and y Lofstead, J., “I/o
containers: Managing the data analytics and visualization pipelines of high end
codes,” in International Workshop on High Performance Data Intensive Com-
puting, 2013.

82

[24] Dayal, J. and et. al, “I/O containers: Managing the data analytics and visu-
alization pipelines of high end codes,” in HPDIC ’13, pp. 2015–2024.

[25] Docan, C., Parashar, M., and Klasky, S., “DataSpaces: an interaction
and coordination framework for coupled simulation workflows,” in Proceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, HPDC ’10, (New York, NY, USA), pp. 25–36, ACM, 2010.

[26] Edwards, H. C., Trott, C. R., and Sunderland, D., “Kokkos: En-
abling manycore performance portability through polymorphic memory access
patterns,” J. Parallel Distrib. Comput., vol. 74, no. 12, pp. 3202–3216, 2014.

[27] Eisenhauer, G., Wolf, M., Abbasi, H., Klasky, S., and Schwan, K.,
“A Type System for High Performance Communication and Computation,” in
e-Science Workshops (eScienceW), 2011 IEEE Seventh International Conference
on, pp. 183–190, 2011.

[28] Eisenhauer, G. and et. al, “Event-based systems: opportunities and chal-
lenges at exascale,” in DEBS, 2009.

[29] Eugster, P., “Type-based Publish/Subscribe: Concepts and Experiences,”
ACM Trans. Program. Lang. Syst., vol. 29, no. 1, 2007.

[30] Felter, W., Ferreira, A., Rajamony, R., and Rubio, J., “An updated
performance comparison of virtual machines and linux containers,” in 2015 IEEE
International Symposium on Performance Analysis of Systems and Software,
ISPASS 2015, Philadelphia, PA, USA, March 29-31, 2015, pp. 171–172, IEEE
Computer Society, 2015.

[31] Ferreira, K. and et. al, “Evaluating the viability of process replication reli-
ability for exascale systems,” in SC ’11, pp. 44:1–44:12, ACM, 2011.

[32] Gerofi, B., Takagi, M., Ishikawa, Y., Riesen, R., Powers, E., and
Wisniewski, R. W., “Exploring the design space of combining linux with
lightweight kernels for extreme scale computing,” in Hoefler and Iskra [36],
pp. 5:1–5:8.

[33] Goswami, A. and et. al, “Landrush: Rethinking in-situ analysis for gpgpu
workflows,” in CCGrid ’16, IEEE, 2016.

[34] Hawkes, E. R. and et. al, “Direct Numerical Simulation of Turbulent Com-
bustion: Fundamental Insights Towards Predictive Models,” Journal of Physics:
Conference Series, vol. 16, no. 1, p. 65, 2005.

[35] Hindman, B. and et. al, “Mesos: a platform for fine-grained resource sharing
in the data center,” in NSDI ’11, (Berkeley, CA, USA), pp. 22–22, USENIX
Association.

83

[36] Hoefler, T. and Iskra, K., eds., Proceedings of the 5th International Work-
shop on Runtime and Operating Systems for Supercomputers, ROSS 2015, Port-
land, OR, USA, June 16, 2015, ACM, 2015.

[37] Jin, T. and et. al, “Using cross-layer adaptations for dynamic data manage-
ment in large scale coupled scientific workflows,” in SC ’13.

[38] Jin, T., Zhang, F., Parashar, M., Klasky, S., Podhorszki, N., and
Abbasi, H., “A Scalable Messaging System for Accelerating Discovery from
Large Scale Scientific Simulations,” in HiPC, pp. 1–10, IEEE, 2012.

[39] Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham,
R., Ross, R. B., and Samatova, N. F., “Compressing the Incompressible
with ISABELA: In-situ Reduction of Spatio-temporal Data,” in Euro-Par (1),
pp. 366–379, 2011.

[40] Leibiusky, J., Eisbruch, G., and Simonassi, D., Getting Started with
Storm - Continuous Streaming Computation with Twitter’s Cluster Technology.
O’Reilly, 2012.

[41] Li, G., Hou, S., and Jacobsen, H.-A., “A Unified Approach to Routing,
Covering and Merging in Publish/Subscribe Systems Based on Modified Binary
Decision Diagrams,” in Distributed Computing Systems, 2005. ICDCS 2005. Pro-
ceedings. 25th IEEE International Conference on, pp. 447–457, 2005.

[42] Li, J., keng Liao, W., Choudhary, A. N., Ross, R. B., Thakur, R.,
Gropp, W., Latham, R., Siegel, A., Gallagher, B., and Zingale, M.,
“Parallel netCDF: A High-Performance Scientific I/O Interface,” in SC, p. 39,
2003.

[43] Li, M., Ye, F., Kim, M., Chen, H., and Lei, H., “A Scalable and Elas-
tic Publish/Subscribe Service,” Parallel and Distributed Processing Symposium,
International, vol. 0, pp. 1254–1265, 2011.

[44] Lin, Z., Hahm, T. S., Lee, W. W., Tang, W. M., and White, R. B.,
“Turbulent transport reduction by zonal flows: Massively parallel simulations,”
Science, vol. 281, no. 5384, pp. 1835–1837, 1998.

[45] Lofstead, J. and et. al, “Adaptable, metadata rich io methods for portable
high performance io,” in Parallel Distributed Processing, 2009. IPDPS 2009.
IEEE International Symposium on, pp. 1–10, May 2009.

[46] Lofstead, J., Dayal, J., Schwan, K., and Oldfield, R., “D2T: Doubly
Distributed Transactions for High Performance and Distributed Computing,”
Cluster Computing: To Appear, 2012.

[47] Lofstead, J., Oldfield, R., and Kordenbrock, T., “Unconventional Data
Staging Using NSSI,” in In Proceedings of IEEE/ACM International Symposium
on Cluster, Cloud, and Grid Computing, (Delft, The Netherlands), May 2013.

84

[48] Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E.,
Jones, M., Lee, E. A., Tao, J., and Zhao, Y., “Scientific Workflow Man-
agement and the Kepler System: Research Articles,” Concurr. Comput. : Pract.
Exper., vol. 18, pp. 1039–1065, August 2006.

[49] Moise, D. and et. al, “Improving the hadoop map/reduce framework to sup-
port concurrent appends through the blobseer blob management system,” HPDC
’10, pp. 834–840, ACM, 2010.

[50] Mondragon, O. H., Bridges, P. G., Levy, S., Ferreira, K. B., and
Widener, P. M., “Scheduling in-situ analytics in next-generation applica-
tions,” in IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2016, Cartagena, Colombia, May 16-19, 2016 [7], pp. 102–
105.

[51] Nasgaard, H., Gedik, B., Komor, M., and Mendell, M. P., “IBM InfoS-
phere Streams: Event Processing For a Smarter Planet,” in CASCON (Martin,
P., Kark, A. W., and Stewart, D. A., eds.), pp. 311–313, ACM, 2009.

[52] Peng, D. and et. al, “Large-scale incremental processing using distributed
transactions and notifications,” in 9th USENIX Symposium on Operating Sys-
tems Design and Implementation, pp. 4–6.

[53] Plimpton, S. and et. al, “Particle-Mesh Ewald and rRESPA for Parallel
Molecular Dynamics Simulations,” in PPSC, SIAM, 1997.

[54] Riesen, R., Maccabe, A. B., Gerofi, B., Lombard, D. N., Lange, J. J.,
Pedretti, K. T., Ferreira, K. B., Lang, M., Keppel, P., Wisniewski,
R. W., Brightwell, R., Inglett, T., Park, Y., and Ishikawa, Y., “What
is a lightweight kernel?,” in Hoefler and Iskra [36], pp. 9:1–9:8.

[55] Rodero, I., Parashar, M., Landge, A. G., Kumar, S., Pascucci, V., and
Bremer, P., “Evaluation of in-situ analysis strategies at scale for power effi-
ciency and scalability,” in IEEE/ACM 16th International Symposium on Cluster,
Cloud and Grid Computing, CCGrid 2016, Cartagena, Colombia, May 16-19,
2016 [7], pp. 156–164.

[56] Sahoo, S. K. and Agrawal, G., “Supporting XML Based High-Level Ab-
stractions on HDF5 Datasets: A Case Study in Automatic Data Virtualization,”
in LCPC (Eigenmann, R., Li, Z., and Midkiff, S. P., eds.), vol. 3602 of
Lecture Notes in Computer Science, pp. 299–318, Springer, 2004.

[57] Tembey, P. and et. al, “intune: Coordinating multicore islands to achieve
global policy objectives,” TRIOS ’13, (New York, NY, USA), pp. 4:1–4:16, ACM,
2013.

[58] Vishwanath, V. and et. al., “Toward simulation-time data analysis and i/o
acceleration on leadership-class systems,” in Large Data Analysis and Visualiza-
tion (LDAV), 2011 IEEE Symposium on, pp. 9–14, Oct 2011.

85

[59] Wang, C. and et al, “A flexible architecture integrating monitoring and ana-
lytics for managing large-scale data centers,” in ICAC ’11, pp. 141–150, 2011.

[60] Wilde, M., Hategan, M., Wozniak, J. M., Clifford, B., Katz, D. S.,
and Foster, I., “Swift: A language for distributed parallel scripting,” Par-
allel Computing, vol. 37, no. 9, pp. 633 – 652, 2011. Emerging Programming
Paradigms for Large-Scale Scientific Computing.

[61] Wolf, M., Cai, Z., Huang, W., and Schwan, K., “Smartpointers: Personal-
ized scientific data portals in your hand,” in Supercomputing, ACM/IEEE 2002
Conference, pp. 20–20, Nov 2002.

[62] Wolf, M., Abbasi, H., Collins, B., Spain, D., and Schwan, K., “Service
Augmentation for High End Interactive Data Services,” in CLUSTER, pp. 1–11,
IEEE, 2005.

[63] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley,
M., Franklin, M. J., Shenker, S., and Stoica, I., “Resilient Sistributed
Datasets: a Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in
Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation, NSDI’12, (Berkeley, CA, USA), pp. 2–2, USENIX Association,
2012.

[64] Zaharia, M. and et. al, “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in NSDI 12, (San Jose, CA), pp. 15–
28, USENIX.

[65] Zaharia, M. and et. al, “Spark: Cluster computing with working sets,” in 2nd
USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston,
MA, USA, June 22, 2010, 2010.

[66] Zheng, F., Abbasi, H., Docan, C., Lofstead, J., Klasky, S., Liu, Q.,
Parashar, M., Podhorszki, N., Schwan, K., and Wolf, M., “PreDatA-
Preparatory Data Analytics on Peta-Scale Machines.”

[67] Zheng, F. and et al, “Goldrush: Resource efficient in situ scientific data
analytics using fine-grained interference aware execution,” in SC ’13’, pp. 78:1–
78:12, ACM, 2013.

86

