159,004 research outputs found

    A DATA-DRIVEN APPROACH TO SUPPORTING USERS’ ADAPTATION TO SMART IN-VEHICLE SYSTEMS

    Get PDF
    The utilization of data to understand user behavior and support user needs began to develop in areas such as internet services, smartphone apps development, and the gaming industry. This bloom of data-driven services and applications forced OEMs to consider possible solutions for better in-vehicle connectivity. However, digital transformation in the automotive sector presents numerous challenges. One of those challenges is identifying and establishing the relevant user-related data that will cover current and future needs to help the automotive industry cope with the digital transformation pace. At the same time, this development should not be sporadic, without a clear purpose or vision of how newly-generated data can support engineers to create better systems for drivers. The important issue is to learn how to extract the knowledge from the immense data we possess, and to understand the extent to which this data can be used.Another challenge is the lack of established approaches towards vehicle data utilization for user-related studies. This area is relatively new to the automotive industry. Despite the positive examples from other fields that demonstrate the potential for data-driven context-aware applications, automotive practices still have gaps in capturing the driving context and driver behavior. This lack of user-related data can partially be explained by the multitasking activities that the driver performs while driving the car and the higher complexity of the automotive context compared to other domains. Thus, more research is needed to explore the capacity of vehicle data to support users in different tasks.Considering all the interrelations between the driver and in-vehicle system in the defined context of use helps to obtain more comprehensive information and better understand how the system under evaluation can be improved to meet driver needs. Tracking driver behavior with the help of vehicle data may provide developers with quick and reliable user feedback on how drivers are using the system. Compared to vehicle data, the driver’s feedback is often incomplete and perception-based since the driver cannot always correlate his behavior to complex processes of vehicle performance or clearly remember the context conditions. Thus, this research aims to demonstrate the ability of vehicle data to support product design and evaluation processes with data-driven automated user insights. This research does not disregard the driver’s qualitative input as unimportant but provides insights into how to better combine quantitative and qualitative methods for more effective results.According to the aim, the research focuses on three main aspects:•\ua0\ua0\ua0\ua0\ua0 Identifying the extent to which vehicle data can contribute to driver behavior understanding.\ua0 •\ua0\ua0\ua0\ua0\ua0 Expanding the concepts for vehicle data utilization to support drivers.•\ua0\ua0\ua0\ua0\ua0 Developing the methodology for a more effective combination of quantitative (vehicle data-based) and qualitative (based on users’ feedback) studies. Additionally, special consideration is given to describing the drawbacks and limitations, to enhance future data-driven applications

    Data-Driven User Behavior Evaluation

    Get PDF
    Automotive Original Equipment Manufacturers (OEMs) compete worldwide to stand out with new trends and technologies. Automated Driver Assistance Systems (ADAS) are an example of advanced solutions where a lot of effort is put into the development and utilization of vehicle data. ADAS systems range from different types of information/warning systems to adaptive functions designed to assist the driver in the driving tasks and ensure more efficient and comfortable driving. These types of systems have become standard at many OEMs, including Tesla, Cadillac, BMW, Mercedes, Volvo Cars, and others. Volvo Cars is well-known for the development of such ADAS functions as ACC (Adaptive Cruise Control) and PA (Pilot Assist). These functions offer lateral and/or longitudinal support, but leave the driver in full control and with responsibility for the driving task.The ADAS systems are not fully automated. These systems have a number of limitations related to the context where they can operate. Previous studies have demonstrated that the drivers’ understanding and adoption of these systems is not definite and may vary from full technology acceptance to complete ignorance. Therefore, in-depth understanding and interpretation of driver behavior and needs regarding the use of ADAS can significantly help developers to reflect on and improve the systems to meet the users’ expectations. Recently, the availability of data coming from the in-vehicle sensors network has increased significantly. The amount of received data potentially enables the in-depth quantitative driver behavior evaluation in a time-efficient and reliable way. Moreover, the ability of vehicle sensors and actuator data to synchronize the driver and system performance and assess the driving conditions in the moment of driver-system interaction can contribute to the comprehensive context-aware ADAS evaluation.\ua0 Developing methods for objective assessment of driver behavior is a task with a high level of complexity. This process requires (i) investigation of the driver behavior assessment area where vehicle data can be useful; (ii) identification of the influencing factors for evaluating ADAS functions; (iii) definition of the relevant data for the data-driven driver behavior evaluation; (iv) investigation of the ways to improve the feasibility of vehicle data. The research presented in this thesis focuses on the understanding of vehicle data applicability in user-related studies. The core of this research is the methodology for objective ADAS evaluation and a mixed-method approach that helps to integrate the quantitative methodologies into existing, mainly qualitative, evaluation practices.The conducted research revealed that vehicle data offers the possibility to determine individual user behavior, and to describe, categorize, and compare this to the average within a group. All of the above mentioned makes the applicability of vehicle data for user-related studies meaningful

    An assessment of skill needs in transport

    Get PDF

    A Review of Drivers' Requirements for Guidance and Information in CLEOPATRA Cities.

    Get PDF
    The contents of this working paper were submitted in modified format as the End Users’ Requirements section of Deliverable 1, Work Package 3, of the European Commission DG X111 C Telematics for Transport project CLEOPATRA (City Laboratories Enabling Organisation of Particularly Advanced Telematics Research and Assessment), project no. TR 1012, June 1996. Various studies on drivers' requirements for guidance and information have been carried out in both Europe and the USA. An executive summary of these requirements is provided in the following sub-section. The full details of research previously conducted is given in section 2, where the main findings from a selection of studies are summarised. The subsequent section 3 on Drivers’ Requirements in CLEOPATRA Cities, gives city specific requirements where previous work has been undertaken to assess these as part of work for other European projects. Finally the conclusions on Drivers’ Requirements are summarised in section 4 and research references listed in section 5

    Synergistic Interactions of Dynamic Ridesharing and Battery Electric Vehicles Land Use, Transit, and Auto Pricing Policies

    Get PDF
    It is widely recognized that new vehicle and fuel technology is necessary, but not sufficient, to meet deep greenhouse gas (GHG) reductions goals for both the U.S. and the state of California. Demand management strategies (such as land use, transit, and auto pricing) are also needed to reduce passenger vehicle miles traveled (VMT) and related GHG emissions. In this study, the authors explore how demand management strategies may be combined with new vehicle technology (battery electric vehicles or BEVs) and services (dynamic ridesharing) to enhance VMT and GHG reductions. Owning a BEV or using a dynamic ridesharing service may be more feasible when distances to destinations are made shorter and alternative modes of travel are provided by demand management strategies. To examine potential markets, we use the San Francisco Bay Area activity based travel demand model to simulate business-as-usual, transit oriented development, and auto pricing policies with and without high, medium, and low dynamic ridesharing participation rates and BEV daily driving distance ranges. The results of this study suggest that dynamic ridesharing has the potential to significantly reduce VMT and related GHG emissions, which may be greater than land use and transit policies typically included in Sustainable Community Strategies (under California Senate Bill 375), if travelers are willing pay with both time and money to use the dynamic ridesharing system. However, in general, large synergistic effects between ridesharing and transit oriented development or auto pricing policies were not found in this study. The results of the BEV simulations suggest that TODs may increase the market for BEVs by less than 1% in the Bay Area and that auto pricing policies may increase the market by as much as 7%. However, it is possible that larger changes are possible over time in faster growing regions where development is currently at low density levels (for example, the Central Valley in California). The VMT Fee scenarios show larger increases in the potential market for BEV (as much as 7%). Future research should explore the factors associated with higher dynamic ridesharing and BEV use including individual attributes, characteristics of tours and trips, and time and cost benefits. In addition, the travel effects of dynamic ridesharing systems should be simulated explicitly, including auto ownership, mode choice, destination, and extra VMT to pick up a passenger

    Driving into the sunset: Supporting cognitive functioning in older drivers

    Get PDF
    Copyright @ 2011 Mark S. Young and David Bunce - This article has been made available through the Brunel Open Access Publishing Fund.The rise in the aging driver population presents society with a significant challenge-how to maintain safety and mobility on the roads. On the one hand, older drivers pose a higher risk of an at-fault accident on a mile-for-mile basis; on the other hand, independent mobility is a significant marker of quality of life in aging. In this paper, we review the respective literatures on cognitive neuropsychology and ergonomics to suggest a previously unexplored synergy between these two fields. We argue that this conceptual overlap can form the basis for future solutions to what has been called "the older driver problem." Such solutions could be found in a range of emerging driver assistance technologies offered by vehicle manufacturers, which have the potential to compensate for the specific cognitive decrements associated with aging that are related to driving.Support was received from the Leverhulme Trust, UK

    Data-Driven Evaluation of In-Vehicle Information Systems

    Get PDF
    Today’s In-Vehicle Information Systems (IVISs) are featurerich systems that provide the driver with numerous options for entertainment, information, comfort, and communication. Drivers can stream their favorite songs, read reviews of nearby restaurants, or change the ambient lighting to their liking. To do so, they interact with large center stack touchscreens that have become the main interface between the driver and IVISs. To interact with these systems, drivers must take their eyes off the road which can impair their driving performance. This makes IVIS evaluation critical not only to meet customer needs but also to ensure road safety. The growing number of features, the distraction caused by large touchscreens, and the impact of driving automation on driver behavior pose significant challenges for the design and evaluation of IVISs. Traditionally, IVISs are evaluated qualitatively or through small-scale user studies using driving simulators. However, these methods are not scalable to the growing number of features and the variety of driving scenarios that influence driver interaction behavior. We argue that data-driven methods can be a viable solution to these challenges and can assist automotive User Experience (UX) experts in evaluating IVISs. Therefore, we need to understand how data-driven methods can facilitate the design and evaluation of IVISs, how large amounts of usage data need to be visualized, and how drivers allocate their visual attention when interacting with center stack touchscreens. In Part I, we present the results of two empirical studies and create a comprehensive understanding of the role that data-driven methods currently play in the automotive UX design process. We found that automotive UX experts face two main conflicts: First, results from qualitative or small-scale empirical studies are often not valued in the decision-making process. Second, UX experts often do not have access to customer data and lack the means and tools to analyze it appropriately. As a result, design decisions are often not user-centered and are based on subjective judgments rather than evidence-based customer insights. Our results show that automotive UX experts need data-driven methods that leverage large amounts of telematics data collected from customer vehicles. They need tools to help them visualize and analyze customer usage data and computational methods to automatically evaluate IVIS designs. In Part II, we present ICEBOAT, an interactive user behavior analysis tool for automotive user interfaces. ICEBOAT processes interaction data, driving data, and glance data, collected over-the-air from customer vehicles and visualizes it on different levels of granularity. Leveraging our multi-level user behavior analysis framework, it enables UX experts to effectively and efficiently evaluate driver interactions with touchscreen-based IVISs concerning performance and safety-related metrics. In Part III, we investigate drivers’ multitasking behavior and visual attention allocation when interacting with center stack touchscreens while driving. We present the first naturalistic driving study to assess drivers’ tactical and operational self-regulation with center stack touchscreens. Our results show significant differences in drivers’ interaction and glance behavior in response to different levels of driving automation, vehicle speed, and road curvature. During automated driving, drivers perform more interactions per touchscreen sequence and increase the time spent looking at the center stack touchscreen. These results emphasize the importance of context-dependent driver distraction assessment of driver interactions with IVISs. Motivated by this we present a machine learning-based approach to predict and explain the visual demand of in-vehicle touchscreen interactions based on customer data. By predicting the visual demand of yet unseen touchscreen interactions, our method lays the foundation for automated data-driven evaluation of early-stage IVIS prototypes. The local and global explanations provide additional insights into how design artifacts and driving context affect drivers’ glance behavior. Overall, this thesis identifies current shortcomings in the evaluation of IVISs and proposes novel solutions based on visual analytics and statistical and computational modeling that generate insights into driver interaction behavior and assist UX experts in making user-centered design decisions

    Perceptions of Work-Related Road Safety - Safety Versus Savings

    Get PDF
    In Douglas Adam’s "The Hitchhiker’s Guide to the Galaxy", published in the 1970s, a computer is confronted with the intriguing question: "What is the meaning of life?" After elaborate and tedious number crunching, the computer returns: "The answer to your question is 42". It is obvious, that the monetary valuation of road safety is not an easy task either. In fact, it implies answering an equally difficult and intriguing question – What is the statistical value of a human life? Although various methods and approaches have been put forward to estimate the statistical cost of a road fatality, some scholars argue that valuing fatal injuries and hence human life is virtually impossible. They maintain that people do not nearly have sufficiently accurate preferences to make a sensible trade-off between road safety and money. The (perceptions of) changes in risk levels are so small that making the trade-off is very difficult, if not impossible (Hauer, 1994). However, other road safety costs can be statistically determined and initiatives developed to reduce the burden to both organisations and individuals. Therefore, the topic of this paper is to determine what factors contribute to work-related road incidents and how economic costs to industry organisations could be reduced
    corecore