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ABSTRACT  
  
The utilization of data to understand user behavior and support user needs began to develop in 
areas such as internet services, smartphone apps development, and the gaming industry. This 
bloom of data-driven services and applications forced OEMs to consider possible solutions for 
better in-vehicle connectivity. However, digital transformation in the automotive sector 
presents numerous challenges.  

One of those challenges is identifying and establishing the relevant user-related data that will 
cover current and future needs to help the automotive industry cope with the digital 
transformation pace. At the same time, this development should not be sporadic, without a clear 
purpose or vision of how newly-generated data can support engineers to create better systems 
for drivers. The important issue is to learn how to extract the knowledge from the immense data 
we possess, and to understand the extent to which this data can be used. 

Another challenge is the lack of established approaches towards vehicle data utilization for 
user-related studies. This area is relatively new to the automotive industry. Despite the positive 
examples from other fields that demonstrate the potential for data-driven context-aware 
applications, automotive practices still have gaps in capturing the driving context and driver 
behavior. This lack of user-related data can partially be explained by the multitasking activities 
that the driver performs while driving the car and the higher complexity of the automotive 
context compared to other domains. Thus, more research is needed to explore the capacity of 
vehicle data to support users in different tasks. 

Considering all the interrelations between the driver and in-vehicle system in the defined 
context of use helps to obtain more comprehensive information and better understand how the 
system under evaluation can be improved to meet driver needs. Tracking driver behavior with 
the help of vehicle data may provide developers with quick and reliable user feedback on how 
drivers are using the system. Compared to vehicle data, the driver’s feedback is often 
incomplete and perception-based since the driver cannot always correlate his behavior to 
complex processes of vehicle performance or clearly remember the context conditions. Thus, 
this research aims to demonstrate the ability of vehicle data to support product design and 
evaluation processes with data-driven automated user insights. This research does not disregard 
the driver’s qualitative input as unimportant but provides insights into how to better combine 
quantitative and qualitative methods for more effective results. 

According to the aim, the research focuses on three main aspects: 
• Identifying the extent to which vehicle data can contribute to driver behavior 

understanding.   
• Expanding the concepts for vehicle data utilization to support drivers. 
• Developing the methodology for a more effective combination of quantitative (vehicle 

data-based) and qualitative (based on users’ feedback) studies.  
Additionally, special consideration is given to describing the drawbacks and limitations, to 

enhance future data-driven applications.   
  
  
Keywords: vehicle data, data-driven design, driver behavior assessment, ADAS, Driver Coach 
approach, real-time driver support.   
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I  

“Data is the new oil – and that’s a good thing!”  

– Forbes Technology Council (2019)   

1 INTRODUCTION  
 

The 4th Industrial Revolution, which encompasses artificial intelligence (AI), information 
technologies such as Big Data, Internet of Things (IoT), and Cloud services, enhance the 
exploration of digital possibilities in product development, blurring boundaries between the 
physical and digital products (Söderberg et al., 2017). Digital transformation encompasses all 
aspects of product development, from the early stages when data allows predicting different 
variations in product development, to manufacturing processes where real-time data is used to 
optimize manufacturing processes (Söderberg et al., 2017). After production, data are actively 
used for product evaluation and improvements that take place in the new iteration of product 
development. As a result of this digital transformation, the software industry has grown 
significantly to meet the increased needs for data processing in various product development 
tasks. 

For users, the rise of the IoT and mobile devices inevitably changes human lives and habits. 
Everything is now connected or about to be connected, enhancing user expectations regarding 
new products. Users want to receive the same digital support level, compatibility, and 
connectivity as in other products they use. Thus digital product development became a new 
trend to help products to survive in the market. The product development strategy has shifted 
its interest toward products’ digital features or services, indicating a new area of advancement 
and the grounds for global competition. As a result, an even bigger impact of software-based 
technologies and data utilization is expected on future products. 

However, the process of digital transformation has many challenges. New skills and 
strategies, and new ways of thinking, are required. Today, blind data collection into massive 
databases without understanding how these data can be used in all product development stages 
will not benefit companies. Data requirements should be thoughtfully designed to support the 
early stages of product research, enable product design and features, and support the product 
follow-up process by collecting user feedback regarding product use (Ebel et al., 2021). Such 
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an approach will result in data-driven product development that utilizes the data in the design 
and takes part in iterative verification and validation processes of design features, resulting in 
a better customer experience of the product. 

Compared to other domains, the automotive industry will experience an even more 
comprehensive digital transformation due to the multi-system structure of its end products. 
Today, information technology already forms a significant part of a car, transforming vehicles 
from purely mechanical into mobile computing units on wheels (Tornell et al., 2015). Hundreds 
of sensors support the performance of these systems to enable in-vehicle connectivity, provide 
new functionality, and automate existing features (Orlovska, 2020). In the near future, the fields 
of smart and connected services will continue influencing the future car concept – alongside 
electric mobility and automated driving (Winkelhake, 2019). In-vehicle systems will become 
increasingly more intelligent, eventually taking full responsibility for systems and functions in 
the car, following individual driver preferences (Römer et al., 2016; Gao et al., 2016). 

Advanced Driver Assistance Systems (ADAS), which is the focus of this research, are good 
examples of advanced vehicle systems that provide automation to the primary driving task. 
ADAS are built-in vehicle support systems that provide longitudinal control of a vehicle 
through accelerating or braking in various traffic conditions, and/or lateral control through 
providing steering assistance (Naranjo et al., 2003). The main purpose of ADAS is to support 
and facilitate primary driver activities, providing assistance in real-time driving. The 
development of systems like ADAS has changed the nature of driver activities. Nowadays, the 
driver is cooperating with different automated functions offered by the vehicle. This 
cooperation presumes a good understanding of the system and the functions it provides. 
However, the systems are not fully automated, which means that they have limitations and 
cannot provide the correct support in all driving conditions. The driver is ultimately responsible 
for monitoring whether the system, with the existing limits, can operate under particular driving 
conditions. This supervisory role can be demanding for the driver if she/he does not fully 
understand how the system works. 

Unfortunately, some of the previously conducted research shows that a significant 
percentage of drivers do not fully understand the limitations of driving support systems 
(Llaneras, 2006). A wrong understanding of the system’s limitations creates misconceptions 
between the driver and the system. In many cases, drivers expect the system to be able to handle 
on-road situations when the system activation preconditions are not fulfilled. Moreover, the 
level of automation can differ between two systems in the same vehicle, which means that the 
driver can misinterpret the system capabilities and not engage when the system requires 
intervention from the driver. The study conducted by Jenness et al. (2008), demonstrated that 
drivers’ expectations regarding the system capabilities were higher than the actual capabilities 
of system performance. Consequently, these types of misinterpretations of the ADAS 
capabilities damage driver’s trust and reliance on technology (Itoh, 2012; Kazi et al., 2007) and 
may decrease technology use and acceptance. Therefore, for any automotive OEM that invests 
in the development cost of a new system, a deep understanding, and interpretation of driver 
needs and behavior regarding the use of ADAS is required in order to reflect on and improve 
the systems to meet users’ expectations.  

The improvement of data feasibility that comes with the development of sensors-based smart 
technologies brings new abilities for vehicle systems design and evaluation. Any vehicle today 
generates a large amount of data from sensors that enable the performance of ADAS 
functionalities. The same sensors can potentially provide user-related data on driver 
performance (Orlovska, 2020). Analysis of this data can contribute to a better understanding of 
interactions between driver and system. Moreover, the ability of vehicle data to identify the 
driving event and assess the driving conditions in the moment of driver-system interaction can 
add to the context-awareness of this evaluation. As a result, engineers can have data-informed 
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feedback on drivers’ behavior that automatically captures how users interact with ADAS, when 
they use it, and how they understand the system. This knowledge can be further used to design 
personalized support for each user to motivate the improvement of their behavior, raising the 
efficiency of system use. Motivating drivers to use automation more effectively can be seen as 
a coaching process. If this motivation happens in real-time, drivers can improve their skills and 
adopt new use strategies that could be further developed into new habits. 

 
1.1 DEFINING THE PROBLEM  
The utilization of signal data to understand user behavior and support user needs began to 
develop in sectors such as internet services (Angelini, M. et al., 2018; Carta, T. et al., 2011), 
smartphone apps development (Visuri, A. et al., 2017), the gaming industry (Kim J.N. et al., 
2008)  amongst others. This bloom of data-driven services and applications forced OEMs to 
consider possible solutions for better in-vehicle connectivity. However, digital transformation 
in the automotive sector is highly challenging. Most automotive software platforms were 
initially designed with a limited ability to obtain user-related vehicle data. And today, the high 
complexity of a vehicle makes this transformation too costly and slow compared to other 
industries.  

Nevertheless, the digital transformation in the automotive sector is ongoing. One of the 
challenges is identifying and establishing the relevant user-related data that will cover current 
and future needs, helping the automotive industry to cope with the pace of digital 
transformation. At the same time, this development should not be sporadic without a clear 
purpose or vision of how newly generated data can support engineers in creating better systems 
for drivers. The important factor is to learn how to extract the knowledge from the immense 
data we possess and understand the extent to which this data can be used. 

Another issue is the lack of established approaches regarding vehicle data utilization for 
user-related studies. This area is relatively new to the automotive industry. Despite the positive 
examples from other fields that demonstrate the potential for data-driven context-aware 
applications, automotive practices still have gaps in capturing driving context and driver 
behavior. This lack of user-related data can partially be explained by the multitasking activities 
that the driver performs while driving the car and the higher complexity of the automotive 
context compared to other domains. Thus, more research is needed to explore the capability of 
vehicle data to support users in different tasks. 

 
1.2 RESEARCH FOCUS  
Considering all interrelations between the driver and in-vehicle system in the defined context 
of use helps to obtain more comprehensive information and better understand how the system 
under evaluation can be improved to meet driver needs. Tracking driver behavior with the help 
of vehicle data may provide developers with quick and reliable user feedback on how drivers 
are using the system. Compared to vehicle data, the driver’s feedback is often incomplete and 
perception-based since the driver cannot always correlate his behavior to complex processes of 
vehicle performance or clearly remember the context conditions. Thus, this research aims to 
demonstrate the ability of vehicle data to support product design and evaluation processes with 
data-driven automated user insights. This research does not disregard the driver’s qualitative 
input as unimportant but provides insights into how to better combine quantitative and 
qualitative methods for more effective results. 

According to the aim, the research focuses on three main aspects: 
• Identifying the extent to which vehicle data can contribute to driver behavior 

understanding.   
• Expanding the concepts for vehicle data utilization to support drivers. 
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• Developing the methodology for a more effective combination of quantitative 
(vehicle data-based) and qualitative (based on users’ feedback) studies.  

Additionally, special consideration is given to structuring, developing, and improving the 
feasibility of vehicle data. Hence, additional focus is given to describing the drawbacks and 
limitations with the view to enhancing future data-driven applications.  

1.2.1 Scientific goals  
From the academic point of view, vehicle data utilization is a reasonably new area, with the 
ongoing development of methods for logging, processing, analysis, and visualization of 
interaction data (Visuri A. et al., 2017; Vuillemot R. et al., 2016). The scientific goal of this 
research is to develop a theoretical framework for the efficient use of vehicle data that allows 
driver behavior to be taken into account when evaluating or designing intelligent automotive 
systems.  

Specific research is also addressed to develop a methodology for incorporating newly 
generated data-driven knowledge in the existing methods for user behavior evaluation, and into 
the decision-making processes. Today, there is no single method that helps to capture the 
complexity of user behavior. Therefore, the research should be focused on the effective 
combination of existing methods for user behavior evaluation. The academic acknowledgment 
of such methodology is needed. Thus, the scientific goal of this research is to design methods 
for effective user behavior evaluation utilizing vehicle data, and to study how to incorporate 
these methods into the existing methodologies for user behavior evaluation. 

1.2.2 Industrial goals  
This research project has been carried out in close collaboration with Volvo Cars. The project’s 
overall purpose is to learn how to utilize vehicle signals at the company level to understand and 
support driver behavior for advanced in-vehicle support systems. Thus, the industrial goal for 
this research is to define the scope where the vehicle data contributes to the understanding of 
user behavior, since results solely based on vehicle data cannot uncover all aspects of driver 
behavior. In this step, the validation of obtaining results is one of the primary industrial goals. 
Subsequently, this type of data-driven evaluation can contribute to understanding the system’s 
implications, advantages, and limitations from a user’s point of view. 

To achieve this goal, the following company resources need to be further explored: (i) the 
technical feasibility of vehicle data and their limitations; (ii) the possibilities for further 
development of user-related data; (iii) the means and methods for data acquisition, data 
processing, and data storage. The above-described actions will help build a robust infrastructure 
for data support at the company level. The ultimate goal is to contribute to practical solutions 
for the efficient collection, processing, and use of vehicle data, participate in the development 
of user-related data signals, and drive the improvement of vehicle sensors and data acquisition 
systems. 

Another goal of this research is to understand users’ perceptions regarding data-driven 
services. In particular, if drivers are ready to share personal data with the automotive OEMs to 
receive advanced support, and whether they perceive active support during the driving activity 
as valuable and safe, since safety aspects related to driver distraction during primary driving are 
fundamental.  

1.2.3 Research questions and hypotheses  
This research is based on set hypothesis that the proper specification of vehicle data and 
consequent processing and analysis of these data will support better understanding of user 
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interaction between the driver and the In-Vehicle Information System (IVIS). Based on this 
hypothesis, the author also assumed it is possible to perform in-depth driver behavior evaluation 
based solely on vehicle data, considering the three-fold interrelations between the driver, the 
system, and the context of interactions. As a result of the set hypothesis and assumption, two 
following research questions were identified:   
 
RQ 1:  What vehicle data are relevant to support the understanding of driver behavior?  
 
Thousands of vehicle signals from numerous sensors, actuators, and built-in applications are 
circulated in the vehicle and are available today. It is essential to identify the appropriate data 
points contributing to driver behavior assessment for a particular system or set of systems. Thus, 
this research question relates to what factors are essential for driver behavior evaluation, how 
the interactions between the driver and the system happen, and what data represent the context 
of these interactions. Furthermore, this question relates to automotive OEMs’ limitations 
regarding the data and their utilization in various evaluation types, and the possibilities to 
override these limitations. 
 
RQ 2: How can the data-driven approach be incorporated into existing methods for 

driver behavior evaluation?  
 
Today, there is no systematic approach regarding vehicle data utilization for driver behavior 
evaluation. Traditionally, qualitative methods were adopted and broadly used for human 
behavior understanding. Nowadays, with the advantages of the data-driven approach becoming 
more evident, there is a question of how traditional evaluation can benefit from data-driven 
insights and how combining qualitative and quantitative methods can enrich the overall 
understanding of driver behavior. 

Subsequently, when conducted studies proved the ability of data-driven user behavior 
evaluation, a new hypothesis was set. This time the hypothesis related to the utilization of 
vehicle data for real-time support of driving activities. The author thought that real-time vehicle 
data processing to understand driver behavior can help develop a personalized recommendation 
system to improve driver adaptation to in-vehicle systems. As a result of this hypothesis, 
another research question was set: 

 
RQ 3:  How can vehicle data be used to support users’ adaptation to smart in-vehicle 

systems? 
 
This research question relates to the feasibility of data-driven driver support that happens in 
real-time and aims to provide personalized support, tailored to each driver in the form of active 
coaching during driving activity. This research question presumes the proposal of a novel way 
(for the automotive sector) of data-driven utilization for active coaching and exploring the 
challenges throughout its implementation. 
 
1.3 RESEARCH SCOPE  
Operating a vehicle is a complex and multi-tasking activity. A driver performs vehicle controls 
on the road, gets support and information from multiple in-vehicle systems and functions, and 
interacts with the external environment. Current technologies do not allow us to track and 
understand the complete driver behavior for all in-vehicle systems. To limit the driver behavior 
evaluation scope to a manageable level, this research focused on the driver behavior assessment 
of two ADAS functions, namely Adaptive Cruise Control (ACC) and Pilot Assist (PA).  
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Although ACC and PA provide lateral and/or longitudinal support, they are semi-automated 
systems. This means that these systems leave the driver in full control and with the responsibility 
for the driving task. According to the Society of Automotive Engineers (SAE) classification 
(SAE standard J3016, 2018), six levels of driving automation are defined, ranging from level 0 
(complete manual driving) to level 5 (fully autonomous driving). Figure 1 provides a detailed 
description of the driving automation levels. 

  
Figure 1. Levels of driving automation (SAE standard J3016).  

  
According to the SAE classification, ACC is defined as a Level 1, Driver Assistance system. 
ACC is designed to be a supplementary driving aid and is not intended to replace the driver’s 
attention and judgment. PA is classified as a Level 2, Partial Automation system. Level 2 of the 
SAE classification means that the driver has full responsibility for the driving task even though 
the system can provide braking and acceleration support together with steering assistance. The 
driver has to monitor the driving environment and be prepared to take back control of the system 
at any time.  

Distinct levels of driving automation expect a different level of driver involvement in ADAS 
performance, starting from full control over the ADAS performance and ending up with zero 
interaction with the system. These levels of driver involvement have a significant effect on 
driver behavior. Since ACC and PA are classified as Level 1 and Level 2, respectively, driver 
behavior in this research is a specific behavior connected to Levels 1-2 of automation. On these 
Levels, the driver has full responsibility for the driving activity, and a high level of interactions 
with the function since both the assistance of Level 1 and the automation of Level 2 are very 
limited. Thus, the results of studies conducted in the frame of this research cannot be applied to 
the same systems with a higher or lower level of automation. 

Furthermore, this research is based on ADAS functions and data from one automotive 
company. Even though most car manufacturers offer ADAS functions today, the author 
investigated only ADAS functions designed by a single OEM in this research. The author chose 
two functions, namely ACC and PA, since they were the most advanced yet not well-studied 
functions in their usage and user reaction to them.   

Altogether, this research is grounded on the utilization of vehicle data. CAN (Controller Area 
Network) and FlexRay busses, and built-in GPS tracker are the primary sources in this research. 
Due to the subjective nature of driver behavior, many naturalistic driving studies try to capture 
personal driver data by including the use of advanced technologies, such as eye-tracking, 
reading biological data, and measuring the driver’s psychosomatic parameters. These types of 
data were not collected in this research since it aimed to design for the complete vehicle fleet. 
This means that these types of personal data cannot be used due to legal limitations regarding 
the generation and processing of sensitive data, as well as the complicated and expensive 
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equipment that must be added to the vehicle’s configuration. Moreover, the complexity of such 
a dataset would increase the volume of data collected significantly without providing any 
benefits for the data analysis since the outcomes and meanings of the video stream or eye-
tracking data are often dubious and need additional verification by the use of questionnaires 
(Köhler et al., 2015).  

Considering the above, this research’s primary focus is the design of simple and reliable 
solutions that enable data-driven design and evaluation without additional instrumentation or 
problems related to General Data Protection Regulations (GDPR). In the future perspective, this 
will allow the application of this research results to all vehicles entering the market.   

 
1.4 OUTLINE OF THE THESIS 

The rest of this thesis is structured as follows. First, we present an overview of related 
research in Chapter 2. Chapter 3 presents the approach adopted for this research. Chapter 4 
presents the core findings from the papers appended to this thesis. Chapter 5 is dedicated to 
discussing the results in connection to the research questions. Chapter 6 presents the results and 
the research challenges identified. This chapter also discusses further developments and 
possible improvements related to the results presented in this thesis. 
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2 FRAME OF REFERENCE  
  
This chapter provides an overview of the research area to familiarize the reader with the existing 
terminology, approaches, and methods used within the automotive systems development arena. 

There are several noticeable studies focused on identifying the main elements that build an 
ecosystem for any in-vehicle system development and evaluation (Barbé & Boy, 2008; Harvey 
et al., 2011; Orlovska et al., 2020). According to Harvey et al. (2011), to successfully design, 
evaluate and predict the performance of in-vehicle systems, a comprehensive understanding of 
the task, user, and system is required. Orlovska et al. (2020) underlined the importance of the 
context consideration in driver-system interrelations analysis. The study of Barbé & Boy (2008) 
presents the framework describing five main elements that comprise automotive system 
development and evaluation: namely the driver, the vehicle, the system, the environment, and 
the driving task. In this thesis, the author adopts the vision of Barbé & Boy (2008) to all the 
elements of the interaction (see Figure 2).  

  

Figure 2. Main elements of driver-system interaction in automotive sector 
(Modified from Barbé & Boy, 2008). 
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The following sections define and explore these key elements and present the related work 
on intelligent systems development within and outside the automotive sector.  

2.1 VEHICLE SYSTEMS  
The definitions of vehicle systems spread out from general automotive systems to information 
and automated systems. Since the focus of this work is to explore driver behavior, general 
systems that build the core of any vehicle and support the primary functions of a car (e.g., the 
engine, fuel system, ignition system, electrical system, and other systems) are not the focus of 
this study. Instead, this research focuses on driver behavior with vehicle information and semi-
automated systems, since they depend on the dynamically changing context and are designed 
to keep a driver in the interaction loop, which is essential for driver behavior assessment. 

 
2.1.1 Vehicle Information Systems 

Vehicle Information Systems (Vehicle IS) are socio-technical systems that imply the human-
machine interaction between driver (or any other authorized user, e.g., vehicle owner, co-driver 
or passengers) and vehicle. Vehicle IS back the user with both context- and task-related 
information. The information is typically supported by the ability of hardware and software to 
process digitalized input efficiently. Kaiser et al. (2018) defines Vehicle IS as a “... software 
applications processing vehicle data and/or other relevant data from different sources to finally 
provide valuable and action-relevant information to the vehicle driver and/or to other 
stakeholders”. Thus, the primary goal of any Vehicle IS to support the driver’s decision-making 
process by creating value with the information retrieved from a set of interrelated components 
and helping drivers to improve performance efficiency, increase safety, or better understand the 
processes in the car. To achieve this goal, Vehicle IS must be designed with a clear 
understanding of what could bring value for a driver. Since Vehicle IS are often connected to 
secondary task performance, the biggest challenge is to balance the information provided to the 
driver with the driver’s distraction from the primary driving task. 

A Vehicle IS can provide information to its users throughout different vehicle operation 
phases: before, during, or after the trip is completed. Based on the needs of the vehicle operation 
phase, Vehicle IS can be placed inside the car and then be called In-Vehicle Information System 
or IVIS. Otherwise, Vehicle IS can be portable, such as an app on a smartphone or e-mail based 
statistics (Banski & Faenger, 2017). An IVIS often has a built-in interface and may therefore 
directly use the dashboard or an additionally instrumented screen to provide real-time support 
to its users. In contrast, portable Vehicle IS usually move its interface to mobile devices such 
as smartphones or pads that can work through physical or wireless connections (Ryder et al., 
2017). Due to mobile devices’ connectivity with the car, portable Vehicle IS can support users 
through all vehicle operation phases and can be used before, during, and after driving. Figure 3 
provides a visualization of two Vehicle IS in three operation phases (adapted from Kaiser et al., 
2018). 

 
Figure 3. Vehicle IS in different operation phases. 
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2.1.2 In-Vehicle Automation Systems 
The research community further distinguishes a group of in-vehicle automation systems from 
Vehicle IS (Kaiser et al., 2018). The reason for this is the focus of in-vehicle automation systems 
on excluding a driver from the activity loop and eliminating information flow regarding the 
automated task. An example of in-vehicle automation systems could be active safety systems 
(e.g., Anti-Lock Braking Systems (ABS) or Electronic Stability Control (ESC)) and Advanced 
Driver Assistance Systems (ADAS) represented today by many functions, such as Lane Change 
Assist (LCA), Lane Keeping Assistant (LKA), Intelligent Speed Adaption (ISA), Adaptive 
Cruise Control (ACC), Driving automation systems (e.g., Volvo Pilot Assist). 

ADAS are designed to support the driving task. They are mostly semi-automated systems 
that provide longitudinal control of a vehicle through accelerating or braking in various traffic 
conditions, and/or lateral control through providing steering assistance (Ziebinski et al., 2017). 
Functions such as ACC and Volvo PA  represent well this group of systems on the automotive 
market. With the help of vehicle cameras and a radar system, ACC provides longitudinal control 
of a vehicle through accelerating or braking, according to pre-set speed and time interval to the 
vehicle in front. PA offers the same functionalities as ACC, as well as steering assistance, 
helping to keep the vehicle in its lane at the set speed and preselected time interval to the vehicle 
in front, as long as there are clear markings on the road. Thus, the PA delivers both longitudinal 
and lateral control of a vehicle (Volvo Cars, 2022). Although ACC and PA provide lateral 
and/or longitudinal support, they are semi-automated systems. This means that they leave the 
driver in full control and with the responsibility for the driving task.  

Three organizations, namely the Society of Automotive Engineers (SAE, 2014), the United 
States National Highway Traffic Safety Administration (NHTSA, 2013), and German Federal 
Highway Research Institute BASt (Gasser & Westhoff, 2012), have independently formulated 
definitions that classify automated driving systems, from driver assistance to full automation. 
Although the definitions of SAE, NHTSA, and BASt differ, the criteria used by these 
organizations to classify levels of automation are similar (SAE, 2014). The most important 
criteria are how the three primary driving tasks (i.e., lateral control, longitudinal control, and 
monitoring) are distributed between the driver and the automated system. Therefore, in this 
research, we adopted the SAE classification (see Figure 1) that defined six levels of driving 
automation, ranging from level 0 (complete manual driving) to level 5 (fully autonomous 
driving). 

Even though PA offers lateral and longitudinal support, it leaves the driver in complete 
control and with full responsibility for the driving task. According to the manufacturer, the 
functions ACC and PA cannot cover all driving situations, traffic, weather, and/or road 
conditions. Moreover, PA requires clear markings on the road in order to function. The 
manufacturer further states that PA is not recommended to be used in demanding driving 
conditions, such as city driving or other heavy traffic situations, in slippery conditions, when 
there is a great deal of water or slush on the road, during heavy rain or snow, during poor 
visibility, on winding roads, or on highway ramps (Volvo Cars, 2021). The described 
limitations show that PA cannot operate in specific driving conditions. This means that the 
ability of the driver to understand and recognize these limitations while driving becomes 
critically important.  

Similar to PA, many ADAS remain at early levels of driving automation, meaning that a 
driver has full responsibility to control the performance of these systems. Hence, the 
information flow could increase rather than decrease since a driver should get information 
regarding both system behavior (to identify the critical moments when the system cannot 
support fully) and the usual informational support on maintaining the factual interaction with 
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the system. Therefore, according to the author’s understanding, ADAS remains a part of the in-
vehicle information systems, since ADAS users might need even more information flow than 
regular Vehicle IS that lack automation. 

 
2.1.3 Vehicle data  

Almost every automotive system today is powered by data. The number of in-vehicle systems 
in one car is much higher than in most other products. Hence, the volumes of data needed to 
support vehicle performance are excessively high. Moreover, the continuously growing 
connectivity trend dictated by other industries brings in new customer demands for always-on 
in-vehicle connectivity (Tornell et al., 2015), which results in supporting IoT, ubiquitous 
computing, and generating a new set of data to provide connected services. Nowadays, 
automotive OEMs generate enormous amounts of data in volume, with high velocity, in real-
time, to support the development of automated processes and ensure the performance of Vehicle 
IS.  

According to Kaiser et al. (2018), Vehicle IS can be understood as a software systems 
processing relevant data from different sources to provide valuable and action-relevant 
information to the vehicle driver or other people in the car. To describe the transformation of 
vehicle data into useful information, the data value chain proposed by Curry et al. (2016) can 
be applied. Figure 4 describes the vehicle data value chain processes, from data generation to 
information utilization. 

 

 
 

Figure 4. Vehicle data value chain (Curry et al., 2016). 
 
Alongside the system performance support, the vehicle data analysis gives us the possibility of 
context-aware user behavior evaluation and indicates how well the user understands the system 
functionality. Vehicle data also offers the ability to determine certain trends in user behavior, 
as well as identify specific use errors, the usage of a particular function, and other usability 
issues (Orlovska et al., 2020). Additionally, the ongoing research on the quality of vehicle data 
and its applicability has a positive effect on the feasibility of this data, which has been gradually 
improving over recent years. 

Hence, if data are one of the key sources for Vehicle IS, then data analytics is the key to 
maximizing its value. The data generated by modern Vehicle IS are usually integrated from 
multiple data sources, are of enormous size, have high complexity, and are represented by low-
level signals that, without additional computation, cannot be easily interpreted by humans in 
raw form. Therefore, the data should first be transformed into meaningful pieces of information 
(Kaiser et al., 2018) and then outputted to the driver in the form of driving metrics (e.g., fuel 
consumption). Another way of using data is to use data bits as input to a statistical model that 
will generate new insights with the help of advanced methods. For example, the “driver 
distraction” metric cannot be directly captured and understood. The statistical model for “driver 
distraction” identification would include complex relations of various driver behavior 
indicators and their consistency over time. Machine learning algorithms are often used to “train” 
data in the statistical model and calculate properties of data that are related to the parameter(s) 
of interest. 
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Besides direct vehicle data, Vehicle IS can utilize cloud data, data from mobile devices, 
and/or connected services. Even driver behavior data could be part of the Vehicle IS 
computations formulas. However, when data from humans are utilized, GDPR legislation must 
be applied, protecting data exploitation for other purposes. The process of data sharing is often 
connected to driver trust. Driver consent is easier to acquire for built-in IVIS designed by 
automotive OEMs, often due to the driver’s confidence in the OEM or their desire to enable 
intelligent in-vehicle functionalities. The external Vehicle IS often have problems with driver 
consent; low trust in the developers, the risk of private data leaking, and the use of these data 
for different purposes often hinder the acceptance and dissemination of these systems. 

In contrast, In-Vehicle Automation Systems mainly utilize vehicle data as a faster and more 
reliable data source. In-Vehicle Automation Systems are mostly performance-related rather 
than behavior-related since they normally process and analyze live performance information 
without saving the data for retrospective use. 

 
2.1.4 External data acquisition systems 

In the R&D area, access to direct vehicle data is usually limited due to data protection policies 
applied by automotive OEMs. To test their concepts and models, researchers, both in academia 
and industry, have to refer to external acquisition systems to obtain the required data. This 
creates a number of drawbacks compared to direct vehicle data processing. These drawbacks 
will be further described in the following sections. 

Nevertheless, these external acquisition systems are developing in parallel with the 
improvement of the automotive platforms and represent intermediate solutions to support the 
current needs for data-driven evaluation. Today, to achieve the required data collection, an 
external wireless communication and data acquisition unit needs to be installed in all test 
vehicles. It enables the management of the data from the vehicle fleet by keeping track of map-
based positioning, mileage, uptime, and diagnostic codes. In this research, we used the WICE 
external data acquisition system to retrieve and process the data. The WICE system is an 
external wireless communication and data acquisition unit that requires installation in the test 
vehicle. It supports the testing and validation stages of automotive development by efficient use 
of telematics technology and global coverage (Johanson, 2017). The WICE system consists of 
two major parts: (i) Wireless Communication Unit (WCU) – the hardware unit that supports 
communication interfaces for data logging and measuring, including telematics services (types 
of logged data include CAN bus and FlexRay bus, analog inputs, digital inputs, USB and 
Ethernet data); (ii) Back-end server infrastructure includes the web-based front-end user 
interface, including data storage units and database with meta-information. 

Overall, the system provides metrology services from connected vehicles, including a 
collection of measurement data signals of various types (logs, signals, images, video, etc.). The 
WICE system can manage vehicle fleet information by keeping track of map-based positioning, 
mileage, uptime, Diagnostic Trouble Codes, etc. Figure 5 shows the high-level architecture for 
WICE data logging and the real-time data processing system. 
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Figure 5. A high-level overview of the WICE-system communication infrastructure. 

 
The WICE portal is a complex software providing server-side functionality for vehicle testing, 
verification, and development. The WICE users interact with the system through the web front-
end that gives users access to the WICE application services and data. The WICE portal 
implements the core functionality of the supported services, including fleet management of 
connected vehicles, tasks and data management, user management, as well as administration. 
The telematic services provide the communication interface to the connected vehicles. Every 
connected vehicle has a WCU installed in the car. The WCU hardware unit contains monitoring 
and diagnostics modules and enables in-vehicle data capture, including GPS positioning and 
vehicle status information. The state of the WICE system is kept in the WICE database. The 
measurement data logged from vehicles is stored in the WICE file store, large volume storage 
based on the data lake concept. 

However, this approach has its limitations. To provide the required data, every vehicle needs 
to be additionally instrumented with an external acquisition system. This does not allow the 
OEM to expand the study to the whole vehicle fleet of real users. The OEM’s employees who 
use instrumented vehicles and share the data might cause a bias, being often far more 
experienced in using support systems due to their work tasks and engineering backgrounds. 

Moreover, currently, no systematic approach regarding the use of vehicle sensors data has 
been developed, and vehicle data are not used to full capacity. While vehicle data are 
extensively used for system performance verification, they are less used for driver performance 
evaluation and driving context assessment. Therefore, this research project can be of benefit to 
engineers, enabling them to further develop the tools and methods for more effective ways of 
data collection, data processing, and data applicability. 

 
2.2 TASK 
Driving is a complex, multitasking activity (Regan et al., 2009). It consists of interactions 
between the driver, the car, and the environment (Rakotonirainy & Tay, 2004). A driver 
performs many different tasks while continuously monitoring the dynamically changing driving 
conditions. However, not all performing tasks are equally important. The automotive context 
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distinguishes two types of tasks: primary (supporting the driver with driving activity) and 
secondary (supporting the driver with additional comfort and information).  
 
Primary driving tasks  
A driver’s primary goal is always to operate the vehicle safely (Lansdown, 2000), following all 
road and traffic regulations. Thus, primary driving tasks involve maintaining safe longitudinal 
and lateral positions and detecting and responding to hazard situations while navigating a route 
(Seppelt & Wickens, 2003). Tasks supporting longitudinal control are accelerating, braking, 
choosing the speed, and keeping a safe distance between cars, while tasks supporting lateral 
control of the vehicle refer to steering, lane choice, and maneuvering (Hedlund et al., 2006). 
Further, the situation assessment involves the following tasks: monitoring the roadway, 
checking the mirrors, and checking the dashboard displays (Mitchell, 2009; Angell et al., 2013). 
 
Secondary (non-driving-related) tasks 
Hedlund et al. (2006) defined secondary tasks as the range of tasks performed by the driver and 
not related to driving. Secondary tasks aim to enhance the driving experience while addressing 
the driver’s needs (Engström et al., 2004). Secondary functions provide information about the 
trip and the vehicle in the form of traffic information or navigation that support driver decisions 
(Seppelt & Wickens, 2003). Additionally, secondary functions aim to enhance driver comfort 
by providing entertainment (e.g., radio, MP3 or TV/DVD), communication means, climate 
control, seat/wheel warming, to name just a few. 
 
Handley (2021) introduced a model where he summarized the knowledge on primary and 
secondary tasks to a specified level of detail, pointing out relevant interfaces or actuators (see 
Figure 6). 

 
  

Figure 6. Driving tasks description model (Handley, 2021). 
  
Since ADAS, according to its definition, supports primary driving tasks, automating one or a 
few driving tasks, this thesis is concerned about the driver’s interaction with primary driving 
tasks. At the same time, the Driver Coach application, designed as a proof of concept in this 
thesis, provides informational support and, therefore, is part of the secondary tasks for a driver.  
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2.3 WHAT IS CONTEXT? 
Context plays a central role in the development of any intelligent system. The early notion of 
context was mainly concerned with the time and place of a particular event. Since then, 
increased data availability and technical advances have allowed for more complex context 
representation, including information about a person, system, and interacting environment.  

The most cited definition of context is by Dey (2001), who defines context as “... any 
information that can be used to characterize the situation of an entity. An entity is a person, 
place, or object that is considered relevant to the interaction between a user and an application, 
including the user and application themselves.”  

Winograd (2001) had a different view on the context, criticizing Dey for being too broad on 
the context description. According to him, “Something is context because of the way it is used 
in interpretation, not due to its inherent properties”. If there is no action by the user or computer 
whose interpretation depends on the particular parameter, then it is just a part of the 
environment, not the context. 

Dourish (2001) explained the differences in defining context by different research 
approaches, from Positivist and Phenomenological research theories. Positivist theories strive 
to reduce social phenomena to simplified models that capture underlying patterns. According 
to the Positivist theory, the context can be described regardless of the actions taken. Therefore, 
Dey’s definition is consistent with this view. In contrast to Positivist, Phenomenological 
theories say that the world, as we perceive it, is a result of interpretations. Therefore, context 
arises from the activity and cannot be described on its own. 

In this thesis, the author adopts a Phenomenological approach, claiming that defining the 
scope of the context should be performed with reference to the designed system, its application 
domain, and usage environment. According to this approach, two different car systems will 
most likely have a distinct usage context, despite the common description in the car 
environment. The usage context will consist of a tailor-made description of variables taking 
part in the context interpretation by our logic.  

Later work, focusing on further defining context, recognizes different types of contexts and 
introduces categories of context. Thus, Zimmermann (2007) derived five main context 
characteristics, namely: individuality, activity, location, time, and relations. Soylu et al. (2009), 
in their survey, went even further, introducing device, application, information, and historical 
contexts, breaking them down into subcategories such as internal/external (for user), hardware/ 
software (for the system), hardware/software (for device context) and other. This indicates the 
necessity of defining the context for each smart system individually, depending on its 
complexity, purposes, interacting space, and ways the interaction with a user is organized. 

 
2.3.1 Driving context 

One more context classification needs to be derived in the automotive sector, namely the driving 
context. The vehicle’s system is continuously operating under conditions to which it must adapt. 
These conditions arise due to external factors, both static and dynamic. Static context factors 
are mostly related to road infrastructure. The dynamic characteristics are related to the traffic 
density, weather conditions, and other unforeseen events, such as accidents, road works, 
pedestrians, or other non-static road participants and objects that have an unpredictable effect 
on driving. 

According to Zhai et al.’s (2018) definition, driving context summarizes external factors that 
affect driver behavior while using the evaluated system. However, in the context of smart 
automated systems like ADAS, both a user and the system itself could react to the driving 
context change due to the development of automated solutions for reading driving context 
(Orlovska et al., 2020). 
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Thus, for systems like ADAS, the driving context could be defined as the aggregation of 
traffic, road, and weather conditions that affect the ADAS performance and/or driver 
performance, encouraging or discouraging ADAS use. Moreover, as for any other type of 
context, the description of the driving context is not something predetermined or enduring. 
Since context is system dependent, it should be derived on a case-by-case basis. 

 
2.3.2 Context-aware systems 

The concept of context-awareness refers to both Vehicle IS and in-vehicle automation systems 
that consider the relevant context to provide end-users with information and/or services. 
According to Dey et al. (2001), the context is used to present information and services to users, 
ensure system performance, and tag context to information for later retrieval. Thus, context-
awareness can be defined as adaptiveness to changing circumstances and responsiveness, 
according to the context of use. Context can refer to real-world characteristics, such as 
temperature, time, or location. The user can update this information manually, or the system 
can retrieve contextual data from sensors, connected devices, or applications. Some examples 
of context-aware services could be real-time traffic information or real-time route updates for 
a vehicle user. 

While the definition for the context-aware system is relatively simple, practical 
implementation, according to Satyanarayanan (2001), brings many challenges and issues for 
consideration (see Figure 7). 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Issues in context awareness (Satyanarayanan, 2001). 
 

Thus, the design of context-aware systems is not a trivial task. Wei & Chan (2007) specify four 
major areas where Satyanarayanan’s questions could be placed: defining the context, acquiring 
the context, modeling the context, and adapting to contextual information. When we talk about 
how to determine the context, it is important to understand that context is system specific. It 
consists of any information that needs to be utilized to model an adequate context model that 
ensures the complete understanding of the user and system reasonings. System-specific context 
means that the context of one system may make no sense to the other (Wei & Chan, 2007), even 
if we talk about two similar systems in the same car or two applications in a mobile phone.  

Context acquisition implies the collection of environmental information defined as a context. 
This is usually done through physical sensors, social (media) sensing, and the output from other 
systems or services that play a role in system reasoning or user interpretation of the situation. 
The context acquisition could consist of direct and indirect signals. Direct low-level signals 
could represent pieces of the context by themselves. For example, activating the fog lights in 
the car describes visibility on the road. Indirect low-level signals are collected to obtain a 
meaningful context understanding by learning the event based on several indirect parameters 

Implementing a context-aware system requires many issues to be addressed. For example: 
 
• How is context represented internally? How is this information combined with the system and 

application state? Where is context stored? Does it reside locally, in the network, or both? What 
are the relevant data structures and algorithms? 

• How frequently does context information have to be consulted? What is the overhead of taking 
context into account? What techniques can one use to keep this overhead low? 

• What are the minimal services an environment needs to provide to make context-awareness 
feasible? What are reasonable fallback positions if an environment does not provide such services? 
Is historical context useful? 

• What are the relative merits of different location-sensing technologies? Under what circumstances 
should one be used in preference to another? Should location information be treated just like any 
other context information, or should it be handled differently? 
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that do not represent something significant by itself. As an example, driver distraction 
identification could be used. No signal represents the driver’s distraction by itself. Usually, 
researchers create modules where different behavioral parameters are collected and analyzed in 
combination. This cumulative analysis of the driver’s behavior data helps reasoning regarding 
driver distraction in a particular moment or situation. In such cases, pre-processing of signals 
data is required, followed by segmentation, classification, or feature extraction to obtain a 
meaningful understanding of one piece of context. Moreover, a data fusion concept is often a 
part of context acquisition, since integrating multiple data sources for the same target often 
produces more accurate and verified information than that provided by any individual data 
source. 

Context modeling refers to a signal-based representation of the real part of an environment 
relevant to the context-aware system. The main requirements set for data modeling are an 
adequate and accurate representation of the context and flexibility of its structure for further 
handling. Thus, Wei & Chan (2007) highlight the importance of data structure, integrity, and 
manipulation for context modeling, emphasizing the representation, structure, and organization 
of contextual data and its relations. According to them, an adequate data structure facilitates 
exchanging context information inside and between smart systems and simplifies the processes 
related to context information storage, validation, modification, retrieval, and reasoning. 
Integrity in context modeling refers to validating both the structure completeness and the ability 
of context information to represent the real context, since a highly dynamic context often leads 
to its ambiguity. Manipulation defines the set of operators that can be applied to the data 
structure, including context reasoning. Data structure and the data integrity of a context model 
affect the context manipulation abilities. 

Adapting to context is the main principle for context-aware systems that refers us back to 
the context-aware system’s definition. A context-aware system reacts to a context change and 
provides its services considering this change. Therefore, the most important factor at this point 
will be to decide what should be affected by the context change, how to adapt user behavior to 
contextual changes, and when is the appropriate time for these adaptations. For example, the 
most advanced context adaptation takes place in the system’s run time so that the user 
adaptation happens in real-time. All these questions about what, how and when, related to 
context reasoning, should be designed for each system individually and be precisely described 
in the logic. 

 
2.3.3 Smart systems 

Smart systems incorporate a context-aware vision of the situation using sensors and intelligence 
to describe and analyze a situation and make decisions grounded on the available information 
in a predictive or adaptive manner, thereby performing smart actions. Usually, the system’s 
intelligence refers to an autonomous operation based on closed-loop control and networking 
capabilities. 

Although the research community struggles to develop a universal definition of smart 
systems (Romero et al., 2020), and most research for smart systems development is domain-
dependent, there are several commonalities that any smart system should have. Smart or 
Intelligent systems commonly incorporate diverse components, such as (1) sensors and other 
means for signal acquisition, (2) technologies transmitting the information to the control unit, 
(3) control and decision units that give instructions based on the available information, (4) 
components conveying decisions and instructions, and (5) enablers that trigger the required 
action.  

A study by Romero et al. (2020) defined eight main characteristics inherent in any smart 
system: 
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• Communication capability (ability to exchange data, communicate system capabilities, 
and inform about the environment) 

• Embedded knowledge (ability to capture relevant knowledge related to an understanding 
of users or interacting environment, and consider this knowledge in the decision-making 
process) 

• Learning ability (the ability of advanced methods and algorithms to autonomously 
modify the knowledge of the system, enabling an adaptive behavior and allowing the 
adequate handling of new contexts or situations) 

• Reasoning (the ability of advanced computing techniques to provide strategic decision-
making, predict future states of the environment, or provide flexible data processing) 

• Perception capability (the ability of the smart system to continuously sense or perceive 
the environment and themselves, describing and analyzing the environment using data 
acquired by the sensors) 

• Control ability (the ability of the smart system to perform specific tasks, initiate user 
intervention to perform these tasks, or make autonomous decisions, depending on the 
system’s capabilities and the level of its automation) 

• Self-organization (the ability of the smart system to independently adapt its own 
structure and organize the system elements while keeping its original objectives) 

• Context-awareness (the ability to sense, interpret and consider the state of the 
environment, relevant to the smart system) 

 
Based on the above characteristics, a system could be considered smart if it can create and 
update its internal knowledge, enabling communication between its elements, reasoning, and 
optimizing its decisions by sensing and interpreting the environment. 

There are multiple examples of smart and context-aware systems development. The rise of 
the IoT and mobile devices boosted the growth of smart services that support human lives and 
habits in different areas. The pioneering areas for context consideration have become location-
based applications and services (Chen & Kotz, 2000), such as call forwarding applications 
(Want et al., 1992; Bennett et al., 1994), Cyberguide, a mobile location-and history-based 
tourist guide (Abowd et al., 1997), Personal shop assistance (Asthana et al., 1994) and other 
applications, according to the review of Chen & Kotz (2000).  

Later, the development of smart features expanded to broader spheres. The smart home 
concept became one of the research directions; with the development of the Internet of Things 
(IoT), smart home services have developed globally, enabling the capability to integrate and 
manage household devices (Alaa et al., 2017); Kang et al., 2017). Smart home services 
nowadays can set lighting, home temperature, music, or TV programs, depending on individual 
preferences (Markantonakis et al., 2016; Sanchez-Comas et al., 2020), or can be specifically 
targeted to support vulnerable social groups (Sapsi & Sapsi, 2019). Smart applications allow 
monitoring of home conditions when away from home, through temperature and humidity 
sensors, and allow users to distantly access home lighting or TV to imitate the human presence 
(Lévy-Bencheton et al., 2015; McIlvennie et al., 2020; Rajiv & Chandra, 2016). More advanced 
solutions offer living convenience, accumulating and analyzing living patterns of home 
residents (Sepasgozar et al., 2020).  

R&D in the concept of smart cities works on the idea of creating an urban space with 
sustainable economic growth and quality life of its citizens (Caragliu et al., 2011). The main 
challenge of smart cities is to interconnect all possible services and people using them with the 
help of innovative technologies, such as 5G, sensors, robotics, IoT, and artificial intelligence 
(Patel & Doshi, 2019; Lim & Maglio, 2018).  

Healthcare works on an extensive range of applications and devices, from remote monitoring 
of patients’ conditions (Bruen et al., 2017; Taylor et al., 2021; Thomas et al., 2021), to 
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coordinating and automating internal processes within smart hospitals (Kanase & Gaikwad, 
2016; Moro Visconti & Martiniello, 2019). 

In the transportation sector, the IoT helps in communication integration, control, and 
information processing across various transportation systems. Innovative solutions in the sector 
enable smart traffic control (Bean, 2002), support parking networks (Lin, 2015; Iacobescu et 
al., 2021), fleet management (Penna et al., 2017; Hussain et al., 2020), and transportation 
planning (Jan et al., 2019; Karami & Kashef, 2020), to name only a few. 

The automotive sector could not be left behind, and has seen dynamic interactions between 
vehicle, infrastructure, and driver enable inter- and intra-vehicle communication. Smart systems 
development in the automotive sector started with systems like Collision Warning, Collision 
Avoidance, Intelligent Speed Adaptation, and other systems that rely on camera-based machine 
vision, radar, and high-accuracy digital maps and GPS (Bishop, 2000). Today more advanced 
sensing technologies and the combination of data from different sources, such as onboard video 
cameras, radars, lidars, vehicle sensors, digital maps navigated by global positioning systems, 
driver monitoring systems, and communication ability with other vehicles and software systems 
help to bring the intelligence of current automotive systems to a new level. Furthermore, 
computational intelligence, such as Fuzzy Logic, Neural Networks, Machine Learning, 
Knowledge Representation, and Probabilistic and Possibilistic Reasoning have become new 
building blocks for intelligent vehicle systems (Gusikhin et al., 2008). As a result, smart systems 
development blossoms in multiple directions, focusing on better driver monitoring (drowsiness 
detection (McDonald et al., 2018), driver distraction monitoring and prediction (Kanaan et al., 
2019, Kircher et al., 2010), driving style recognition (Aljaafreh et al., 2012), driver workload 
estimation (Leeuwen et al., 2017)), better context processing (real-time 3D object detection 
(Yang et al., 2018), real-time traffic conflicts prediction (Formosa et al., 2020), recognition of 
driving context elements (Tchankue et al., 2013)), and development of automated solutions, 
such as automated parking and many ADAS functions with the range of advanced capabilities 
they provide. 

 
2.4 USER 
Today, there is a wide range of technologies available to support in-vehicle interaction. In many 
cases, the success of the technology is not limited by the technology capabilities themselves but 
rather by the capabilities of the human interacting with them (Harvey et al., 2011). Currently, 
the development focus has shifted from developing technology to considering how to integrate 
this technology with the driver (Walker et al., 2001) to simplify interactions for humans. A 
number of researchers point out the importance of implementing a driver-centered approach in 
order to identify and understand the needs of the driver within the context of driving (e.g., Heide 
& Henning, 2006; Stanton & Salmon, 2009). Walker et al. (2001) identified three main human-
related factors associated with the use of information and communication technologies within 
vehicles: safety, efficiency, and enjoyment. Novakazi et al. (2021) add to this list drivers’ 
comprehension of the system and its perceived usefulness. This study revealed that drivers’ 
understanding of the system plays an important role in developing drivers’ trust in the 
technology, especially for non-compulsory smart in-vehicle systems, while perceived 
usefulness is directly linked to the acceptance of the system by drivers. According to Harvey et 
al. (2011), the main aim for any in-vehicle system developer would be to: 

1. Ensure driver safety by providing relevant information without distracting the driver 
from his primary driving task. 

2. Enhance the efficiency of vehicle use by providing information about the vehicle, the 
vehicle system, and the driving environment. 

3. Provide functions that are both pleasant and easy to understand in use. 
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Thus, the challenge for automotive OEMs would be to develop a Vehicle Information System 
that is capable of balancing all of these aspects. 
 
2.4.1 User behavior 

User behavior evaluation is key to discovering how users interact with the product and how 
well customer needs are addressed in a particular system design. In the frame of this research, 
the term user behavior is narrowed to driver behavior, meaning that only behavior related to the 
driving activity and the use of vehicle systems will be considered. Under driver behavior, we 
understand the set of actions a driver takes to reach a goal or complete a task while operating a 
vehicle. Driver behavior should also be viewed in consideration with the driving context and 
the specific actions expected in that context to achieve the desired outcome. 

Understanding driver behavior is fundamental for building a successful product. The more 
developers know about the users, the better equipped they will be to make smart solutions that 
fit user needs. To understand and assess user behavior, one needs to refer first to two closely 
related concepts, namely Usability and User Experience, described in the following sections. 
 
2.4.2 Usability 

Usability is one of the main concepts when talking about driver behavior and driver interaction 
with the product. Interaction with a product that is easy to use and understand, increases users’ 
productivity, decreases the learning process, and enhances the user satisfaction of the product 
itself. The main advantage for users is that they can perform their tasks easily and efficiently. 
Good usability of a particular product when comparing with similar products usually means the 
user would choose that product in the future. Good usability positively increases the reputation 
of the product and most likely would lead to an increase in sales. Therefore, the main goal for 
usability engineers is to construct a system or product that people find usable and will use 
(Ovaska, 1991). 
 

Usability definition 

Although the term usability is widely in use, there is no agreement on the exact definition 
(Abrahão et al., 2017). Different opinions regarding the way to measure usability, together with 
the different fields where usability is practiced, bring many similar definitions together (Folmer 
& Bosch, 2004). Nielsen (1993) describes usability as an aspect that influences product 
acceptance. He classified usability through five usability attributes: learnability, efficiency, 
memorability, errors, and satisfaction. Nielson’s classification, together with the definition 
from ISO/IEC 9241-11 standards (1998) that defines usability as “the extent to which a product 
can be used by specified users to achieve specified goals with effectiveness, efficiency, and 
satisfaction in a specified context of use”, are two of the most widely accepted definitions in 
practice. Thus initially, usability was more focused on an outcome of interaction rather than on 
the quality of the product the user was interacting with. In the later standards (ISO/IEC 9241- 
210, 2010), usability is defined from two perspectives: as the quality of the product and as the 
outcome of interaction related to its quality in use (Abrahão et al., 2017). 

According to the classification made by Bruno & Al-Qaimari (2004), usability consists of 
four common factors that have an impact on the whole interactive system: the user, the 
technology, the task, and the context of use. Consequently, the author adopted this definition in 
the research. The author assumes that only an understanding of the user’s behavioral model and 
technical limitations of the interactive systems within the specific context of the system’s use, 
including the analysis of the influence of external conditions, can lead to the successful 
development of an interactive system that meets users’ requirements. 
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Furthermore, according to Peham et al. (2014), usability could be described by reference to the 
two following processes: 

Learning process – the dynamic process that could be described as a process of gaining 
knowledge by studying, practicing and improving specific skills. Learning cannot be developed 
instantly but develops over time as experience increases. When the learning process comes to 
an end (when a user has reached stable user performance that doesn’t change significantly over 
time), the usage process takes place. 

Usage process – presumes that the driver has learned how to use the product, and the usage 
process measures how easy the product is to use once it has been learned. Figure 8 represents 
the improvement of user performance skills during the learning and usage processes. 

 
Figure 8. Learning and Usage processes in a User Performance development curve. 

 
In this research, the author focused only on the usage process evaluation, since the learning 
process requires a different set-up for the study where the previous driver experience is 
considered, and data collection starts from the first interaction with the evaluating system. 
 

Usability attributes 

To be able to measure usability, a definition of usability attributes is required. Many attempts 
have been made to define the list of attributes for usability assessment. However, no agreement 
regarding a unified view on usability attributes has so far been reached. The digitalization trend 
for complex products, such as mobile phones, computers or cars, has consequently increased 
the convergence between the computer science, telecommunication, and engineering fields. 
This has only boosted the complexity level and introduced new types of interaction intended to 
help a user in communication with technology (e.g., touch screens, voice commands, gesture 
interfaces). Such a dramatic change in the interface frameworks forced usability engineering to 
engage a large number of specialists within various disciplines. As a result, the usability 
attributes list can vary in different fields and for different products. 
 
2.4.2 User Experience 

Another concept highly related to user understanding is the concept of User Experience (UX). 
According to ISO 9241-210, UX is defined as “a person’s perceptions and responses that result 
from the use or anticipated use of a product, system or service”. UX is the umbrella-term that 
“takes a broader view, looking at the individual’s entire interaction with the thing, as well as 
the thoughts, feelings, and perceptions that result from that interaction” (Albert & Tullis, 
2013). Roto et al. (2011) have a similar view on UX, simply defining it as experience generated 
by interacting with the system. Forlizzi & Bettarbee (2004) describe UX as people’s interaction 
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with the product and the overall emotions resulting from this interaction. The Nielsen Norman 
Group (NN/g conference, 2008) illustrated the UX scope by encompassment of the utility, 
usability, and desirability of the product (see Figure 9). 

Although this research is heavily focused on interaction with the system, at this stage, the 
author avoids using the UX term since vehicle data does not support an assessment of driver 
perception, which is the part of overall emotions resulting from the interaction. 

Nevertheless, the author positions this research in the field of UX, but does not claim to have 
performed a data-driven assessment of UX. Primarily, it is the driver’s interaction with the 
system in the long term that has been assessed, which allows us to reflect on specific UX metrics 
that focus on driver behavior or attitude towards the evaluated subject/object. 

 

 

Figure 9. The scope of User Experience (adapted from NN/g Conference, 2008). 

 
2.4.3 Methods for driver behavior assessment 

According to Ivory & Hearst (2001), there are 132 documented usability evaluation methods 
(UEMs), which were derived mainly for web user interfaces assessment. These methods are 
divided into five classes: testing, inspiration, inquiry, analogical modeling, and simulation. 
However, if compared to the complex interfaces that include a physical interface in combination 
with a graphical interface placed in multi-mode screens, the number of applicable methods is 
very limited. In this research, the author is dealing with the already launched product, without 
the ability to change its design. Methods for this type of evaluation are usually narrowed to 
inquiry methods, such as surveys, interviews or user feedback.  

Nielsen (1994) suggested using several evaluation methods that increase findings regarding 
different usability issues and cross-checking the evaluation results. Two Comparative User 
Testing studies, CUE-1 and CUE-2 (Molich et al., 1999), confirm Nielsen’s suggestion by 
demonstrating the lack of consistency and systematic approach to usability evaluations. Those 
studies demonstrated that usability findings performed for the same project could vary 
dramatically, depending on the usability team’s area of expertise and the methods that usability 
experts chose for the evaluation.  

Moreover, in the engineering world, it is difficult to support the decisions on the results of 
subjective evaluation. Usability experts often feel undervalued in comparison with the other 
engineers able to support their decisions with objective evaluation. Having all these challenges 
in mind, usability experts are continually looking for ways to improve the usability assessment 
quality. In particular, they are most interested in bringing objective methods into the field. For 
that reason, the idea to utilize explicit knowledge at the data level is attractive to usability 
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engineers. The objective data analysis can provide an understanding of users in a better way, 
by looking at the learnability or usage dynamics, evaluating individual or group behavior, 
detecting the usability issues, and measuring their severity.  

 
Qualitative research approach 

In studies related to user evaluation, a qualitative approach is traditionally applied. Qualitative 
research methods focus on the quality of things, trying to explain, describe and discover the 
root causes of user behavior (Creswell, 2014; Merriam & Tisdell, 2015). Denzin & Lincoln 
(2011) describe this research approach as an attempt to understand things in their natural 
environment, by interpreting the phenomena based on the meaning that a particular user or 
group of users bring to them. Qualitative methods usually focus on gathering subjective 
impressions regarding system usage, rather than targeting specific user tasks or identifying the 
variables that cause specific user behavior (Orlovska et al., 2019a). 
 
Main advantages of qualitative research: 

• Qualitative research is the most appropriate for situations when we need an explanation 
of why different things are happening, what their nature is, and how they can be described. 

• Deep, widespread evaluation is possible. Participants are usually able to freely express 
their opinions, which helps to build a discussion and elaborate on what they mean. 

• The human factors in the form of user perception are the primary interest of qualitative 
studies. 

• Occurring events can be observed in their natural context without reducing the complexity 
of system, processes or tasks. 

• Qualitative approaches have a well-established methodology, based on UEMs, 
summarized by Ivory and Hearst (2001). These methods allow receiving user-related input 
at different stages of product development. 

 
Limitations of qualitative research: 
• Due to the relatively low number of participants, qualitative methods have no statistical 

significance, which means that the findings from the qualitative study cannot be 
extrapolated to the larger population sets with the same confidence level (Ochieng, 2009). 

• Frequencies of different issues detected through qualitative research are difficult to 
measure. As a result, rare phenomena can receive the same attention from the researcher 
as more frequent aspects (Ochieng, 2009). A low number of participants also reduces the 
possibility of classifying users or the issues they experience. 

• A qualitative researcher cannot be seen as an independent individual (Rovai et al., 2013). 
Research techniques and environments (the lab or the questionnaire), as well as the 
researcher’s own perception, can bias participants’ views on the evaluated object and 
affect the interpretation of the results. 

• Qualitative methods are often criticized for their low reliability. Different results may be 
achieved with various participants or at a different time. 

• Qualitative studies are time-consuming. If stakeholders need to take an urgent decision, 
then probably the qualitative study that takes months to be administrated is not an option 
(Sallee & Flood, 2012). 

 
Quantitative research approach 

Quantitative research often focuses on measurements that test hypotheses, determine an 
outcome and generalize conclusions (Denzin & Lincoln, 2008). Quantitative studies may 
produce valid and reliable data due to the possibility to control the measurements with the help 
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of specifically created technical solutions. Quantitative data could be obtained by quantifying 
subjective user input, drawing from extensive user surveys, or by using an automated method 
for data collection. 
 
Main advantages of quantitative research: 

• Larger samples, compared to qualitative research, often make the conclusions from 
quantitative studies generalizable (Rovai et al., 2013). 

• Statistical methods are primarily used in quantitative data analysis. Those methods are 
precise and rigorous, which helps to establish a certain level of trust in quantitative 
methods among engineers (Rahman, 2020). 

• Quantitative methods are also useful when a systematic, standardized measurement is 
needed. 

• Quantitative research is independent of the researcher, and therefore, the evaluation 
process is less biased by the interviewer’s viewpoint, his/her appearance or questions 
(Rahman, 2020). 

 
Limitations of quantitative research: 

• Due to the reduced data feasibility, it is often not possible to measure the full complexity 
of human experience or perceptions. Therefore, the user experience can be divided into 
measurable areas and studied as parts (Rovai et al., 2013). 

• Quantitative research allows what things happened and how frequently they happened to 
be seen but cannot determine underlying explanations of why those things happened 
(Bouwer et al., 2015). 

• The use of quantitative methods may give the wrong impression of homogeneity in a data-
set. For example, the measured user experience of vehicle-owners might not be applicable 
to non-vehicle-owners. Therefore, some applications of quantitative methods may require 
clarification for homogeneity within the group. 

 

2.4.4 Current trends of driver behavior assessment in the automotive industry 
Even though both qualitative and quantitative research approaches are broadly applied in the 
automotive industry today, a substantial number of studies are still conducted in isolation. 
Different evaluation groups of designers/engineers with diverse backgrounds are usually 
conducting studies that are based solely on qualitative or quantitative data, resulting in low 
cross contribution from one study to another. 

The validity of results for these kinds of studies is always questionable, and therefore the 
need to combine different approaches is clearly recognized. Nevertheless, the results of 
different approaches are mainly used for the comparison or validation of their findings but do 
not aim to improve the quality of the studies. This could be explained by the low compatibility 
of qualitative and quantitative data, which often leads to the practice of prioritizing one of the 
approaches over another. A qualitative approach is mainly applied in user-related studies, due 
to long-term traditions amongst automotive OEMs. Quantitative research methods, in turn, are 
broadly used for the evaluation of a vehicle’s mechanical parts and software but are rarely 
applied in user-related studies. 

However, the rapid development of objective data sensors and the variety of information 
generated by the automotive production platforms clearly indicates a need for a new 
methodology that considers both approaches: extended quantitative data possibilities 
utilization, and qualitative insights. Since both quantitative and qualitative approaches have 
their strengths and drawbacks concerning user studies, an intelligent fusion of both approaches, 
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implemented effectively, can improve the quality of user studies and increase the validity of the 
results. 

While the mixed-method approach is widely described in the literature, the author’s 
understanding complies with Johnson & Onwuegbuzie (2004), who define this as a type of 
research where the research team combines qualitative and quantitative approaches to achieve 
in-depth understanding and validation of the results. Moreover, Greene (2007) states that 
effectively designed mixed-method research can “...offset inevitable method bias”. 

 
2.4.5 Naturalistic Driving Studies 

The key approach adopted in this research can be characterized as a Naturalistic Driving (ND) 
study. An ND study usually refers to a study that is not constrained by a strict experimental 
design where the data are acquired for a relatively long-term period, in the natural driving 
context and under various driving conditions occurring in a natural way. Data in ND studies are 
collected mainly from vehicle sensors data, GPS, vehicle apps, and/or data from video cameras 
(Fridman et al., 2019). Vehicles are instrumented in the most unobtrusive way, allowing users 
to perform driving activities undisturbed. The sensors data are collected and processed with the 
help of wireless technologies. The data collection is systematic, within several months’ time-
span, and includes each driving activity. The advantage of this approach is that the driver is not 
limited in his/her movements, time and frequency of driving. The driver uses the vehicle in 
his/her own way, which is extremely important in creating a natural environment for the ADAS 
user behavior evaluation. 

The EuroFOT (European Field Operational Test) was one of the first large-scale projects 
focused on investigating possibilities to enhance safety and reduce the environmental impact of 
vehicles instrumented with ADAS (Benmimoun et al., 2013). Another project, named 100-Car 
naturalistic driving study, was conducted on the US market with the aim to evaluate driver 
safety in crash and near-crash situations (Neale et al., 2005). The MIT Autonomous Vehicle 
Technology (MIT-AVT) study, which was launched in September 2015, seeks to understand 
how driver-vehicle interaction can be designed to be safe and enjoyable (Fridman et al., 2019). 

The above described ND studies have inspired a number of programs and organizations, 
such as SCOUT (Safe and COnnected AUtomation in Road Transport, 2019), CARTRE 
(Coordination of Automated Road Transport Deployment for Europe, 2019), SAFER (THE 
SAFER organization, 2019), SHRP2 (Strategic Highway Research Program 2, 2019), 
ADAS&ME (Adaptive ADAS to support incapacitated drivers Mitigate Effectively risks 
through tailor-made HMI under automation, 2019), and others. These initiatives aim to support 
the research field by exploring and developing the potential of ND studies further. The majority 
of the projects are supported by governmental organizations and focuses on the driver and 
traffic safety issues, investigating the driver behavior in crash and near-crash situations (Sander, 
2017; Hatfield et al., 2017; Engström et al., 2018). The context-aware evaluation of driver 
behavior in the preceding moment is a critical factor in these studies, enabling investigation and 
explanation in detail of the driving behavior before the incident happens. Liang et al. (2016) 
underlined the importance of driving context analysis for detecting abnormal driver behavior, 
aiming to quantify the risks associated with various driver behaviors. Zhai et al. (2018) 
emphasize the importance of context-aware driver behavior evaluation, showing that 
integrating driving context provides reliable results regarding the driver behavior evaluation on 
the road. According to Papazikou et al. (2017) and Tivesten & Dozza (2014), the driving context 
is one of the most important factors for user behavior evaluation. Both conclude that the context 
might affect driver behavior, both positively and negatively. Further, Ahlström et al. (2018) 
emphasize the effect of the road environment on the development of driver sleepiness. Ahmed 
& Ghasemzadeh (2018) designed an automated method for heavy rain detection. They 



   27  
  

measured the impact of heavy rain on driver behavior, discovering a correlation between the 
driver’s age and the speed chosen under heavy rain conditions. 
 
2.5 VEHICLE 

Driving the vehicle presumes the use of multiple systems at a time. The driver interacts with 
the car through different controls and informs from various onboard systems integral to the car. 
The workload generated by the accumulation of tasks can have a negative impact on driver 
performance. According to Seppelt & Wickens (2003), two tasks that need to be performed 
simultaneously will be carried out with less effectiveness than two tasks that do not have a time 
overlap. Therefore, in multiple task situations, driver workload and resources spent by the driver 
between concurrent tasks need to be considered. Apart from the tasks that require driver 
intervention, the vehicle gives sensory indications to multiple parameters of driving activity, 
such as acceleration, deceleration, traffic information, navigation service, and many other 
services. This information load also needs to be considered while evaluating the driver’s 
behavior. 
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3 RESEARCH APPROACH  
The primary purpose of this research is to generate new knowledge that is valuable both to 
academia and to current engineering practices. This research focuses not only on providing 
insights for the people dealing with the investigated phenomena in practice, but also on 
designing methods for more effective application of newly generated knowledge. 

This chapter describes the research approach applied to this thesis. It motivates the choice of 
a particular methodology and explains how it was adapted for the needs of this research. A 
specific focus is set to clarify the relations between studies, appended publications, and the 
investigated research questions.  

3.1 DESIGN RESEARCH  
Many definitions of design research exist, depending on the application background. Research 
design, referred to in the engineering context, is usually described as a set of purposeful 
activities that help develop a product from a need to its complete realization. According to 
Blessing and Chakrabarti (2009), “design is a complex, multifaceted phenomenon, involving 
people, a developing product, a process involving a multitude of activities and procedures; a 
wide variety of knowledge, tools and methods; an organization; as well as micro-economic and 
macro-economic context.” Hubka and Eder (1987) defined design science as “the problem of 
determining and categorizing all regular phenomena of the systems to be designed, and of the 
design process. Design science is also concerned with deriving from the applied knowledge of 
the natural sciences, appropriate information in a form suitable for the designer’s use.” 

Research design can be considered to pass through three evolutionary phases: Experimental, 
Intellectual and Empirical (Wallace and Blessing, 2000). During the Experimental phase, which 
existed until the late 1950s, the activities and experiences of senior designers were most valued. 
However, their observations in the design process were relevant to the specific domain they 
described, and functioned within one technical field and, therefore, could not apply in a broader 
context. During the Intellectual phase stage, the emphasis was placed on creating a design basis 
using a variety of methodologies and principles of a design process. The Empirical phase started 
in the 1980s, when the number of studies involving empirical data collection began to grow. 
The purpose was to understand how designers conducted the design process. The Empirical 
phase investigated what impact new methods and tools had on these processes (Blessing and 
Chakrabarti, 2009).  



 30  
  

3.2 AVAILABLE THEORETICAL FRAMEWORKS  
Different theories and frameworks were introduced within the design research field, providing 
a theoretical basis to research in the product development domain. In particular, the following 
research approaches were introduced: Theory of Technical Systems (Hubka and Eder, 1987), 
Domain Theory (Andreasen, 1991), TRIZ (Altshuller et al., 1999), Axiomatic design (Suh, 
2001), CK-Theory (Hatchuel and Weil, 2003), Function-Behavior-Structure framework (Gero 
and Kannengiesser, 2004), Design Research Methodology (Blessing and Chakrabarti, 2009), 
Mathematical Theory of Design (Braha and Maimon, 2013), amongst others. Despite the fact 
that different frameworks were introduced in the field of engineering design, there was no strict 
recommendation for the use of one method over another. The above-described frameworks 
demonstrate a different level of applicability in the research projects, depending on the 
traditions of the university department and particular research group.   

3.3 METHODOLOGY APPLIED IN THIS THESIS  
The research presented in this thesis is based on the Design Research Methodology (DRM) 
framework proposed by Blessing and Chakrabarti (2009). DRM is intended to fulfill two 
purposes: first, to understand the investigated phenomena, and second to submit the tools, 
methods, or guidelines that can be introduced in practice. DRM has strong relevance to the field 
of mechanical engineering and product development. Moreover, DRM provides a context to 
position the research and encourages reflection on the research approach and the choice of 
research methods, allowing the researcher to find new ways to deal with the investigated 
phenomena. In this research, the author applied DRM, partially due to this research framework 
being an accepted research tradition of the university department and research group. Following 
research traditions helps to better understand research and its phases, evaluate the contribution 
of studies to overall research, and plan for following research activities.    

The framework consists of four main stages: Research clarification, Descriptive study 1, 
Prescriptive study 1, Descriptive study 2 (see Figure 10). At the Research clarification stage, 
the current understanding of the research field and purposes needs to be clarified. At this stage, 
the overall research aim is understood, the research questions are set, and the research plan that 
supports the work at subsequent stages is provided. Consequently, Descriptive study 1 aims to 
develop an understanding of the research phenomena and its influencing factors. At the next 
stage, Prescriptive study 1, the knowledge of the research phenomena generated in the 
Descriptive study 1 takes into account and aims to develop new methods or tools that support 
the improvement of the existing model. Descriptive study 2 aims to evaluate the applicability 
and effectiveness of the proposed design modification, focusing on the impact evaluation. To 
assess the research contribution, the success criteria that directly reflect on the desired research 
goals need to be set. These criteria will be used to judge the research outcome against set goals.   
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Figure 10: Overview of DRM framework stages.  

One of the advantages of the DRM framework is that the implementation of the stages is not 
necessarily sequential or linear. Multiple iterations are possible between two stages and within 
every research stage, providing the flexibility to fit any specific research project. This flexibility 
allows the researchers to look for a variety of new ways for the phenomena investigation, and 
not directly follow the prescribed form. In this research, the DRM framework was also adopted 
due to its strong connection to the engineering field that provides a robust methodology that 
aims, through the understanding of investigated phenomena, to propose an improvement model 
that can be applied and verified in practice.    

To verify that the goals of the research are achieved, it is necessary to identify the success 
criteria. Success criteria, according to Blessing and Chakrabarti (2009), relate “to the ultimate 
goal to which the research project intends to contribute and usually reveal the purpose of the 
research”. This research aims to design a reliable method for the data-driven evaluation of 
driver behavior and integrate a vehicle-data-based assessment into existing practices to enhance 
the quality of the obtained results. The ultimate goal of this research is to propose and implement 
a new design that utilizes these behavioral data in real-time to provide drivers with the support 
that enhances driver experience with vehicle systems.    

The following sections describe how the research methodology was applied in the course of 
this thesis. The author will explain which research questions were investigated in the appended 
papers, what research methods were used, what type of results were achieved, and how this 
work was distributed among DRM’s main stages.  

3.3.1   Research questions and DRM phases  
This research aims to investigate and design methods for effective vehicle data utilization in 
driver behavior assessment and to generate new approaches that help create a value based on 
these data to support drivers’ individual needs. To achieve this goal, a number of research 
questions were specified.  
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RQ 1 (What vehicle data are relevant to support the understanding of driver behavior?) focuses 
on investigating interrelated factors for the driver-behavior assessment process, deriving data 
points needed for understanding driver-system interactions within the specified use context, and 
exploring the limitations that prevent the organization of more effective data collection. Paper 
A focuses on identifying the needs of UX experts related to the implicit data and analyzing the 
constraints that prevent the collection and use of these data. Despite the potential of implicit 
user interaction data for improving the UX of a product, previous work shows that these 
potentials are not (yet) leveraged for automotive IVISs. Therefore the additional focus of Paper 
A is given to investigating how to leverage the potential of implicit vehicle data to enhance UX 
activities and user-related studies. As a next step, in Papers C & D, the author designed the 
dataset and collected the data to illustrate the ability of vehicle data to contribute to driver 
behavior understanding. Papers C & D together provide comprehensive results on driver 
behavior evaluation based on an historical dataset. Finally, in Paper F, the author proposes the 
framework for real-time data utilization in driving coach systems and describes data points 
contributing to driver behavior assessment in the driving coaching framework. Based on this 
framework, a more comprehensive dataset was compiled and a full-scale evaluation of driver 
behavior was performed. Additional work focused on describing current limitations that restrict 
adding more user-related data into the measurement. 
  
RQ 2 (How can the data-driven approach be incorporated into existing methods for driver 
behavior evaluation?) is about how to position the objective data-driven analysis in the 
evaluation process so that it is accepted in practice. Paper A explores the applicability of 
objective data analysis in the overall process of UX design and evaluation in the automotive 
context, while Paper B provides the design of the mixed-method approach, for the complete 
incorporation of the quantitative approach into the qualitative assessment of in-vehicle systems. 
Further, Papers C, D & F apply the methodology designed in Paper B, verifying it in practice. 
  
RQ 3 (How can vehicle data be used to support users’ adaptation to smart in-vehicle systems?) 
refers to possible applications of knowledge generated, regarding driver behavior based on 
vehicle data to improve driver behavior and enhance drivers’ interactions with the system. 
Paper E proposes the approach of data-driven driver coaching to improve driver behavior with 
the vehicle system. Driving coaching monitors driver behavior in the interaction context with 
the system and provides real-time suggestions for enhancing or optimizing this behavior. Paper 
F generalizes the work presented in Paper E into the driving coaching framework that describes 
what data need to be collected to make this coaching feasible. Based on this framework, Paper 
F also introduces a fully developed Driver Coach application that has been tested under real 
driving conditions. The results of Paper F focus on evaluating the effect of this coaching on 
driver behavior. 
 
According to Blessing and Chakrabarti (2009), a DRM framework should not be interpreted as 
a strict and linear research process. The allocation of the research questions in the DRM 
framework has particular reasoning. The exploratory studies performed in this research focused 
on defining the relevant dataset for user-behavior evaluation and investigating potential ways 
for these data applications in system design. The results revealed technical and conceptual 
limitations, restricting full-scaled vehicle data collection and utilization. Thus, the descriptive 
study was focused on overcoming the limitations of data collection and improving the 
methodology for evaluating driver behavior with in-vehicle systems. In parallel, the author 
investigated how behavioral data can be used in practical applications to help users improve 
their experience with systems. In the prescriptive study, the author promotes a mixed-method 
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approach for driver behavior evaluation, where qualitative and quantitative methods contribute 
to insights of each other, allowing a complete understanding of how in-vehicle systems are used. 
Additionally, in the course of the prescriptive study, the author proposed the real-time 
personalized driver coaching approach where vehicle data are used to improve driver behavior. 
The distribution of the appended papers in the context of DRM phases is depicted in Figure 11.      

 
Figure 11: Distribution of papers A-F in the context of the DRM framework.  

3.3.2   Types of results  
Several types of results were achieved in the presented research. Descriptive study results 
provide empirical and statistical data that lead to a better insight on how vehicle data analysis 
contributes to user behavior understanding. Paper A collected empirical data to understand the 
limitations and potentials of vehicle data for UX activities across different automotive OEMs. 
Paper B proposed the design of the mixed-method approach for comprehensive ADAS 
evaluation. Subsequently, Papers C & D collected empirical and statistical data to prove 
vehicle data’s ability to contribute to driver behavior understanding, confirm the applicability 
of the mixed-method approach, and provide reliable results regarding complex ADAS 
evaluation. Further, Paper E proposed a theoretical approach for a real-time personalized driver 
support system. Subsequently, based on the results of Paper E, Paper F presented a general 
framework for driver coaching and designed the case study to verify the proposed framework. 
Additionally, Paper F collected empirical and statistical data to demonstrate the ability of this 
data to contribute to a better understanding of driver behavior.  

3.3.3   Methods used  
There are numerous approaches for collecting data within design research, such as samplings, 
interviews, group interviews, surveys and observations, and others. The methods used in the 
course of this research are presented in this section.  
     A systematic literature study was performed in this research. The main goal was to 
understand the knowledge foundation, to be able to map the proposed methods and definitions, 
as well as to identify any existing gaps in the knowledge related to data-driver user behavior 
evaluation. Moreover, an extensive study of the OEM’s internal documentation studies was 
performed. Among others, the documents consisted mainly of adopted attribute structure and 
its detailed descriptions, lists of functional and technical requirements, and methods for 
evaluating these requirements, technical reports, and plans of operations. The author 
participated in weekly internal follow-up meetings, observing the practical approaches to the 
investigated phenomena.  
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     Interview studies are typically classified as structured, semi-structured and unstructured. 
According to Yin (2013), the interview is a widely used method in qualitative research, aiming 
to collect respondents’ subjective opinions on the investigated issues. In this research, only 
semi-structured interviews were performed. Semi-structured interviews include elements from 
both structured and unstructured interviews and “a fixed set of sequential questions is used as 
an interview guide, but additional questions can be introduced to facilitate further exploration 
of issues brought up by the interviewee, thus almost taking a form of a managed conversation” 
(Cachia and Millward, 2011). Consequently, all interviews were transcribed verbatim, then 
coded and analyzed with the help of qualitative data analysis software, NVivo 12 (NVivo, 
2019). Two independent coders examined the first transcript to identify different themes or 
nodes. In the next step, the themes were reviewed and discussed in order to determine coherence 
and minimize subjective discrepancy. After that, the interviews were coded by each researcher 
separately, and a final session was held, where the open questions and themes were discussed 
to review the quality of the coding.  
     A field study is a universal method for collecting data about users, user needs, and product 
requirements that involves direct or indirect observation and interviews. Normally the data 
collected are about task flows, user performance, detected issues and any types of inefficiencies 
in the user environment (Rosenbaum, 2002). Studying driving behavior in the dynamic context 
is a fundamental characteristic of Field Operational Tests (FOT) and ND studies. The ND study 
usually refers to the study not constrained by a strict experimental design, where the data are 
acquired for a relatively long-term period, in the natural driving context, and under various 
driving conditions happening in a natural way.   
     A ND study was designed and performed in the course of this research. Vehicles were 
instrumented in the most unobtrusive way, allowing drivers to perform driving activities 
undisturbed. The vehicle sensors’ data were collected and processed with the help of wireless 
technologies. The data collection was systematic, within the time span of seven months and 
included each single drive cycle. The ND data included a combination of CAN bus data, GPS 
data, cloud data, external data provided through additional applications (e.g., the navigation 
data) that affect driver behavior or system performance. The data analysis was conducted with 
Power BI software for statistical analysis (Power BI Microsoft, 2021). The data was analyzed 
in four different layers of abstraction: single drive cycle (DC) evaluation layer (if something 
indicated unusual or interesting user behavior that needed in-depth investigation), one-driver 
evaluation layer (focused on in-depth user behavior evaluation of the same driver), groups 
comparison layer (based on the comparison of user behavior between different user groups), 
and overall assessment layer (based on the average calculation for all users). A detailed 
description of these abstraction levels can be found in the Methods chapter of Paper D. In 
general, the ND data analysis was based on the use of statistical methods that provide statistical 
significance and reliability to the obtained results. A more detailed description of how the 
above-described methods were integrated into the research design in the appended papers is 
described in Chapter 4.  

3.3.4   Validating the results in applied research  
To establish the quality of the research, validation and verification of the results and methods 
are required. In the context of engineering design, verification refers to internal and external 
completeness and consistency, whereas validation refers to the justification of knowledge 
claims (Barlas & Carpenter, 1990). Nanda et al. (2000), stated the need for an interdisciplinary 
approach to address complex problems in the research.   

Thus, to achieve the validity of the results in this research, a cross-validation approach was 
used. Cross-validation refers to the procedure by which sets of scientific data generated using 
two or more methods are critically assessed. Cross-validation can have two dimensions: 
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analytical data validation and method validation. Analytical data validation in this research is 
supported by the sequential mixed-method approach (used in Papers C, D and F), which helps 
to cross-validate the findings, comparing the results of qualitative and quantitative evaluation.  

The method validation can be performed through Validation by acceptance that focuses on 
having new scientific contributions accepted by scientific and industrial experts within the field. 
Adoption of the method in the industry and publishing the method in scientific journals are the 
first indicators of validation by acceptance.  

Verification of the results can be ensured by Logical verification, which provides the analysis 
of coherency, completeness of results, and consistency of internal/external elements. Validation 
and verification of the results from this research will be further discussed in section 5.2.  
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4  
 

RESULTS  
This chapter presents the core findings from the papers appended to this thesis. The main focus, 
however, is given to the achieved results. For more detailed information, please refer to the full 
texts of the papers at the back of this thesis.  

4.1 PAPER A  

4.1.1 Purpose  
In general, the study aims to explore and explain the specifics of the automotive field 
concerning data-driven approaches in UX design activities. This paper is designed to help 
automotive OEMs supply their UX experts with sufficient methods to integrate User Data into 
their daily work. The authors give recommendations on what UX specificity need to be 
considered when building an automotive data logging and analysis framework. To this end, the 
authors elaborate on the technical infrastructure and identified limitations, the current way of 
working, and how current, primarily qualitative, methods can be triangulated with data-driven 
methods. By combining the knowledge regarding the limitations that apply to the automotive 
domain, the UX experts’ needs, the methods they use, and the triangulation potentials, this paper 
aims to bring data-driven methods and UX activities closer together to unleash untapped 
potential. 
 

4.1.2 Method  
A Multiphase Mixed Methods approach is adopted and modified to fit the research objective of 
this work. The overall design incorporates four studies, two of which are interview studies with 
industry professionals, and two are case studies focused on investigating vehicle data 
availability for user-related research. Along with the results of the interviews, which directly 
contribute to the study’s overall goal, we also applied the methodology of Action Research to 
observe and critically analyze the ongoing development in two field studies, to combine 
academic knowledge and actual practical challenges. The Action Research methodology aims 
to gain theoretical knowledge based on researchers’ deep and direct understanding when 
interacting with the client organization. Thus, the action research method builds a co-production 
model between researchers and practitioners, which is fitting for assessing the issues raised in 
this paper. Presented below is an overview of how individual studies are designed and their 
contributions to the overall work.  
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Paper A consist of two parts and four studies. Part A includes Study 1 and Study 2, which 
were carried out in collaboration with a leading Swedish OEM and combined using an 
Explanatory Sequential Mixed Methods design. The design of Explanatory Sequential Mixed 
Methods consists of two distinct phases, in which the action research method (Study 1) was 
preceded by a qualitative interview (Study 2). In Study 1, the implementation of a design for 
collecting and analyzing quantitative data in a natural driving study revealed several limitations 
regarding company data-related processes. Subsequently, these limitations were explored in 
more detail in a qualitative interview with company professionals (Study 2) to understand the 
constraints for OEMs of the use of data-driven methods. The triangulation of the two studies 
helped better understand the underlying causes of practical limitations. 

In contrast, part B, consisting of Study 3 and Study 4, was conducted using an exploratory 
sequential mixed methods design. Under this design approach, the interview (Study 3) first 
explores professionals’ needs, concerns, and challenges to use these insights to implement data-
driven user behavior assessment methods further. A sequential quantitative case study (Study 
4) aims to integrate data-driven methods and tools into an OEM’s UX design process, using the 
potential identified in the previous interview. 

Despite the parallel design of the Explanatory Sequential Mixed Methods approach (part A) 
and Exploratory Sequential Mixed Methods approach (part B), all four studies are used to 
complement, enhance, and validate the results of each other. A series of workshops was 
organized to integrate the results of individual studies. During the first workshop, the authors 
created a mapping between different themes to determine which points were validated or 
enhanced by another study. In the second workshop, the authors discussed and identified the 
most critical issues for the UX design process. As a result of this work, a common understanding 
of current data-driven methods in the automotive UX area has been developed. 

 
4.1.3 Main results   

In this study, the authors explore the UX role in the product development processes to 
understand how UX design activities are distributed throughout the UX design phases in the 
complete product development life cycle in the automotive sector. This understanding provides 
better insight of the potential, and addresses limitations of implicit quantitative data that can be 
collected automatically in real-time. 

As part of the results, the authors first derived a list of limitations and discussed its 
consequences for applying data-driven methods in the UX design and evaluation processes. As 
seen from the limitations list (see Figure 12), automotive product development specificity 
explains most of the collected issues. Current practices in the automotive sector, regulations 
that have to be met, priorities set, methods used, and the vision on digital product development 
and UX affects how the vehicle is looked at today. Vehicle performance development is still 
prioritized over user-centered development. UX design plays an important but secondary role. 
Therefore, the developed solutions for data management are more focused on satisfying 
performance verification requirements than the data requirements introduced from the UX 
development side. 

Subsequently, the derived limitations were linked to the need for implicit data that UX 
experts clearly expressed during interviews and field studies (see Figure 12). While some needs 
are directly related to constraints, some describe explicit requirements that are not related to 
current technical shortcomings, namely insufficient transparency, specification, and 
documentation of implicit vehicle data, lengthy processes, and a lack of integration of data-
specific requirements in the early stages of product development. 
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Figure 12. Summary of results for Paper A. The solid lines and lightning bolts indicate which specific 
limitation conflicts with which need. The dotted outlines and arrows indicate the consideration of combined 

previous results.  
 

Our results show that approaches based on vehicle data can improve the UX design process 
in many respects. To make the current design process more data-driven and thus more user-
oriented, UX experts need detailed user interaction data, tools, and visualizations that make 
complex analysis results easily accessible.  

However, our results show that several conflicts need to be resolved to use the extracted 
potentials and meet the needs of UX experts. The authors, therefore, recommend that 
automotive OEMs re-think their current decision-making process when it comes to feature and 
requirements elicitation, and involve data-based evidence when making design decisions that 
affect user-facing features. The authors additionally argue that the technical requirements for 
logging detailed user interaction data must be integrated into early product development 
processes. The interdisciplinary collaboration between data scientists and UX experts needs to 
be strengthened, relevant technical and legal information needs to be transparently distributed 
within the OEMs, and the ever-existing problem of silo mentality needs to be approached. 

 
4.2 PAPER B  

4.2.1 Purpose 
In this research, the author continuously stresses that both qualitative and quantitative 
approaches can effectively support the user behavior evaluation process. Different types of user 
data applied in these approaches contribute to different kinds of knowledge regarding the 
understanding of user behavior. Traditionally, qualitative methods are more often used for user 
behavior evaluation. However, recent advances in data technology increase in-vehicle 
connectivity and open new capabilities for obtaining new objective usability data. Therefore, 
the combination of qualitative and quantitative methods can lead to a better research approach 
than using each of them in isolation. Thus, in this study, the authors propose a new, improved 
methodology design for user behavior evaluation. We take ADAS as an example of the vehicle 
systems for the assessment, and design the method based on intelligent quantitative and 
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qualitative approaches consolidation, aiming at a substantial improvement of methodology 
design for driver behavior evaluation and improved validity of the results.  

4.2.2 Method  
In this paper, an imperative study was performed. Based on previous findings (Orlovska et al., 
2018a and Orlovska et al., 2018b), where the author investigated vehicle data abilities and 
limitations to support the user-related studies, the holistic approach for in-vehicle systems usage 
evaluation was formed. Analysis of data feasibility and current practices at the OEM helped 
reflect on the effectiveness of the methods and led to the proposal of the explanatory sequential 
design for in-vehicle systems usage evaluation. Thus, the explanatory sequential mixed-method 
design became a logical continuation of previous work reacting to improved data availability 
and increased need for objective data to support decision making.  

4.2.3 Main results   
The proposed explanatory sequential mixed-method design for vehicle support systems 
includes four major phases: (i) initial set-up of the study; (ii) quantitative evaluation; (iii) 
qualitative evaluation; (iv) feedback loop (see Figure 13).   
 

  
Figure 13. Design for mixed-method user behavior evaluation of ADAS.  

According to the proposed design, the study design for user behavior evaluation requires an 
initial set-up. First, the study’s main objectives and focus need to be set. This helps to design 
evaluation questions. The study can focus on identifying any trends in user or system behavior 
or looking for correlations in user behavior to reveal possible usability problems. Second, when 
the focus of the study is set, relevant drivers for the evaluation need to be assigned. Drivers’ 
background, previous experience regarding the evaluated system, gender, age, work 
responsibilities, and other parameters can bias the results if drivers are not chosen correctly.   

During the quantitative evaluation phase, vehicle data collection and analysis are performed. 
This assessment requires the development of a dataset where each assessment question is 
associated with a set of data points that support the answer to a specific question. In addition, 
the measured parameters, such as the length of the study, the number of participants, the number 
of context parameters, etc. need to be defined. Data collection designed as part of the ND study 
was proposed as the most natural way of unobtrusive driver-system evaluation in a real 
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environment. During the ND study, performance data for both the driver and system needs to 
be collected, together with contextual information that affects both driver and system behavior.  

The subsequent application of the qualitative study is built on the results of the quantitative 
study, aiming to explain the identified phenomena. Semi-structured in-depth interviews with 
drivers from the quantitative phase were chosen as an appropriate method, aiming to explain 
and uncover detected issues. The qualitative study design, therefore, focused on the clarification 
of the subjective reasoning of the drivers inside the detected target groups to understand the 
specific user behavior.   

In a final step, the authors propose to feedback the qualitative findings to the quantitative 
level for further verification. To achieve a complete understanding, it is helpful to examine if a 
particular user explanation, received during the qualitative study, applies every time in the same 
context, and how other drivers behave under the same conditions. This type of analysis helps to 
understand if the qualitative explanations can be generalized. The mixed-method feedback loop 
can also help to identify other relevant data that can be useful in the next round of the 
quantitative assessment. For example, if a specific interrelation between user and system was 
detected during the qualitative data analysis, the evaluating team can examine the possibility to 
include additional data points into the quantitative evaluation for better support of the identified 
phenomena. Thus, this approach contributes to the further development of a quantitative dataset.  

Additionally, this paper presents preliminary results of an entirely quantitative ADAS 
assessment, confirming the feasibility of the proposed method design. The data analysis was 
carried out, focusing on the defined objectives and questions formulated beforehand. The 
contribution of quantitative evaluation for the ADAS functions (namely ACC and PA) usage 
was measured. The qualitative study helped to: (i) measure the usage level for ADAS functions; 
(ii) differentiate patterns/trends in user behavior by clustering drivers who behave similarly 
under the same conditions; (iii) evaluate and consider the system performance in the user study; 
(iv) understand that system availability varies for different users and depends on the conditions 
at the moment the activation request is sent; (v) detect specific usability issues and measure 
their magnitude; (vi) set several hypotheses regarding driver behavior based solely on the 
vehicle data analysis.   

Thus, the inclusion of quantitative evaluation into an existing methodology contributes to a 
more efficient assessment of driver-system interaction in a defined context and more effective 
product development in a long perspective. Moreover, the authors believe that this sequential 
use of quantitative and qualitative approaches, and the feedback of the results into the evaluation 
process, can support designers and engineers within research and development to create 
synergies in the development process.   

The conference paper outlining these results had the title “Mixed-methods design for user 
behavior evaluation of automated driver assistance systems: an automotive industry case” and 
was presented as a podium presentation at ICED conference 2019 in Delft, Netherlands, 
published in Proceedings of the Design Society: International Conference on Engineering 
Design.   

4.3 PAPER C  

4.3.1 Purpose  
A full-scale study for ADAS evaluation was conducted with respect to the driving context as 
one of the major factors influencing driver behavior. The effect of stand-alone contextual 
variables of ADAS on driver behavior has been assessed by other researchers. However, a 
complete investigation of this topic is lacking. Therefore, this paper aims to investigate and 
understand how the driving context affects the use of ADAS. An additional goal of this paper 
was to apply in practice, and validate, the mixed-method design proposed in Paper B.   
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4.3.2 Method  
The explanatory sequential mixed-method approach proposed in Paper B was adopted and 
modified for the current research needs. The sequential use of quantitative and qualitative 
methods (see Figure 14) aims to facilitate an integrated interpretation concerning the effect of 
the driving context on ADAS usage.   

  
Figure 14. Explanatory sequential mixed-method design.  

The particular approach proposes two distinct phases: a quantitative and qualitative evaluation. 
In the course of the quantitative study, ND data for both the driver and system performance 
were collected over a period of seven months. Data points that support the driving context 
understanding for ADAS were also included in the assessment. In total, data from 132 vehicles 
were collected. Consequently, in the data pre-processing step, different techniques were used to 
clear up, integrate and transform the raw data into the structured dataset. All corrupt and 
inaccurate records were removed from the dataset. The data were synchronized in time, 
providing order and structure for the initial dataset. Finally, statistical data analysis of collected 
data was made with the help of software for statistical analysis (Power BI Microsoft, 2019). The 
data were analyzed in four different layers of abstraction: (1) single driving activity evaluation 
(if anything indicated unusual or interesting user behavior in one driving activity that needed 
in-depth investigation); (2) one-driver evaluation (focused on in-depth user behavior evaluation 
of one driver); (3) groups comparison (based on the comparison of user behavior between 
different user groups); and (4) overall assessment (based on the average calculation for the 
complete pool). 

Subsequently, the qualitative phase was performed. The qualitative phase was designed 
based on quantitative study results with the main purpose to explain emerging phenomena. In 
the course of the qualitative study, semi-structured interviews were held with 12 respondents 
participating in the quantitative study. The aim of the interviews was to explain and uncover the 
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human perception of the driving context and its effect on system usage. The interview data were 
subsequently transcribed and analyzed by two independent coders using NVivo Software.   

The purpose of the triangulation design was to revise the completeness of the quantitative 
dataset by identifying relevant data points from the qualitative study and verifying their 
importance based on the complete vehicle pool. Thus, the feedback loop from the qualitative 
findings was utilized for further investigations at the quantitative level. The qualitative insights 
were tested on a wide range of users, aiming to cross-validate the hypothesis based on 
quantitative evaluation and qualitative explanations.  

4.3.3 Main results   
This study revealed the effect of the driving context on ADAS performance and driver behavior. 
Therefore, the authors advocate the ADAS evaluation approach where the driving context will 
be considered one of the significant factors for evaluating support systems since the threefold 
interrelation between the driver behavior, ADAS performance, and the driving context is 
considerably high.     

The quantitative data analysis in this study enabled the assessment of driver and system 
performance, as well as the driving context, including the weather, road, and traffic conditions. 
Based on quantitative data analysis, the authors measured the average ADAS usage for the 
complete vehicle fleet and the individual grade of ADAS usage. This knowledge helped the 
authors with driver categorization based on different use levels of ADAS functions. Further 
analysis revealed that the driving context, especially the road and traffic conditions, can 
significantly affect the scenarios that the two groups chose for ADAS usage. Therefore, the 
authors compared the groups’ behavior and investigated the differences in how the groups 
handled the different driving conditions.   

The consequent qualitative study verified the quantitatively detected differences in drivers’ 
behaviors and contributed to the holistic interpretation of the results. The interview data analysis 
revealed that the driving context had a dual effect on driver behavior: (i) a direct effect because 
the driver has to consider the driving situation every time that he/she wants to activate the ADAS 
function; (ii) an indirect effect through system performance, that also depends on the driving 
context. The system may deactivate support due to existing system limitations. If the driver does 
not understand the deactivation causality reasons, he will perceive the system as not reliable. 
Thus, the context-dependency of system performance may impact driver perception negatively 
and decrease ADAS use for the group of drivers with a low understanding of the system’s 
limitations.   

4.4 PAPER D  

4.4.1 Purpose  
This paper is a direct continuation of Paper C. Both papers C & D are present results of the 
same ND study; however, they focus on different research objectives. In the previous paper on 
the same study (Paper C), the authors concluded that driving context affects ADAS use through 
system performance, showing that ADAS design limitations affect drivers’ trust and willingness 
to use systems in the long term. Subsequently, in this paper, the authors further explore the 
underlying factors that impact users’ understanding of the system and investigate how users 
interpret the system and its limitations, and what use strategies they can develop based on their 
understanding.   
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4.4.2 Method  
The same explanatory sequential mixed-method approach as in paper C was adopted to achieve 
this study’s objectives. Both quantitative and qualitative approaches were implemented to 
assess the effect of the drivers’ perceptions on ADAS usage. The first phase consisted of 
quantitative data collection by conducting the ND study and classifying and analyzing the 
collected data to evaluate the use of the systems in combination with various contextual 
information, i.e., traffic and weather conditions and road types. The second phase aimed to 
clarify the data-driven findings through in-depth interviews with the participants from the ND 
study. This phase focused on identifying and explaining the impact of driver understanding on 
ADAS use. The qualitative study design was based on the trends detected during the 
quantitative study phase and intended to explain and clarify the emerging phenomena and usage 
behaviors through the explanations from targeted study participants. Figure 15 illustrates the 
sequential mixed-methods design through the different phases and how the results conflate into 
a holistic understanding of driving behavior with ADAS. 

 
Figure 15. Explanatory sequential mixed-method design.  

In the quantitative phase of this study, the driver and system performance in various driving 
conditions were logged, providing precise measurements and helping identify different use 
patterns and trends during the use of the ADAS. In total, ND data from 132 vehicles was 
collected for seven months. Consequently, in the data pre-processing step, the data were cleared 
up, which helped remove all corrupt and inaccurate records from the dataset and provide order 
and structure for the initial dataset. Finally, statistical data analysis of collected data was made 
with the help of software for statistical analysis (Power BI Microsoft, 2019).     

Subsequently, in-depth interviews were performed to elicit explanations and reflections on 
the detected driver behavior during the analysis of the ND study, aiming to identify human-
related factors influencing the system usage. Semi-structured interviews were held with 12 
respondents, a subset of drivers participating in the quantitative study. Thereafter, the interview 
data was transcribed and analyzed by two independent coders using NVivo software.     

The integrated analysis was conducted with regard to the findings identified during the 
quantitative phase to discover correlations with the predetermined results and patterns observed 
from the quantitative data evaluation. After the thematic analysis of the interviews, the 
quantitative analysis results and identified relevant aspects influencing the drivers’ usage of the 
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two systems, ACC and PA, were revisited to find explanations for the trends observed in the 
data. This approach helped investigate whether the qualitative data supported the identified 
trends from the qualitative study. 

4.4.3 Main results    
This study resulted in several findings that reveal the effect of drivers’ understanding on their 
behavior.     

First, drivers tend to develop static use strategies regarding the functions. The data show that 
most drivers stick to their chosen behavior and follow the established use strategy without 
revising their behavior in response to the situation on the road. The change in the context doesn’t 
make drivers reflect on it and reassess their use strategy, meaning that drivers need additional 
stimuli that shift their attention to reassess the effectiveness of their behavior.     

Second, even though drivers established diverse use strategies, all of them agreed on the 
perceived usefulness of ADAS functions, pointing out such positive aspects as added comfort 
and safety and reduction of mental and physical workload. These factors are clearly perceived 
as positive values that encourage the usage of ADAS functions.     

Third, since ADAS functions provide poor feedback to the driver, the driver should have the 
independent ability to understand the ACC and PA performance. The more that drivers are 
aware of ADAS capabilities and limitations, the easier it would be for them to understand the 
system behavior. The understanding that meets drivers’ expectations contributes to a more 
positive perception of ADAS performance. Thus, realistic expectations of the systems develop 
better trust in ADAS systems, which positively affects the usage of these systems. On the 
contrary, a poor understanding of ADAS functionalities and limitations can create a negative 
experience with ADAS, creating the perception that drivers cannot rely on the performance of 
these functions. This can result in drivers refraining from using the system altogether.     

These findings support the conclusion that ADAS use is influenced by understanding the 
system’s capabilities and limitations, which is critical to building the necessary trust required 
when interacting with it. However, trust is calibrated throughout the use process. It can be 
affected by positive or negative experiences, making users adjust their expectations of the 
system and hence their usage strategies.     

The results demonstrate that it is essential to design a guided learning experience to avoid 
profoundly negative experiences, support users in overcoming the threshold of using ADAS, 
and help them use these systems in the intended ways. In summary, better support for users in 
understanding system capabilities and limitations will forge acceptance of ADAS. Accordingly, 
this needs to be investigated to identify design strategies to enhance the learning experience. 

4.5 PAPER E  

4.5.1 Purpose  
This article proposes a high-level design of real-time personalized support for PA users. A data-
driven approach is a key idea of this design. It provides a context-aware evaluation of the 
dynamically changed traffic situation in real-time and focuses on promoting PA usage in varied 
traffic situations. The research presented in this paper aims to conceptualize the real-time 
personalized driver support idea and understand all interrelated forces that need to be considered 
in this type of support. The main goal of real-time personalized support is to explain to drivers 
what capabilities and limitations PA has and how it can be used more effectively in different 
traffic conditions by helping to identify suitable traffic conditions for PA activation. As an 
outcome of this support, we expect drivers to increase their understanding of the PA function, 
develop confidence in PA context identification, and eventually increase PA use.     
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4.5.2 Method  
In this paper, an imperative study was performed. Based on the previously conducted ND study 
described in Paper C and Paper D, where the author proved the vehicle data abilities to support 
the understanding of driver behavior, the holistic idea for real-time personalized support for PA 
users was proposed. The research question we address in this research is, ”How can vehicle 
sensors’ data be used to convey system design features to ADAS users?”      

To answer this research question, the ability to use PA in various contexts was chosen as a 
PA feature. The promotion of PA was chosen as a strategy to convey system design to drivers. 
Afterward, real-time personalized support for PA users was proposed with two key 
characteristics. First, the presented design of the data-driven communication framework utilizes 
both historical and real-time data. Historical data enable performance-based categorization of 
drivers to analyze a driver’s need for additional support. At the same time, real-time data help 
to identify the driving event and evaluate the driving conditions for PA performance in actual 
time, helping to understand the correct context of interaction between driver and PA. Processing 
real-time data, together with historical usage data for the identified driver, enables the 
development of personalized support for that driver. Second, the proposed design aims to 
provide smart adjustable support by performing a meta-analysis of the driver response to the 
introduced support strategy, which follows by modifying the communication strategy when 
needed. 

 
4.5.3 Main results    

Personalized driver support in real-time is designed to improve the effectiveness of PA usage. 
It aims to make drivers reflect on their PA use strategy by informing them about the additional 
context where PA can be effectively used, helping them identify this context in real-time 
situations.      

To make this support possible, a number of things have to be considered. In this work, we 
describe the main principle of how this type of support can be organized, design several 
sequential steps needed to ensure this type of communication, and specify what types of data 
are needed, and for what purposes.      

To address all the issues, the author proposed a design consisting of several sequential steps 
(see Figure 16). Each step solves a specific task in the course of the design for personalized 
driver support in real-time.    

According to the design of personalized driver support, the driver is not provided with 
additional assistance in all driving activities. The communication consists of two phases: active 
and non-active. The active phase is when the driver receives the system’s notifications, and the 
non-active phase provides support-free time when the driver is not guided but uses PA as he/she 
wants. During support-free time, the effect of previously provided communication is measured, 
and the need to update the driver category and connected support strategy is evaluated. The 
conceptualization of the personalized support steps is described in further detail below. 
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Figure 16. The sequence of steps for real-time personalized support of PA users. 

  
Step A has a two-fold purpose: (1) to identify the driver, and (2) to categorize the driver 

based on their behavior with the targeted function or system. Since the design aims to provide 
personalized support, driver identification is critically important to provide functionality. Driver 
categorization is used to understand driver behavior with the targeted system and to understand 
in what situations personalized support is needed. In this paper, driver categorization for PA 
users is based on the extent this function is used and the context in which it is used. Such 
categorization is connected to the design objectives. Since the design objective is to improve 
PA usage in different traffic conditions, the behavior in sparse and dense traffic is considered. 

Step B decides the communication strategy based on the driver category decided on in step 
A. Depending on the PA use scenario, the driver receives recommendations on where he/she 
can improve. If the driver does not use the function at all, the introduction should start from 
easier tasks or situations and be more explanatory compared to that offered to more experienced 
users. In situations when the driver uses the function fairly well, the question of how much more 
the usage can be increased has to be evaluated, especially for non-compulsory systems such as 
PA.  

The communication strategy should not be intrusive or demand too much driver attention. 
Therefore, the applied logic presumes notifications-free driving activities. This approach would 
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reduce driver distraction and help to evaluate driver learning rate, by monitoring the driver’s 
ability to implement new use strategies without reminders. The driver learning rate is considered 
in the driver category update and in the change of communicated strategy.  

Step C aims to identify the situations where the support should take place. To make this 
possible in actual driving time, real-time events identification and analysis are required. The 
paper proposes dense and sparse traffic identification based on the following data parameters: 
S(l) – speed limit, S(d) – driving speed, R(d) – reaction distance to the vehicle in front, and t – 
time that condition lasts. Based on how much and in what direction the driving speed differs 
from the speed limit, and what the distance is to the vehicle in front, the logic decides whether 
dense or sparse traffic exists. The promotion of PA should happen in accordance with the 
recommended use of the system since the design cannot promote PA in critical conditions for 
its performance. This means that the context that is not recommended for PA use should also 
be identified in step C and excluded from communicated events. 

Step D is focused on verifying conditions prior to support message output. For PA 
specifically, the driving context, related to road and weather conditions, is vital for PA 
performance. The prerequisites for PA performance require clear lane markings and the absence 
of a great deal of water, slush, or heavy precipitation since this negatively affects visibility on 
the road or results in slippery road conditions. Thus, step D uses additional data points that 
verify the road and weather conditions in real-time and confirm that the conditions for PA 
promotion are acceptable. 

Besides the context, the proposed logic considers the driver’s intention to perform the 
maneuver. Any change of lane, overtaking, turning, etc., is followed by PA deactivation. This 
means that if it is apparent that one of these types of maneuvers is being prepared for, PA 
promotion should be postponed until the maneuver is finished. 

Furthermore, the related equipment responsiveness should be verified. The cameras and 
radar system providing PA functionality should be verified to exclude their inadequate response 
due to mud covering or other reasons. 

The number of preconditions checked in step D is highly related to the targeted system, 
context, and equipment that contributed to the system performance. Promoting another system 
other than PA could result in a completely different set of preconditions. 

Step E is focused on transmitting the support notification to the driver. Thus in this step, it 
is essential to design what we want to output to the driver, in what form and through what 
communication channel, so that the support notification becomes understood, timely, and as 
minimally distractive as possible. Apart from the notification itself, the frequency of 
communication needs to be considered. If the goal is to constantly support drivers in the context 
identification, then the communication of context change could be appropriate every time it 
happens. However, in the case of PA promotion, such behavior could be too persistent, resulting 
in the neglect of both the support and the function. 

When the support takes place, the driver’s reaction to this support is important since the 
design does not imply any direct feedback from the driver due to safety restrictions on secondary 
interactions during driving. In step F, three different reactions were distinguished: (1) PA was 
activated in the proposed context; (2) PA was activated but in a different context; and (3) PA 
was not activated. These reactions need to be understood in real-time, so additional driver 
behavior monitoring should be in place. Understanding driver reaction is important for the 
support logic in the next step. 

Step G is responsible for driver category and associated support strategy adjustment. The 
key idea of the proposed support is that the design of the communication is not static but 
depends on driver reaction and, in the long term, driver behavior change. If the driver 
consistently follows the support suggestions, the driver category (when passing the set 
thresholds) will be improved, meaning that the driver will be assigned to a new support strategy, 
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helping him to develop new skills and to try PA in some new context. Depending on the driver’s 
starting category, a series of upgrades might be required before the communication support is 
discontinued. 

Additionally, since the driver is not supported in all driving activities, during the support-
free sessions, the driver’s behavior is still monitored to see if a driver can recall a previously 
given recommendation and activates PA in the recommended traffic conditions. The support-
free sessions are important when considering the category upgrade since they show that the 
driver learned and understood support messages and is able to implement this new knowledge 
without reminders. 

Summarizing the above, this paper provides the conceptualization of the idea of personalized 
driver support for PA. The author describes the idea step-wise, providing an explanation of the 
details that need to be considered at every step of this personalized driver support design. 
Additionally, the author describes limitations met during the design phase and discusses how 
personalized driver support can be further improved in the future. 

4.6 PAPER F  

4.6.1 Purpose  
If Paper E was aiming to conceptualize the idea of driver coaching, the research presented in 
this paper aims to (1) generalize the coaching approach, making it applicable to the coaching of 
any in-vehicle system; (2) verify the feasibility of the whole coaching concept, including the 
applied logic, backend, frontend, data processing and analysis in real-time; and (3) validate the 
coaching approach through designing and implementing the driver coaching in a practical case 
study with 20 participants.     

4.6.2 Method  
First, the imperative study was conducted to generalize the coaching process in the form of 

a framework design for the Driver Coach process. Subsequently, based on the framework 
design, the author identified all the affecting factors of driver interactions with Pilot Assist, 
defined the interaction context, derived the relevant data points to support the coaching process, 
and designed the coaching process. 

Second, the author conducted an empirical study where the proposed Driver Coach design 
for PA users was verified in terms of applied logic, backend organization, and frontend solution. 

Finally, the user study was organized to test the coaching idea on users in the natural 
environment. An Explanatory Sequential Mixed Methods approach proposed in paper B is 
adopted in this study. The sequential use of quantitative and qualitative methods aims to 
facilitate integrated analysis of the PA Coach app’s effect on drivers.  

The analysis of quantitative data helped in the first place to detect relevant individuals for 
the study. The driver categorization regarding the level of PA use was performed based on the 
historical dataset, which includes driving data on more than 3,000 drivers over six months. All 
drivers were assigned to nine different categories. Driver categorization was made based on two 
main parameters: the extent of PA usage and the traffic conditions when PA was used. Also, an 
additional screening process was implemented to exclude extensive sharing of the car or short-
term participation.  

Quantitative data collection and analysis are used to compare driver behavior before and 
after the Driver Coach app installation in participating vehicles. The data collection in this study 
was conducted in two phases: for six months, from April to September 2021, and for four 
months, from January to April 2022. In the first phase, the PA use behavior was evaluated in 
order to record the “before” behavior, categorize the drivers, and choose the participants for the 
second phase. In the second phase, after the PA Coach app was installed, continuous monitoring 
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of PA use behavior for the four additional months was performed to assess the effect of the 
Driver Coach app on the drivers’ behavior. 

Qualitative data collection and analysis were performed to validate the quantitative analysis 
outcome and add the human perspective to the drivers’ overall experience with the Driver Coach 
app for PA. The qualitative study has been designed to investigate the root causes for detected 
behavioral changes before and after the PA Coach app installation to enrich the data-driven 
insights with drivers’ subjective reflections about it. As a data collection method, extensive 
questionnaires before and after the study were chosen as a reliable means for gaining knowledge 
on user behavior, user perceptions, and user satisfaction regarding coaching support. Before the 
study started, potential participants received a unified set of screening questions, then after the 
study, according to the applied methodology, all participants received a set of personalized 
questions that were designed based on individual participant behavior to clarify and verify the 
data-driven reasoning and dig deeper into the individual issues discovered. Additionally, during 
the Driver Coach app use period, several feedback sessions were conducted to discuss and 
capture intermediate drivers’ experiences. During these sessions, the participants were 
encouraged to provide open-ended insights, elaborating on their experiences at the end of each 
questionnaire.  

Subsequently, an integrated analysis of qualitative and quantitative insights was made to 
measure the Driver Coach app’s effect on drivers and their behavior. This effect was estimated 
from three main perspectives: 

1. Measure the increase/decrease of PA usage after the Driver Coach app installation. 
2. Evaluate the change in driver behavior use strategies with PA. 
3. Assess the perceived usefulness of the Driver Coach app for the drivers. 
 
4.6.3 Main results    

As a first part of the results, the framework design of the Driver Coaching process was 
proposed. The framework consists of four levels, namely Input level, Reasoning level, Output 
level, and Meta-reasoning level. Figure 17 presents a high-level schematic design for Driver 
Coach, focusing on what data need to be collected and how they need to be processed to provide 
an adaptive real-time driver coaching system. 
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Figure 17. Framework design of the Driver Coaching process. 

 
Based on this framework, the detailed design of the Driver Coach app for Volvo PA was made 
to exemplify the coaching approach for a specific system. For convenience in the 
implementation and verification process, the Driver Coach framework, presented in Figure 17, 
was modified into the modular design, Figure 18. This representation of the framework steps 
made it possible to dissect a complex design task into smaller parts, facilitating each module’s 
design, development, and testing independently from other modules. 
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Figure 18. Design of Driver Coach logic modules for Pilot Assist. 

When the coaching logic was designed theoretically, the authors verified the logic, and tested 
backend and frontend solutions based first on the simulator, then on one test car, and finally on 
all cars before the measurement period started. More of the verification process can be found in 
Section 5.3.   

After the verification process was completed, the measurement process started and lasted 
four months. The results of this case study showed that the Driver Coach app for PA has an 
overall positive effect on drivers’ behavior with PA. The data shows a steady increase of trips 
with PA activations throughout the four months, without decreasing the average PA activation 
duration time per trip. This indicates the rise in PA usage with the Driver Coach application. 
However, it is too early to conclude regarding the level of improvement. Drivers can further 
improve since the learning process could still be in place after four months.   

The collected data revealed different levels of improvement for different users, showing that 
not all participants in the study improved at the same rate. Thus, the author observed two user 
groups with clear commonality in their improvement rates. The first group includes users who 
improved significantly and showed a higher level of PA use after four months of Driver Coach 
app usage. The second group contains users who remained on the same PA usage level and 
haven’t shown improvement for the corresponding period. The lack of improvement in the PA 
use strategy for drivers from group 2 was further explored through qualitative user feedback. 
The explanations for low/no improvement are the following: (1) drivers do not like the function 
in general, and (2) it is difficult to grasp the notification since it disappears quickly. If the first 
reason indicates that the participant is not the one this study should target, then the second 
reason is more crucial, referring to the messages and logic design. However, the in-depth 
examination showed that these drivers deactivated the application sound, leaving only graphical 
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representation on the screen. Doing this before the messages are understood and learned is not 
recommended since it can lead to a poor understanding of the coaching notification.  

Furthermore, the drivers’ behavior in a critical PA context was explored. Among the positive 
results, we also discovered that the Driver Coach app might stimulate speeding behavior for 
drivers who had already demonstrated speeding behavior before. This is critical for the logic 
design and needs to be verified in the next iterations of the Driver Coach app design. If it proves 
that the logic stimulates the speeding behavior of some drivers, then the logic needs to be 
reconsidered, even though it works well for other drivers.  

In general, the case study verified the feasibility of the coaching process for such complex 
systems as ADAS. Driver overall positive reaction shows the potential of this type of driver 
support. Drivers who want to improve show a significant improvement in the use level of the 
function and understanding of how the function works and its limitations.  

The paper also presents the primary constraints, mostly related to the test environment, and 
reflects on further improvements that could enhance the coaching support. 

4.7 SUMMARY OF THE RESULTS  
The results of the appended papers can be summarized as follows: 

• The author explored the state-of-the-art of data utilization in the automotive UX design 
process of in-vehicle systems, giving an overview of data-driven methods and 
approaches that are used in the automotive sector. The author differentiated between 
different types of data that can be utilized and compared the digital transformation in 
the automotive sector to other digital domains. 

• The author presented the main limitations of the automotive sector concerning the usage 
of data-driven approaches and correlated them to the specific needs of UX experts who 
want to make the UX design process more evidence-based and user-focused. 

• Furthermore, the author investigated potential fields of application in which the benefits 
of the usage of data-driven methods are not yet leveraged and suggested actions for how 
to better integrate data-driven methods in the UX design process. 

• Practicing applied research, the author investigated the ability to gain relevant vehicle 
data for user-related studies based on one automotive OEM. As a result, the 
requirements for the data were specified, and the initial dataset was established. 

• The limitations regarding vehicle data acquisition and utilization were identified. This 
included the technical limitations that affect the data feasibility and applicability 
negatively (e.g., the driver identification in the vehicle) and the barriers associated with 
sensitive data processing, preventing us from an extensive evaluation of real users in the 
natural driving environment. 

• As part of the imperative study, the effectiveness of qualitative and quantitative methods 
for user-related studies was investigated. This led to the conclusion that in the areas of 
system performance, driver performance, and driving context assessments, the use of 
vehicle data is more efficient. Vehicle data are considered more reliable and trustworthy 
since they record all interactions with the system and driving environment, compared to 
the user, who tends to “forget” or generalize certain issues.  

• The author also examined the methods used for a driver behavior assessment. The poor 
integration of qualitative and quantitative approaches leads to the practice where 
different data types create different types of insights. These insights are often isolated 
from each other, which makes the synthesis of the results difficult. At the same time, a 
thoughtful combination of both quantitative and qualitative methods can help to benefit 
from different data sources.  
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• As a result of this imperative study, the author proposed a mixed-method approach for 
user behavior evaluation of ADAS. The method helps to integrate quantitative 
assessment into the existing qualitative methods, resulting in more precise and 
comprehensive results.       

• The consequent ND study verified the ability of vehicle data to provide insights related 
to user behavior understanding and showed the advantages of the mixed-method 
approach in user-related studies. 

• Practical implementation of the mixed-method confirmed the effectiveness of this 
approach, resulting in a more comprehensive context-aware ADAS evaluation, where 
both driver and system behavior are evaluated in a specified driving context. The 
quantitative and qualitative approaches in this method complement and validate the 
results of each other. Thus, according to the author’s understanding, this method can 
result in better trust in the results from industry professionals. 

• After the ability of data to evaluate driver behavior to a specified extent was proven, 
another imperative study was conducted investigating how vehicle data can be used to 
convey system design features to ADAS users. As a result, the author proposed a real-
time driver support system for PA users to improve the effectiveness of PA usage in 
various driving contexts. 

• The idea of the Driver Coach approach was further developed and generalized to the 
framework for driver coaching. 

• Afterwards, the Driver Coach app for PA users was designed and implemented in the 
subsequent empirical study to exemplify and test the idea of driving coaching. The 
results proved the feasibility of the coaching process for such complex systems as ADAS 
and indicated a positive effect of such an approach on drivers. 
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5  

  

5 DISCUSSION  

This chapter is dedicated to the discussion of the results in connection to the research questions. 
Additionally, it aims to discuss the quality of the results in relation to the research approach.  

5.1 ANSWERING THE RESEARCH QUESTIONS  
RQ 1: What vehicle data are relevant to support the understanding of driver behavior? 
 

According to SAE International (2018), the three primary actors in driving with an in-vehicle 
system are the driver, the system, and the vehicle. Moreover, all interactions between the driver 
and in-vehicle system happen in a dynamically changing context, which affects both system 
and driver behavior. Additionally, the vehicle itself is a complex system of systems (SoS) with 
circulated data that ensure complete vehicle performance. Below, the author analyzes these 
interrelations in answering the research question of what data are relevant to support the 
understanding of driver behavior with the in-vehicle system. 

Driver behavior has a complex nature, encompassing both subjective and objective 
understanding of how the user uses the particular system or function in the car. The objective 
data contribute to understanding what users are doing while performing specific tasks and can 
be measured objectively through implicit vehicle data in the form of driver performance. 
However, recorded driver performance is not self-explanatory. To understand driver behavior 
means to answer the question of why people behave as they do. This part of user behavior was 
traditionally assessed subjectively. Until recent times, only explicit user feedback collected in 
qualitative studies with users was used to answer this question. However, with the advances in 
data-driven technologies, the subjective area has expanded toward objective assessment. Today, 
the well-detailed quantitative driver behavior insights are a key to a better understanding of 
drivers’ interactions with in-vehicle systems. 

 
Driver-related data 
Driver behavior data aim to provide knowledge on the driver’s understanding of the system, the 
effectiveness of his chosen use strategy, his preferences regarding the system use and activation, 
the ways of handling errors, and other knowledge connected to the set of investigation 
questions. Driver behavior data also includes driver perception in the form of perceived 
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usefulness of the system, technology acceptance, trust, perceived safety, and satisfaction with 
the system support since it partially explains why the driver behaves as he does.  

Therefore, driver-related data encompass all conceivable data that are possible to extract to 
answer the set of user behavior questions. At first, for any driver behavior investigation, a driver 
identification module is required. Driver recognition is a key for driver behavior assessment 
and any driver-oriented research since it helps to figure out who is operating the vehicle in 
current driving activity and connect corresponding behavior data to the correct person. Driver 
identification is also used to separate the behavior data of different drivers who share a 
particular car, which is extremely important for the retrospective analysis of driver behavior or 
applications that consider the driver’s previous conduct in its logic.  

Driver profiling data are another source of driver-related data that keep driving preferences 
and settings essential for a driver. Depending on the study objectives, these data can contribute 
to understanding the preferred settings for navigation, audio and media systems, language and 
voice control, and other parameters added and kept in profile. 

Second, driver performance data are required. Performance records should be detailed 
enough to understand not only the final result in the form of function status change but also the 
instruments the driver uses and the ways he uses them to achieve this result (choice of interface, 
sequence of performed steps, uncompleted operations, errors that lead to poor system response, 
and other related metrics). This level of detailing gives much more information about the 
driver’s understanding of the situation, his intention, and how this intention is forwarded. For 
example, if the driver deactivates PA by changing lanes, it indicates his indirect intention to 
deactivate PA. But if the driver used the PA interface to deactivate PA, it is a direct intention. 
This type of data could be relevant for specific questions on driver behavior. The level of detail 
for performance data should be derived based on the study objectives. 

If the performance data show what the driver did, then the data on what the driver is going 
to do help to foresee and optimize system behavior considering driver intention. Driver 
intention’s indicators are essential, especially for automated support systems that monitor driver 
behavior in real-time to provide relevant support. Driver intention metrics could be based on 
simple data points processing, such as the turn indication showing that the driver is preparing 
to maneuver. However, the more complex AI-based frameworks that focus on predicting driver 
behavior based on the historical evidence on specific behavior also exist. 

Further, the driving style, which is the way the driver behaves in a particular trip or situation, 
could be relevant for driver behavior evaluation. The driving style could be characterized as, 
for example, aggressive vs non-aggressive, active vs passive (concerning steering), driving with 
automation vs self-driving, amongst others. In its turn, the driving style could depend on the 
driver’s current state and surrounding context. Therefore, the driving style and driver state could 
be relevant for frameworks that aim to correct driver behavior. 

Furthermore, data indicated driver distraction and workload contribute to further 
understanding of driver behavior and help, for example, optimize the distribution of the tasks 
to reduce driver workload or explain low driver responsiveness to the system notifications. In 
contrast to driver performance data, driver distraction and workload knowledge might not be 
relevant to all driver-related studies. Still, it adds value if applicable to the investigated 
objectives. 

Table 1 presents the summary of driver-related data that can be considered for driver 
behavior evaluation. 
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Table 1. Summary of driver-related data.  

Driver-related variables  Description   
Driver identification   The key for any driver-focused research; helps to figure out who is operating the 

vehicle in current driving activity and connect corresponding behavior data to the 
correct person. 

Driver preferences Driver profile data keeps driving preferences and settings essential for a driver. 
Can contribute to understanding the preferred settings for navigation, audio and 
media systems, language and voice control, and other parameters. 

Driver performance 
 

Records related to driver’s choice of interface, sequence of performed steps, 
uncompleted operations, errors that lead to poor system response, and other 
related metrics. Driver performance helps better understand the situation, driver’s 
intention, and how this intention is forwarded. It is important to distinguish driver 
performance from any actions performed by the passengers. 

Driver intention Helps to foresee driver behavior and optimize system behavior considering driver 
intention.  

Driver workload Driver workload includes both physical and mental workload that results from 
multiple tasks performance provided by external or internal context. 
Understanding of driver workload helps to optimize the distribution of the tasks 
and/or notifications. 

Driver distraction Such activities as talking to the passengers or listening to music contribute to 
driver distraction. Driving distraction metrics helps to optimize the distribution 
of the tasks or explain low driver responsiveness to the system notifications. 

Driver style Aggressive vs non-aggressive (concerning braking/acceleration), active vs 
passive (concerning steering), driving with automation vs self-driving, or others. 
Driver style could be relevant for studies that aim to correct driver behavior. 

Driver state Relaxed, nervous, sleepy, tired, etc. Driver’s current state affects the way they 
behave and could be relevant for frameworks that aim to correct driver behavior. 

Driver’s eyes and hands 
positioning 

Driver monitoring system or vehicle internal sensors can help to find out where 
the driver is looking and whether his hands are on the steering wheel. These 
metrics are vital to understanding and modeling driver behavior. 

Non-driving related tasks Tuning of interfaces, search in the HMI, changing the destination point in the 
navigation system, or other activities contribute to driver workload and driver 
distraction, and need to be considered for comprehensive driver behavior 
understanding. 

 
In general, driver-related data are not well designed compared to system-related data. 
Therefore, the contribution of different data sources often helps organize datasets with a good 
level of detail. The better user-related data are detailed, the easier it would be to understand 
how interrelated factors affect driver behavior. However, the choice of data types and metrics 
should be connected to specific research questions set individually in each study, since the more 
data is linked, the more time-consuming and complex the analysis becomes. 
 
Context-related data 
By driving the vehicle and being inside it, a driver creates two types of contexts: external and 
internal contexts. External context, or driving context, describes the situation outside the 
vehicle. The driving context could be described as the summary of external factors that affect 
driver behavior while using the evaluated system (Zhai et al., 2018) and defined as the 
aggregation of traffic, road, and weather conditions that, in association, can encourage or 
discourage driver interactions with in-vehicle systems. In contrast, internal or in-vehicle context 
refers to the driver’s activities inside the vehicle. The in-vehicle context, such as listening to 
music or talking to passengers, can also be relevant for the moment of driver-system interaction 
since it indicates the driver’s state and workload.   
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The context is system-dependent. Therefore, it should be defined depending on the function 
in focus. For example, if system performance deteriorates in poor weather conditions, the 
weather condition should be a part of the context. But if the system performance is independent 
of weather changes, the inclusion of weather conditions in the context description will be 
redundant.   

Including detailed context assessment through implicit data helps understand driver behavior 
as a reaction to context change. The context, of course, does not cover all possible reasons for 
driver behavior changes but contributes to the understanding of how a particular context 
changes the behavior. And according to the Paper C results, the effect of driving context on 
driver behavior is proven and documented. Table 2 presents the summary of context-related 
data that can be considered for driver behavior evaluation. 

 
Table 2. Summary of context-related data.   

Context-related variables  Description   
Road conditions Part of driving context, related to the road infrastructure; usually static 

and represented by road markings and road signs.  
Weather conditions  Part of driving context; affects different systems’ performance and 

requires special actions from drivers, such as turning on fog lights or 
wipers. 

Traffic conditions 
 

Part of driving context that has biggest impact on driver behavior due 
to its dynamically changing nature, and that requires high driver 
attention in situations with dense traffic. 

System-specific context 
 

If system works under specific conditions these conditions become 
part of the system related context and have to be considered in driver-
system interactions analysis. 

In-vehicle context For example, presence of passengers, talking, listening to music, etc. 

  
Data supporting the external context assessment improves fairly quickly since driving 

context recognition is a part of autonomous driving research, and OEMs compete in the speed 
that autonomous vehicles are entering the market. In contrast, data supporting the in-vehicle 
context understanding is poorly defined and explored. However, despite the reduced data 
availability to support its monitoring, in-vehicle context contributes to understanding driver 
distraction, driver state, or workload at a particular moment. This helps to better understand the 
driver’s behavior and needs in a specific moment and provide additional support to the driver 
if this is the goal in a particular study. 

 
System-related data 
Defining the system-related data, one should understand that none of the vehicle systems can 
be seen in isolation. The vehicle is a system of systems (SoS) where the data are circulated to 
ensure the whole system’s performance. The output from one system could become the input 
for another and contribute to performance or enable a third functionality. These 
interdependencies between internal systems need to be understood and considered while 
planning the data collection or defining the context for the targeted function.  

System-related data usually encompass targeted system performance, the performance of 
related systems, vehicle-specific configuration, and connected services that support, automate 
or enhance driver behavior with the targeted system. Table 3 presents the summary of system-
related data that could be used if related to the targeted system or behavior change. 
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Table 3. Summary of system-related data.  

Vehicle/system variables  Description   
Targeted system performance Performance of the system under evaluation. 

Related system(s) performance  All systems’ performance that affects or contributes to the performance 
of the targeted system. 

Related vehicle performance 
 

It could be essential to evaluate driver-targeted system interactions only 
when the vehicle is moving. In this case, it creates additional context 
related to system performance. 

Vehicle configuration 
 

Vehicle configuration predefines the functionalities that a particular car 
has, the interface realization, and the level of automation. This predefines 
a driver’s possible behavior. 

Connected services All services and apps that are used and relate to driver behavior with the 
targeted system should be part of the overall context. 

In-vehicle tasks priority  Could be relevant for systems that plan and provide support to the 
driver. 

In-vehicle notifications priority Could be relevant for systems that plan and provide support to the 
driver. 

 
System-related data are extensively represented in current vehicles. Nevertheless, work 

should be focused on deriving the most relevant data point from the list of those available since 
multiple data points from different systems could be available for a single parameter. 

 
Driver behavior data used in this research 
This research was focused on ADAS function, Volvo PA and ACC specifically, and was based 
on one specific automotive OEM. Therefore, the author illustrates how the theoretical vision for 
what data are needed for user behavior understanding with PA and ACC was applied in this 
research. The author describes what driver behavior data were derived for the project, what 
limitations to data collection were encountered, and how they were addressed in the studies. 

One of the most significant limitations of driver behavior datasets in conducted studies is the 
absence of data points for driver identification in the vehicle. Although a theoretical framework 
for driver identification through indirect signals was proposed (Orlovska et al., 2019b), it was 
not tested or verified in practice. As a result, the driver behavior datasets of the studies did not 
support the car-sharing concept. If, for example, two drivers that share the vehicle have entirely 
different use strategies regarding the evaluated system, the cumulative behavior will represent 
neither of the drivers. This limitation resulted in a constraint to the study design. Only the sole 
driver of the cars or drivers who share their vehicle to a limited extent were invited to participate 
in the studies. 

Furthermore, driver performance described driver interactions with PA and ACC were 
measured. The interface for these functions is relatively simple. There was no need to monitor 
the way or the sequence the driver used to activate one of these functions since there is the only 
way to start ACC and PA through its interface. However, the deactivation of these functions 
could be performed in multiple ways. Apart from the PA/ACC interface, the driver can change 
lane, overtake, pass a crossroad or implement active steering. One of these actions would be 
enough to change the status of the functions from active to standby mode. One limitation of our 
design is that we count these deactivations without understanding if they were part of the 
driver’s real intention or resulted from the context change. 

The only driver intention that was considered relevant and was part of the Driver Coach 
framework for PA (Paper F) was the driver’s intention to perform a maneuver. The promotion 
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of PA cannot be made when the driver plans to change the lane, overtake, turn, etc., since these 
types of maneuvers will be followed by PA deactivation. Understanding the driver’s intention 
to perform a maneuver made the PA promotion more accurate, allowing postponing the 
coaching notification until the maneuver is finished. 

Driver style is connected to driver classification implemented in the Driver Coach app for 
PA – driving with automation and manual driving – since it is related to the study objectives to 
increase driving with ADAS. Using automation contributes to safer driving since PA 
implements a “driving in-the-flow” strategy without changing lanes or overtaking. In contrast, 
manual driving is usually harsher in braking/acceleration, or when the driver implements active 
steering depending on his current mood or state.  

Since PA does not perform equally well in all driving contexts, due to the technical 
limitations of this function, in order to evaluate driver behavior, all context parameters affecting 
ADAS performance need to be considered. Weather conditions for stable performance presume 
monitoring and controlling during heavy precipitation and mist that affect visibility on the road. 
Stable road conditions require clear lane markings and the absence of slippery road conditions, 
which is a combination of weather and road conditions. Additionally, using PA in residential 
areas is not recommended. The author also connected this limitation to road conditions since 
the speed limit sign of 30 km/h describes the road type that the driver uses. As for the ACC 
function, it provides only a part of PA functionality, namely longitudinal control. Therefore, it 
does not have different context parameters from those described above. When all related 
weather and road conditions were identified, the author set specific thresholds that help to 
distinguish critical conditions from acceptable ones.  

As for the system- and vehicle-related data, the following data were added: PA status change 
monitoring, ACC status change monitoring (since it is a part of the PA functionality), the 
metadata on vehicle configuration (year of production, model, engine type, etc.), equipment 
responsiveness for camera and radar system, and the app responsiveness in the study from 
Paper F. 
 Finally, based on the research purposes of the study in Paper F, which is to promote the use 
of the PA in various traffic conditions, the data points for traffic situation identification were 
added to the overall dataset. Based on different traffic situations identified in real-time, the 
Driver Coach app provides personalized recommendations to drivers.   

As demonstrated in this research, the vehicle data can support the complex assessment of 
driver-system interactions, considering the spectrum of contextual factors affecting these 
interactions. In particular, vehicle data can support the measurement of both the driver and 
system(s) performance, as well as contextual information such as the weather conditions, the 
road conditions, and the data indicating the traffic conditions on the roads. The summary of the 
measured variables for ADAS evaluation is presented in Table 4.   

Table 4. Summary of data variables used for the ADAS evaluation.  
 

Driver-related variables Description   
Number of DCs   
Time of DC start  
Duration of DC  
Frequency of PA/ACC usage   
Duration of PA/ACC usage 
Time of act./deact.  
DC length  
DC type  
Turn indication   
GPS location 

per day/week/month to understand the level of activity  
number of activations within one single DC 
to understand the type of trip 
to count activations within one DC 
to calculate the activation duration for PA/ACC 
to understand the type of trip 
to understand the type of trip 
to understand the type of trip 
to foresee driver intention to perform a maneuver 
to map driver behavior to the driving context in the zoom-in analysis 
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Context variables Description   
Wiping status   
Fog illumination  
Ambient temperature  
Lane marks reading  
Speed limits  
Driving speed  
Braking/Acceleration  
Distance to the vehicle in front 

to detect heavy rain or snow 
to control visibility on the road 
to exclude slippery road conditions  
a precondition for ADAS performance 
to identify the road type 
to see the deviation from speed limits 
to determine the distance between changes 
to identify heavy traffic  

Vehicle/System(s) variables  Description   
ACC performance   
PA performance  
PA availability 
Radar On/Off  
Camera On/Off  
Coach App response 
Vehicle Metadata  

on/off/standby mode – contributes to PA performance 
on/off/standby mode 
the signal tells you if LatCtrl is OK to activate  
the signal from the radar ensures ADAS performance  
the signal from the cameras ensures ADAS performance  
the signal that returns true/false connection value in every DC 
model, market, year of production, vehicle-specific 
configuration, etc. 

  
These data offer the possibility to determine individual user behavior, and to describe, 

categorize and compare this to the average within a group. Furthermore, vehicle data analysis 
enables understanding of the severity of detected issues by checking the number of vehicles or 
DCs that accounted for the same problem. All of those mentioned above provide the ability to 
effectively apply quantitative research methods that focus on detecting and investigating driver 
behavior patterns.  

Moreover, vehicle data acquired from the ND studies is the only way of unobtrusively 
logging the interrelations between the system and the human in a real driving environment. In 
general, the ND data analysis allows precise and reliable results to be obtained since the 
outcomes are based on statistical methods and can always be assessed with regard to their 
statistical significance.   

However, it is essential to acknowledge that the vehicle data are not perfect and need further 
development. The described limitations prevent more efficient use of vehicle data. Since data 
availability is continually improving, the dataset representing the driver and context parameters 
can be further improved. For example, the effect of the oncoming traffic or the in-vehicle 
context (the use of a mobile phone, distraction from passengers, etc.) was not extensively 
assessed due to the technical feasibility and GDPS legislation regarding establishing these 
signals. Thus, vehicle sensors and means of internal context assessment, such as camera-based 
driver monitoring for a better understanding of in-vehicle context, need to be continuously 
improved to provide a more detailed understanding of driver-system interaction.       

RQ1 was considered a primary research question since most limitations and technical 
constraints were met at the beginning of this research and followed until its end. Therefore, all 
studies focused on building up and further improving the comprehensive dataset required for 
user-focused studies. Practicing applied research helped reflect how currently missing data 
could improve driver behavior assessment in the future. In Papers C & D, the author designed 
the dataset and performed a full-scale evaluation to illustrate the ability of vehicle data to 
contribute to driver behavior understanding. Based on the proven ability of vehicle data to 
understand driver behavior in a specific extent, Paper F presents the design for real-time data 
processing, which also finished with satisfying results despite the applied limitations. Finally, 
Paper A presents a summary of current limitations that restrict a data-driven approach in 
different automotive OEMs and provides recommended actions to improve data availability for 
user-focused studies. 

  



 62  
  

RQ 2:  How can the data-driven approach be incorporated into existing methods for driver 
behavior evaluation?  

  
Today, no single method can support the evaluation of the whole complexity of driver 
interactions with ADAS. The traditional way of driver behavior evaluation, solely based on 
subjective user feedback, cannot consider all interrelating factors between the driver and the 
system in a dynamic driving context. At the same time, there is no systematic approach 
regarding the utilization of vehicle data. Vehicle data are extensively used for system 
performance verification but less used in driver behavior evaluation and driving context 
assessments due to their limitations. Therefore, in Paper B, the author proposed the explanatory 
sequential mixed-method approach, aiming to effectively utilize both quantitative and 
qualitative data types to comprehensively assess driver behavior in relation to complex systems 
akin to ADAS. Subsequently, Papers B, C, D & F implemented the mixed-method design in 
data analysis, validating the method design through practical application. 

The explanatory sequential mixed-method design proposed by the author aims to improve 
the quality of driver behavior assessment by combining quantitative and qualitative methods in 
the most effective way, overcoming the limitations of quantitative data with the benefits of 
qualitative data and vice versa. However, a simple merging of results does not always lead to 
the achievement of a comprehensive understanding of investigated phenomena. The data are 
usually different in nature and structure because the qualitative and quantitative studies are 
designed with a different focus and aim to explore various aspects of the same problem. In 
practice, the results are often not synchronized, are incompatible and difficult to use (Orlovska 
et al., 2020). Therefore, the sequential use of both methods allows us to build an in-depth 
qualitative investigation using the insights of the quantitative study. The topic of interest can be 
chosen or added after the results from the quantitative evaluation are obtained if, for example, 
some interesting pattern in driving behavior is identified.  

In the mixed-method approach, the qualitative study design is a way to explain quantitatively 
detected issues. Thus, the focus of the qualitative investigation, the choice of participants, and 
the design of the questionnaire should be made based on the results from the quantitative 
evaluation. During the qualitative study, different participants could be asked various questions 
based on their recorded behavior and with the aim to explore the reasons for this behavior. This 
personalized approach is more effective than the standardized questionnaire, where the 
participant could be asked about specific behavior or situations that he has never encountered. 

Additionally, the mixed-method approach contributes to higher compatibility of the results 
between studies since the objectives of one study are based on the metrics from another.  
Finally, the sequential mixed-method approach helps to cross-validate the results of both studies 
and evaluate the completeness of their datasets by reflecting on the missing knowledge in the 
overall assessment. This allows, for example, the ability to assess if the identified fragmented 
issue from the qualitative investigation is significant for the whole pool of participants or, based 
on qualitative study output, discover new insights beyond the quantitative results covered by 
the initial quantitative analysis.  

 
RQ 3: How can vehicle data be used to support users’ adaptation to smart in-vehicle 

systems? 
 

First in this research, the author understood what vehicle data are needed and how they can be 
used for a driver behavior evaluation. Several practical studies verified the data’s ability to 
reveal knowledge regarding driver behavior, making the author think about new applications 
for behavioral data utilization that enrich the design of smart in-vehicle systems. 
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The problems with understanding related to low trust or over-trust in the technology (Itoh, 
2012; Kazi et al., 2007) due to poor understanding of ADAS capabilities and limitations 
(Llaneras, 2006; Jenness et al., 2008; Aziz et al., 2013) helped to formulate what type of smart 
support is needed to achieve better understanding and acceptance by ADAS users. 

At the same time, research has shown that providing feedback is a powerful tool for 
stimulating a behavior change (e.g., Fischer, 2008; Allcott and Mullainathan, 2010; Stern, 
2011). Today, in-vehicle feedback technologies are able to provide drivers with real-time, 
performance-based feedback on their behavior, implementing different driver behavior 
optimization algorithms. Feedback on how to optimize helps to gain confidence, decrease the 
workload, or better understand the technology, resulting in the more conscious use of such 
systems as PA. 

Motivating people to use automation effectively can be considered a learning process. 
Feedback is an essential component of learning, and its principles are rooted in educational 
theory (Darby, 2001). Receiving feedback can be an important part of the learning process, 
helping drivers learn new skills and hopefully form new habits (Brouwer et al., 2015).  

On the other hand, drivers vary considerably. They have different previous experiences, 
attitudes toward automation, preferences, and habits. Depending on their individual experience, 
the learning process can take different times. For example, the study by Trübswetter (2013) 
showed that older adults are slower to learn and adapt. Therefore, drivers require custom-made 
solutions to explain how their particular driving behavior can be improved (Gonder et al., 2011). 
This is in line with He et al. (2010), who argued that a unified way of presenting feedback to 
differently motivated drivers might not be that effective, saying that consideration of specific 
values and goals of each individual when providing feedback to drivers is essential. Thus, the 
research community indicates a need for personalization that considers driver needs, previous 
experience, and current level of technology understanding. Personalization could be achieved 
by, for example, categorizing drivers regarding their behavior and implementing the reasoning 
and meta-reasoning process (Gilman and Riekki, 2012).  

 
Therefore, the designed Driver Coach framework encompasses the ideas expressed by the 

research community and provides a description of a general process of driver coaching.  
Driver Coach framework design (see Figure 17) is unique in combining the following five 

essential characteristics: 
1. Performance-based drivers’ categorization regarding targeted function or system use. 
2. Real-time driving event and driving context recognition. 
3. Implementation of several driver support strategies based on driver behavior analysis in 

various contexts.  
4. Personalized communication based on the driver’s use strategy with the targeted system.  
5. Meta-analysis of the driver response to implemented strategy and adjustment of the 

communication strategy when needed. 
 
Subsequently, the general Driver Coach framework became a basis for designing real-time 

personalized coaching support for PA users. The Driver Coach app for PA users aims to: (1) 
promote PA in different traffic situations to increase the general use of this type of semi-
automation; (2) improve driver experience regarding PA usage by better explaining system 
performance and its limitations; (3) provide help in the navigation through the PA interface; (4) 
support with both suitable PA use context and critical context when the PA performance can 
deteriorate. 

The Driver Coach app for PA users is based on real-time telematics data obtained from 
vehicle CAN and FlexRay busses to monitor driver behavior and understand the need for driver 
support for the specific user. Furthermore, constant controlling and monitoring of driver 
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behavior helps in gathering understanding regarding driver response to the provided support 
and reasoning about how well the PA Coach app strategy fits a particular user’s needs. 

The Driver Coach app design includes reasoning and meta-reasoning levels. On the 
Reasoning level, modeling the correct strategy for the user occurs. The Meta-reasoning level 
aims to understand the effect of coaching on the driver by analyzing a driver’s response to 
provided support notification. This analysis helps to adapt the support strategy and optimize the 
interaction strategy with the driver when needed. Thus, depending on the driver’s reaction to 
the provided support, the meta-reasoning reassesses the currently applied logic and decides the 
next communication time and frequency of these communications. 

In summary, the author designed (Figure 19) and tested a new smart service, namely Driver 
Coach for PA, demonstrating that vehicle-based driver behavior data can be used as a source 
for add-on services to existing functionality. This approach is applicable for design support for 
any vehicle system and could be especially useful for introducing novel vehicle systems to 
drivers. 

  

 
 

Figure 19. Front-end design and implementation for Driver Coach app for PA. 
 

5.2 CLARIFICATION OF RESULTS AND SUCCESS CRITERIA  
Many factors influence research success. According to the DRM, there are no established 
metrics to measure success. It is suggested to set the measurable success criteria that are linked 
to the research goals. The term “measurable” refers to the possibility of evaluation criteria 
during the research project, i.e., mixed methods can be used in this case (Blessing & 
Chakrabarti, 2009). In this research, the Success Criteria related to the research questions were 
set as follows:  
  
• Possibility to define the vehicle data needed for a data-driven driver behavior assessment. 
• Ability to handle vehicle data in the driver behavior assessment. 
• Ability to design and implement a methodology capable of assessing driver behavior for 

the system under evaluation based on vehicle data. 
• Possibility to implement and demonstrate the ability of the proposed method to improve 

the quality of the evaluating processes in one or few parameters. 
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• Proposing a novel approach for vehicle data utilization in the smart user-focused design of 
vehicle systems. 

• Possibility to prove the positive effect on driver behavior of implementing such an 
approach.  

  
Consequently, the Fulfillment and Measurability of the Success Criteria are expressed as 

follows: 

• The interrelated factors for driver behavior assessment were investigated, and all relevant 
data that contributes to driver behavior interaction with the targeted system was derived 
and grouped as the driver-, system- and context-related data. 

• The feasibility of driver behavior data extraction was practically tested in multiple studies 
based on one automotive OEM. Nevertheless, the results were correlated to the existing 
practices in other automotive OEMs (Paper A) to show the similarities in current data 
development. Most automotive OEMs have similar limitations regarding data availability 
derived in the course of this research. 

• Papers C, D & F perform driver behavior evaluation, proving the ability of vehicle data to 
enable conclusions regarding driver behavior and describe the extent to which vehicle data 
can contribute to driver behavior understanding. 

• The mixed-method approach designed for comprehensive driver behavior understanding 
was practically verified in studies documented in Papers C, D & F and revealed several 
benefits for driver behavior evaluation: (1) higher compatibility between quantitative and 
qualitative results; (2) more comprehensive evaluation since most of the limitations of 
quantitative data could be covered by possibilities of qualitative data and vice versa; (3) 
decrease of time and resources on the design of qualitative study and choice of relevant 
participants; (4) possibility to implement the personalized approach in the qualitative study, 
based on recorded behavior, for each participant; (5) higher validity of results due to cross-
validation of subjective and objective data. 

• The Driver Coach support was designed as a personalized context-aware approach that 
helps drivers to navigate the system and supports learning of the system’s abilities and 
limitations in the natural driving environment. This approach enhances the existing system 
design with the smart add-on to improve the driver-system interactions with the targeted 
system. 

• The Driver Coach approach was implemented for PA and tested in a practical study (Paper 
F) with real users. The results showed the following positive effects for different users: (1) 
an increase in general usage of PA; (2) a better understanding of the PA abilities and the 
expansion of use context for PA; (3) a better understanding of PA limitations and decrease 
of PA use in PA critical context. 

 
Since data-driven development in the automotive sector is rapidly improving, the author expects 
better availability of vehicle data shortly. This will increase the quality of Driver Coach and 
improve the proposed method by overcoming the current data limitations. Furthermore, since 
the study described in Paper F is a pilot study, further rounds of improvement of the proposed 
methodology are needed before being adopted by the industry. Several industrial studies need 
to be conducted to further test the efficiency of the Driver Coach approach.   

5.3 VERIFICATION AND VALIDATION   
In order to establish a good quality of research, it is important to verify and validate the results. 
The verification of the results can be ensured by Logical verification, which entails the analysis 
of coherency, completeness of the results, and consistency of internal and external elements. 
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Validation by acceptance focuses on the acceptance of new scientific contributions by the 
scientific community and industry experts within the field.    

5.3.1 Logical verification   
Coherency is understood as the agreement between established methods and theories. In this 
research, the author ensured coherency by constructing the method’s elements from previously 
applied research. The achieved results and findings demonstrate completeness if they fit into 
the established theories. The completeness of this research is verified by following the steps and 
guidance of the applied research methodology. Consistency is achieved if there are no conflicts 
in terminology or between different research theories. The current research is based on a 
combination of established research approaches. The results were always compared to the 
research publications within and outside the field, which ensured the external consistency of 
this research. Moreover, co-authorship with authors from different areas and research groups 
supported the terminology and glossary verification. Regarding the internal consistency, no 
conflict elements were observed in this research.  

5.3.2 Validation by acceptance  
A mixed-method approach has been applied in this research. The validity of this type of research 
needs to be discussed from two different perspectives: quantitative and qualitative.  
   
Validity in quantitative research  

Validity in a quantitative study is defined as the extent to which a concept is accurately 
measured. According to Heale and Twycross (2015), there are three major types of validity: 
content validity, construct validity, and criterion validity.   

Content validity concerns the correctness and accuracy of measurements determined to 
assess the phenomena. In this research, industrial professionals validated all datasets designed 
for the studies. The signal descriptions and the correctness of signal outputs were discussed 
before the measurements started and after achieving the first prototyping results. Further, each 
dataset collected for different studies went through a data quality assessment. The data quality 
dimensions, such as accuracy, consistency, timeliness, uniqueness, and others, were used to 
ensure the quality of recorded data. 

As a part of the content validity, the author also verified the dataset’s completeness, 
evaluating if this data can provide information regarding all set objectives. Some complex 
metrics, based on indirect data processing, were validated in isolation before using them in more 
complex logic. The tests were first conducted based on the simulator, then on one test car, and 
consequently on the pool of vehicles.  

Construct validity is the extent to which a research instrument (data acquisition system in 
this research) measures the intended construct. Construct validity refers to whether one can 
draw conclusions about test scores related to the studied concept. Despite the data acquisition 
system used in the performed studies belonging to the industrial partner and validated internally 
at the company, this research revealed a few limitations related to consistency and completeness 
of data collection. In these cases, the author carefully drew conclusions and always described 
the boundaries so that the reader understands what limits the conclusions drawn.  

The construct validity also required logic verification. The set values of thresholds for event 
identification were verified based on simulator tests and validated with real users, ensuring that 
the established rules and thresholds identified events correctly according to the initial logic 
design.  

The final measure of validity is criterion validity, the extent to which a research instrument 
is related to other instruments that measure the same variables. The criterion validity in this 



   67  
  

research was assessed based on a literature review within the same field. ND studies and the 
description of variables they measure, as well as the results they achieve, correlate with the data 
used in this research and the results achieved.  

Validity in qualitative research  

To ensure the validity of research elements in qualitative research, three main aspects need to 
be discussed: internal validity, external validity and construct validity (Winter, 2000).  

Internal validity ensures the validity of the results within the study. This internal validity 
aspect was considered by designing a number of pre-studies where the prototyping results were 
delivered and analyzed together with the industrial partners responsible for the quality of data 
delivery.   

External validity concerns the generalizability of the results. This aspect was approached by 
the deliberate choice of measurement parameters, which are quite broad (e.g., different types of 
vehicles, the extensive range of users, a variety of vehicle models, and different markets). This 
approach helps to achieve a broader understanding of the ADAS functions and contributes to 
the generalizability of the results. A comparison of results across the OEMs was performed in 
the study described in Paper A, where authors from different research areas (UX and data-
driven development) and different automotive OEMs in Germany and Sweden (Daimler, Volvo 
Cars, and Porsche) compared numerous independent findings. This study comprised two 
interview studies with more than 15 UX practitioners, and two action research studies conducted 
with two different OEMs. Based on these results, the authors agreed on and synthesized the 
need for data support, extracted limitations within the automotive sector that hinder the 
application of data-driven methods, elaborated on unleveraged potentials, and formulated 
general recommendations to improve the usage of vehicle data.    

Construct validity establishes correct operational measures for the concept being studied. To 
achieve contract validity in studies described in Papers C, D & F that involve qualitative data 
collection and analysis, the qualitative researchers were invited for co-authorship. The main 
purpose was to maintain the correct structure of the study design, verify the data collection tools 
and methods, ensure the correctness of the coding approach, and validate findings by correlating 
quantitative findings and themes from the quantitative data evaluation and qualitative user 
study. Thus, the use of structured coding techniques correlates with the presented descriptive 
information associated with the collected data, and the cross-validation of quantitative and 
qualitative results in this study increases the validity of overall results. 

Additionally, different methods for qualitative data analysis were used to consider the user 
input before, during, and after the studies. The combination of such qualitative methods as 
screening questionnaires, semi-structured interviews, and self-assessment forms helped in 
verifying the compliance of the identified trends derived quantitively.  

 
Cross-validation  

As was previously mentioned, a cross-validation approach was implemented in studies 
described in Papers C, D & F. The drivers’ interview insights were cross-validated with 
quantitative findings, and the correlation of the results was confirmed. Moreover, industrial 
professionals cross-validated both quantitative and qualitative insights by reviewing 
publications before publishing. All published papers had been granted permission from the 
OEM to be published 

Additionally, the intermediate and final results were presented numerous times to the 
industrial partners. The involvement of people with different expertise in these discussions 
helped address their feedback in the early stages and, therefore, increased the quality of the 
applied research approach and presented outcomes 
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Finally, all papers included in this thesis have undergone the peer-review process, where 
international academics agreed on the quality of provided methodology and presented results, 
which resulted in acceptance for journal publication and international conferences.  

5.4 RESEARCH CONTRIBUTION  

5.4.1 Scientific contribution  
One of the scientific goals of this research is to design a method for effective user behavior 
evaluation utilizing vehicle data, and to understand how this method can be incorporated into 
the existing practices of user behavior evaluation. According to these goals, the following steps 
were carried out:   

• The author designed a novel methodology for vehicle data utilization, defining the area 
where vehicle data can be used, identifying the influencing factors for the evaluated 
objects, and defining the relevant data for the evaluation of data-driven driver behavior.  

• Furthermore, since no single method could help capture the complexity of user behavior 
due to a combination of qualitative and quantitative disciplines, the development of the 
mixed-method approach designed as a next step effectively combines quantitative and 
quantitative data analysis and helps to handle the complexity of driver behavior 
evaluation considering the context of interaction. 

Another scientific goal of this research is to learn how to utilize the gained knowledge regarding 
driver behavior in designing smart systems or services to enhance driver interaction with the 
targeted system. According to this goal, the following steps were carried out:   

• The author proposed the design for driver support in the form of a Driver Coach 
framework, describing the data needed for this type of support and general principles 
that enable context-aware driver coaching in a natural driving environment. 

• Further, the author presented a detailed design of the Driver Coach app for Pilot Assist 
to illustrate the applicability of the Driver Coach framework to any system and verify 
the designed method. 

• The author also carried out a practical study to further verify the designed method, prove 
the possibility of real-time driver behavior assessment, test the technical feasibility of 
the coaching process, and measure the effectiveness of the Driver Coach app on drivers. 

5.4.2 Industrial contribution  
The results contribute to industrial practice by enhancing the quality of driver-system 
interactions with ADAS. The main industrial goal of this research project was to learn how to 
utilize vehicle signals in user-related studies and transfer this knowledge to the engineers 
dealing with these types of tasks in practice. The results of this research were documented and 
transmitted to the OEM in a comprehensive report on the research project, where the data-driven 
evaluation’s possible implications, advantages, and limitations were described. During this 
research, the author constantly set new requirements for data points for driver behavior 
understanding, which stimulated the development of user-related data. Moreover, the author 
continuously worked with data quality assessment, improving the existing quality of data 
acquisition and data pre-processing.   

The designed mixed-method approach was successfully tested in three industrial studies 
(Papers C, D, and F) and showed an increase in the quality of the driver behavior evaluation 
due to an effective combination of different types of data and data analysis. The mixed-method 
approach, where feedback of the results flows back into the evaluating process, can support 
synergies between product developers and UX designers. As a result, the findings can echo into 
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more efficient and effective product development, providing automated data collection and 
driver behavior evaluation that saves company resources and significantly decreases the time 
for this type of assessment.   

The proposed Driver Coach framework is a general approach to implementing user 
adaptation to any in-vehicle system or function. This design presumes the establishment of a 
new communication channel between the user and the smart software system to introduce, 
promote, and explain system functionality to drivers showing how users’ behavior could be 
manipulated to increase the efficiency of driver interactions with in-vehicle systems. 

The Driver Coach app for PA users was designed as a case study to verify the feasibility of 
the coaching process in a particular OEM, considering the existing constraints for data 
collection and technical limitations associated with the coaching process. The Driver Coach app 
for PA users is fully implemented to demonstrate in practice that it is possible to gather diverse 
data from actual driving, enforce real-time data analysis, and consider the driver’s reaction to 
the PA Coach notifications. Paper F presents the first validation results on the effect of this 
type of support on drivers’ behavior. In summary, this work contributes with a practical method 
for enhancing the design of in-vehicle systems in production cars and provides new verified 
knowledge of how users can be stimulated to use specific vehicle systems. 
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6  

  

6 OUTLOOK   

This chapter presents the results and the research challenges identified and reflects on future 
research possibilities.  

6.1 CONCLUSIONS  
The conducted research revealed the great potential of vehicle data utilization for data-driven 
user behavior evaluation. In the course of this research, a number of activities that contributed 
to the research was carried out: (i) the feasibility of vehicle data from the Volvo ND study was 
investigated; (ii) the required data for ADAS driver and system evaluation were specified; (iii) 
all measuring parameters relevant for the ADAS evaluation (i.e., driving context, measuring 
period, specific user parameters, etc.) were investigated and defined; (iv) collected data was 
statistically analyzed on different levels of abstraction, starting from average comparisons 
between drivers or groups of drivers and becoming more rooted to the one driver evaluation 
level or even one single driving activity evaluation level.  

The vehicle data analysis revealed that the objective assessment of driver and system 
performance, as well as the driving context variables such as the weather, road and traffic 
conditions, is possible. Vehicle data offer the possibility to determine individual user behavior, 
and to describe, categorize, and compare this to the average within a group. Furthermore, they 
allow the identification of specific use errors or a change of driver’s use strategy. Vehicle data 
analysis enables the understanding of the severity of detected issues by checking the number of 
vehicles or the amount of DCs that accounted for the same problem. All of the above mentioned 
factors make the applicability of vehicle data for driver behavior evaluation meaningful.  

However, despite the significant potential of ND data for ADAS evaluation and the valuable 
results that can be achieved, there are still some limitations that need to be considered. One of 
the limitations is that although vehicle data allows context-aware driver and system performance 
evaluation, the underlying explanations for why objectively detected things happened cannot be 
determined through the vehicle data alone. Due to the restricted data collection procedures, it is 
often not possible to measure such human-related aspects as driver perception or driver 
subjective impression on the interaction with the system. Therefore, in the course of this 
research, an explanatory sequential mixed-method was designed and tested at Volvo, as an 
industrial case for ADAS driver behavior evaluation. The combination of quantitative and 
qualitative approaches contributed to more effective ADAS evaluation, where the driver 
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behavior is considered together with human-related aspects. The practical implementation of 
the method showed the ability for a comprehensive view of all factors affecting the ADAS 
usage: the driver, the system (including other subsystems affecting the driver or system 
performance), and the driving context that has a high impact on driver and system behavior.  

Another limitation is the feasibility of vehicle data, which often restricts the study design and 
prevents a more comprehensive evaluation of driver interactions with the targeted system. 
Nevertheless, the means and methods for driver behavior evaluation are continually improving, 
meaning that the existing restrictions may cease to apply in the near future.  

Thus, as part of the next step, the data-driven driver behavior assessment was conceived in 
the design of a real-time personalized Driver Coach system that, based on individual driver 
behavior, provides this driver with recommendations on how to improve his interactions with 
the targeted system. The Driver Coach design was implemented as a fully functioning Driver 
Coach app for PA users and tested in the Volvo ND study for four months. According to the 
design, the Driver Coach app gathers diverse data from actual driving, enforces real-time data 
analysis related to driver behavior and context understanding, provides coaching support to 
drivers in real-time, and considers the driver’s reaction to the provided support. Further, based 
on the detected driver behavior change, the Driver Coach app reassesses the implemented 
coaching strategy for the particular user. It offers optimized suggestions of how the specific 
driver could further improve their PA use strategy. Practical implementation of the Driver 
Coach app, presented in Paper F, proved:  

• technical feasibility of coaching process organization in a real-time driving environment  
• possibility to identify coaching events in real time  
• possibility to monitor the driver’s behavior change  
• possibility to implement self-adjustment of the coaching logic. 

A first validation study proved the ability to manipulate driver behavior by communicating 
the function’s capability and limitations, and by suggesting different traffic contexts for PA 
usage. The proposed structure of messages, namely mistakes, warnings, and recommendations, 
and the expected driver reaction to these types of messages, are well understood by most 
participants. The study results show the overall increase in PA usage. However, not all the users 
improved, and not all users with improvements increased their PA usage to the same extent. 
Therefore, the author recommends PA Driver Coach app improvements related to the logic and 
test environment set-up and proposes another round of product improvement with the new round 
of tests on users. 

6.2 FUTURE WORK  
Besides the proposed steps for logic and test environment improvement, the framework could 
be further improved or enriched by combining different models that solve existing gaps 
identified in this framework. These models could be stand-alone algorithms related to, for 
example:   

• driver identification in a shared vehicle  
• driver state assessment  
• driver distraction assessment  
• driver workload understanding  
• driver behavior prediction models  
• other models that help to understand drivers better.  
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The better the logic is informed about the driver, the better it can understand the driver’s needs 
and identify the best time for driver interaction. However, the added approaches need to be 
tested and verified in isolation before merging them with the existing design, which will require 
additional time and effort. 
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