2,579 research outputs found

    Study of combining GPU/FPGA accelerators for high-performance computing

    Get PDF
    This contribution presents the performance modeling of a super desktop with GPU and FPGA accelerators, using OpenCL for the GPU and a high-level synthesis compiler for the FPGAs. The performance model is used to evaluate the different high-level synthesis optimizations, taking into account the resource usage, and to compare the compute power of the FPGA with the GP

    On the design of architecture-aware algorithms for emerging applications

    Get PDF
    This dissertation maps various kernels and applications to a spectrum of programming models and architectures and also presents architecture-aware algorithms for different systems. The kernels and applications discussed in this dissertation have widely varying computational characteristics. For example, we consider both dense numerical computations and sparse graph algorithms. This dissertation also covers emerging applications from image processing, complex network analysis, and computational biology. We map these problems to diverse multicore processors and manycore accelerators. We also use new programming models (such as Transactional Memory, MapReduce, and Intel TBB) to address the performance and productivity challenges in the problems. Our experiences highlight the importance of mapping applications to appropriate programming models and architectures. We also find several limitations of current system software and architectures and directions to improve those. The discussion focuses on system software and architectural support for nested irregular parallelism, Transactional Memory, and hybrid data transfer mechanisms. We believe that the complexity of parallel programming can be significantly reduced via collaborative efforts among researchers and practitioners from different domains. This dissertation participates in the efforts by providing benchmarks and suggestions to improve system software and architectures.Ph.D.Committee Chair: Bader, David; Committee Member: Hong, Bo; Committee Member: Riley, George; Committee Member: Vuduc, Richard; Committee Member: Wills, Scot

    Boosting Multi-Core Reachability Performance with Shared Hash Tables

    Get PDF
    This paper focuses on data structures for multi-core reachability, which is a key component in model checking algorithms and other verification methods. A cornerstone of an efficient solution is the storage of visited states. In related work, static partitioning of the state space was combined with thread-local storage and resulted in reasonable speedups, but left open whether improvements are possible. In this paper, we present a scaling solution for shared state storage which is based on a lockless hash table implementation. The solution is specifically designed for the cache architecture of modern CPUs. Because model checking algorithms impose loose requirements on the hash table operations, their design can be streamlined substantially compared to related work on lockless hash tables. Still, an implementation of the hash table presented here has dozens of sensitive performance parameters (bucket size, cache line size, data layout, probing sequence, etc.). We analyzed their impact and compared the resulting speedups with related tools. Our implementation outperforms two state-of-the-art multi-core model checkers (SPIN and DiVinE) by a substantial margin, while placing fewer constraints on the load balancing and search algorithms.Comment: preliminary repor

    Near-Memory Parallel Indexing and Coalescing: Enabling Highly Efficient Indirect Access for SpMV

    Full text link
    Sparse matrix vector multiplication (SpMV) is central to numerous data-intensive applications, but requires streaming indirect memory accesses that severely degrade both processing and memory throughput in state-of-the-art architectures. Near-memory hardware units, decoupling indirect streams from processing elements, partially alleviate the bottleneck, but rely on low DRAM access granularity, which is highly inefficient for modern DRAM standards like HBM and LPDDR. To fully address the end-to-end challenge, we propose a low-overhead data coalescer combined with a near-memory indirect streaming unit for AXI-Pack, an extension to the widespread AXI4 protocol packing narrow irregular stream elements onto wide memory buses. Our combined solution leverages the memory-level parallelism and coalescence of streaming indirect accesses in irregular applications like SpMV to maximize the performance and bandwidth efficiency attained on wide memory interfaces. Our solution delivers an average speedup of 8x in effective indirect access, often reaching the full memory bandwidth. As a result, we achieve an average end-to-end speedup on SpMV of 3x. Moreover, our approach demonstrates remarkable on-chip efficiency, requiring merely 27kB of on-chip storage and a very compact implementation area of 0.2-0.3mm^2 in a 12nm node.Comment: 6 pages, 6 figures. Submitted to DATE 202

    One Table to Count Them All: Parallel Frequency Estimation on Single-Board Computers

    Get PDF
    Sketches are probabilistic data structures that can provide approximate results within mathematically proven error bounds while using orders of magnitude less memory than traditional approaches. They are tailored for streaming data analysis on architectures even with limited memory such as single-board computers that are widely exploited for IoT and edge computing. Since these devices offer multiple cores, with efficient parallel sketching schemes, they are able to manage high volumes of data streams. However, since their caches are relatively small, a careful parallelization is required. In this work, we focus on the frequency estimation problem and evaluate the performance of a high-end server, a 4-core Raspberry Pi and an 8-core Odroid. As a sketch, we employed the widely used Count-Min Sketch. To hash the stream in parallel and in a cache-friendly way, we applied a novel tabulation approach and rearranged the auxiliary tables into a single one. To parallelize the process with performance, we modified the workflow and applied a form of buffering between hash computations and sketch updates. Today, many single-board computers have heterogeneous processors in which slow and fast cores are equipped together. To utilize all these cores to their full potential, we proposed a dynamic load-balancing mechanism which significantly increased the performance of frequency estimation.Comment: 12 pages, 4 figures, 3 algorithms, 1 table, submitted to EuroPar'1

    A novel method for scaling iterative solvers: avoiding latency overhead of parallel sparse-matrix vector multiplies

    Get PDF
    Cataloged from PDF version of article.In parallel linear iterative solvers, sparse matrix vector multiplication (SpMxV) incurs irregular point-to-point (P2P) communications, whereas inner product computations incur regular collective communications. These P2P communications cause an additional synchronization point with relatively high message latency costs due to small message sizes. In these solvers, each SpMxV is usually followed by an inner product computation that involves the output vector of SpMxV. Here, we exploit this property to propose a novel parallelization method that avoids the latency costs and synchronization overhead of P2P communications. Our method involves a computational and a communication rearrangement scheme. The computational rearrangement provides an alternative method for forming input vector of SpMxV and allows P2P and collective communications to be performed in a single phase. The communication rearrangement realizes this opportunity by embedding P2P communications into global collective communication operations. The proposed method grants a certain value on the maximum number of messages communicated regardless of the sparsity pattern of the matrix. The downside, however, is the increased message volume and the negligible redundant computation. We favor reducing the message latency costs at the expense of increasing message volume. Yet, we propose two iterative-improvement-based heuristics to alleviate the increase in the volume through one-to-one task-to-processor mapping. Our experiments on two supercomputers, Cray XE6 and IBM BlueGene/Q, up to 2,048 processors show that the proposed parallelization method exhibits superior scalable performance compared to the conventional parallelization method
    corecore