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Nowadays, processors alone cannot deliver what High-

Performance applications are demanding. Often applications are 

faced with more and more complex algorithms. An alternative is to 

use hardware accelerators such as Graphics Processing Units (GPUs) 

or Field Programmable Gate Arrays (FPGAs). GPUs have been 

increasingly successful due to their massive parallelism, unified 

programming model and regular design. While these accelerators are 

most appropriate for vector calculations in general, they are less 

suited for irregular calculations. On the other hand, FPGAs are a 

different kind of hardware accelerators that provides a programmable 

and massively parallel architecture. They have an open architecture 

which can be modeled after the data path and control path of the 

algorithm. This degree of freedom, however, poses an additional 

challenge to create efficient, error-free designs in a short time span.  

The combination of the power of GPUs with the flexibility of 

FPGAs enlarges the scope of problems that can be accelerated [1][1]. 

We present a hybrid platform and a toolchain that allows to 

efficiently create programs using one or both technologies. The 

proposed architecture is composed of a multi-core Xeon E5506 CPU, 

a high-end Tesla 2050 GPU board and a modular accelerator board 

integrating two Virtex-6 LX240 FPGAs. In order to identify what 

kind of algorithms are best suited for each technology, the roofline 

models [6] of both technologies are superposed. The roofline model 

relates the maximum performance of the accelerator to the 

computational intensity (CI) of the algorithm. When the most 

compute-intensive part has been identified, through theoretical 

analysis or from experimental results, the roofline model is used to 

find the most appropriate hardware accelerator. 

 In the case of GPUs, the functional part to be accelerated is 

translated to OpenCL. For the FPGA part, as the development time of 

a design is one of the main problems, several High-Level Synthesis 

(HLS) tools such as Xilinx’s AutoESL and the Riverside Optimizing 

Configurable Computing Compiler ROCCC were considered to 

reduce the FPGA design complexity. We have chosen the open-

source ROCCC to develop our first designs. On the host side is the 

C++ code managing the GPU/FPGA communication and the 

functional parts. The GPU/FPGA modules are modeled as function 

calls of the main function running on the host. The C++ code is 

compiled and during the execution the GPU and the FPGA are 

initialized with the proper kernel or bitmap respectively. The FPGA 

code has to be previously compiled and synthesized to generate the 

bitmap file. The complete toolchain is depicted in figure 1.  

Since the HLS tools offer many optimizations and allow a fast 

design exploration, we have studied the resulting designs in order to 

best exploit the HLS tool as well as the target FPGA. For each design 

the latency, the resource consumption and the throughput have been 

examined. Of special interest is the impact of the resource usage on 

the performance estimated by the roofline model. This allows to 

identify the most appropriate compiler directives yielding the best 

performance within the limits of the resource footprint. The 

productivity of the C-to-VHDL compiler is estimated by the ratio of 

the number of lines in the original C code to the number of lines in 

the generated VHDL code. This is a well-known metric that has been 

used  to compare the development time of compilers in [5]. Using this 

metric the impact of the different compiler options of ROCCC on the 

development time can be measured. 

As a first step, several image processing algorithms were 

implemented both independently on the GPU and the FPGA. 

Experimental results comparing ROCCC with a hand-made 

implementation show that the modular FPGA high-performance 

board offers a scalable solution which is able to perform as good as or 

better than the corresponding GPU design. Once the results are 

depicted on the roofline model, it is possible to identify what kind of 

optimizations can be applied (figure 2). In the case of the FPGAs, as 

the computational performance is defined by the algorithm’s resource 

consumption, to obtain the maximum attainable performance it is 

required to increase the parallelism, as for example replicating the 

functional blocks. On the other hand, to increase the CI, the number 

of operations per received data must increases.  Thanks to the data-

reuse by the smart buffer component of ROCCC, the memory 

accesses are significantly reduced, increasing the final CI and the 

resulting performance. However, while both the GPU and FPGA 

excel in particular applications, both devices suffer from the limited 

I/O bandwidth to the processor, in this case by the PCI express 

bandwidth. Despite the I/O bottleneck, several computationally 

hungry algorithms can be accelerated by executing the most intensive 

parts on the appropriate technology [2],[3].  

As a second step, a promising algorithm has been explored and 

implemented using the aforementioned toolchain, splitting and 

 

Figure 1: An algorithm is converted into a C ++ program with mixed 

code fragments for the three platforms, CPU, GPU and FPGA. The 

executable communicates with the GPUs and FPGAs using API libraries. 
 

 An algorithm is converted into 

a C ++ program with mixed 

code fragments for the three 

platforms, CPU, GPU and 

FPGA. The executable 

communicates with the GPUs 

and FPGAs using API 

libraries. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55732726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 
 
 
 

 

 

distributing the functionality between the GPU, FPGA and CPU in 

order to validate the hybrid concept. The candidate is an object 

recognition application called fastHOG which  has been implemented 

in CUDA to run on GPUs [4]. The application consists of several 

algorithms such as the Histogram Oriented Gradients (HOG) and the 

Support Vector Machine (SVM) computations. Our estimations show 

that both algorithms are good candidates to be executed on the FPGA, 

in particular HOG since histogram implementations have been 

traditionally well fitted to FPGAs. The HOG part inputs the gradients 

of the image and computes normalized histograms of same sized 

blocks. The implementation of the histogram computation and 

normalization is able to exploit the benefits of the FPGAs using 

parallelism, pipelining and streaming. Thanks to those features, 

which can be mainly controlled through the HLS compiler directives, 

this approach is able to increase the final performance. In fact, our 

experimental results show that the computation of HOG on the FPGA 

is substantially faster than on the GPU. However, the external data 

rearrangement and the communication overhead greatly reduce the 

final performance. A further improvement is to implement the SVM 

algorithm on the second FPGA (figure 3) to avoid extra 

communication between the FPGA and the GPU. 

To conclude, the FPGA is able to outperform high-end GPUs, 

however the performance of a combined system may be hampered by 

the extra cost of the PCIe communication overhead. 
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Figure 3: The object recognition application called fastHOG, designed for 

GPUs, is adapted to be partially executed on the FPGA. The Histogram 
computation and the SVM are ideal candidates for FPGAs. Figure 2: The roofline model suggests several optimizations when the 

results of a measured algorithm are depicted on the roofline. In particular, 

an improvement of the CI (green arrow) can lead to a better performance 

by reducing the I/O bottleneck impact, while in the horizontal part the use 

of more resources to obtain more parallelism, can lead to a higher peak 

performance (red arrow). 
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