

Study of combining GPU/FPGA accelerators
for High-Performance Computing

BRUNO DA SILVA
1
, AN BRAEKEN

1
,

ERIK H. D’HOLLANDER
2
, ABDELLAH TOUHAFI

1
,

JAN G. CORNELIS
3
 and JAN LEMEIRE

3

1
Erasmus University College, IWT Dept., Brussels

2
Ghent University, ELIS Dept., Ghent

3
Free University of Brussels, ETRO Dept., Brussels

Nowadays, processors alone cannot deliver what High-

Performance applications are demanding. Often applications are

faced with more and more complex algorithms. An alternative is to

use hardware accelerators such as Graphics Processing Units (GPUs)

or Field Programmable Gate Arrays (FPGAs). GPUs have been

increasingly successful due to their massive parallelism, unified

programming model and regular design. While these accelerators are

most appropriate for vector calculations in general, they are less

suited for irregular calculations. On the other hand, FPGAs are a

different kind of hardware accelerators that provides a programmable

and massively parallel architecture. They have an open architecture

which can be modeled after the data path and control path of the

algorithm. This degree of freedom, however, poses an additional

challenge to create efficient, error-free designs in a short time span.

The combination of the power of GPUs with the flexibility of

FPGAs enlarges the scope of problems that can be accelerated [1][1].

We present a hybrid platform and a toolchain that allows to

efficiently create programs using one or both technologies. The

proposed architecture is composed of a multi-core Xeon E5506 CPU,

a high-end Tesla 2050 GPU board and a modular accelerator board

integrating two Virtex-6 LX240 FPGAs. In order to identify what

kind of algorithms are best suited for each technology, the roofline

models [6] of both technologies are superposed. The roofline model

relates the maximum performance of the accelerator to the

computational intensity (CI) of the algorithm. When the most

compute-intensive part has been identified, through theoretical

analysis or from experimental results, the roofline model is used to

find the most appropriate hardware accelerator.

 In the case of GPUs, the functional part to be accelerated is

translated to OpenCL. For the FPGA part, as the development time of

a design is one of the main problems, several High-Level Synthesis

(HLS) tools such as Xilinx’s AutoESL and the Riverside Optimizing

Configurable Computing Compiler ROCCC were considered to

reduce the FPGA design complexity. We have chosen the open-

source ROCCC to develop our first designs. On the host side is the

C++ code managing the GPU/FPGA communication and the

functional parts. The GPU/FPGA modules are modeled as function

calls of the main function running on the host. The C++ code is

compiled and during the execution the GPU and the FPGA are

initialized with the proper kernel or bitmap respectively. The FPGA

code has to be previously compiled and synthesized to generate the

bitmap file. The complete toolchain is depicted in figure 1.

Since the HLS tools offer many optimizations and allow a fast

design exploration, we have studied the resulting designs in order to

best exploit the HLS tool as well as the target FPGA. For each design

the latency, the resource consumption and the throughput have been

examined. Of special interest is the impact of the resource usage on

the performance estimated by the roofline model. This allows to

identify the most appropriate compiler directives yielding the best

performance within the limits of the resource footprint. The

productivity of the C-to-VHDL compiler is estimated by the ratio of

the number of lines in the original C code to the number of lines in

the generated VHDL code. This is a well-known metric that has been

used to compare the development time of compilers in [5]. Using this

metric the impact of the different compiler options of ROCCC on the

development time can be measured.

As a first step, several image processing algorithms were

implemented both independently on the GPU and the FPGA.

Experimental results comparing ROCCC with a hand-made

implementation show that the modular FPGA high-performance

board offers a scalable solution which is able to perform as good as or

better than the corresponding GPU design. Once the results are

depicted on the roofline model, it is possible to identify what kind of

optimizations can be applied (figure 2). In the case of the FPGAs, as

the computational performance is defined by the algorithm’s resource

consumption, to obtain the maximum attainable performance it is

required to increase the parallelism, as for example replicating the

functional blocks. On the other hand, to increase the CI, the number

of operations per received data must increases. Thanks to the data-

reuse by the smart buffer component of ROCCC, the memory

accesses are significantly reduced, increasing the final CI and the

resulting performance. However, while both the GPU and FPGA

excel in particular applications, both devices suffer from the limited

I/O bandwidth to the processor, in this case by the PCI express

bandwidth. Despite the I/O bottleneck, several computationally

hungry algorithms can be accelerated by executing the most intensive

parts on the appropriate technology [2],[3].

As a second step, a promising algorithm has been explored and

implemented using the aforementioned toolchain, splitting and

Figure 1: An algorithm is converted into a C ++ program with mixed

code fragments for the three platforms, CPU, GPU and FPGA. The

executable communicates with the GPUs and FPGAs using API libraries.

 An algorithm is converted into

a C ++ program with mixed

code fragments for the three

platforms, CPU, GPU and

FPGA. The executable

communicates with the GPUs

and FPGAs using API

libraries.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55732726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distributing the functionality between the GPU, FPGA and CPU in

order to validate the hybrid concept. The candidate is an object

recognition application called fastHOG which has been implemented

in CUDA to run on GPUs [4]. The application consists of several

algorithms such as the Histogram Oriented Gradients (HOG) and the

Support Vector Machine (SVM) computations. Our estimations show

that both algorithms are good candidates to be executed on the FPGA,

in particular HOG since histogram implementations have been

traditionally well fitted to FPGAs. The HOG part inputs the gradients

of the image and computes normalized histograms of same sized

blocks. The implementation of the histogram computation and

normalization is able to exploit the benefits of the FPGAs using

parallelism, pipelining and streaming. Thanks to those features,

which can be mainly controlled through the HLS compiler directives,

this approach is able to increase the final performance. In fact, our

experimental results show that the computation of HOG on the FPGA

is substantially faster than on the GPU. However, the external data

rearrangement and the communication overhead greatly reduce the

final performance. A further improvement is to implement the SVM

algorithm on the second FPGA (figure 3) to avoid extra

communication between the FPGA and the GPU.

To conclude, the FPGA is able to outperform high-end GPUs,

however the performance of a combined system may be hampered by

the extra cost of the PCIe communication overhead.

REFERENCES

[1] Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K.,

Kubiatowicz, J., Morgan, N., Patterson, D., Sen, K., Wawrzynek, J.

and others 2009. A view of the parallel computing landscape.

Communications of the ACM. 52, 10, 56–67.

[2] Bauer, S., Kohler, S., Doll, K. and Brunsmann, U. 2010. FPGA-

GPU architecture for kernel SVM pedestrian detection. Proceedings

of the Computer Vision and Pattern Recognition Workshops

(CVPRW), 61–68.

[3] Inta, R., Bowman, D.J. and Scott, S.M. 2012. The “Chimera”: An

Off-The-Shelf CPU/GPGPU/FPGA Hybrid Computing Platform.

International Journal of Reconfigurable Computing. January 2012,

Article 2, 10 pages.

[4] Prisacariu, V. and Reid, I. 2009. fastHOG-a real-time GPU

implementation of HOG. Technical Report #2310/09. University of

Oxford.

[5] Sackman, H., Erikson, W.J. and Grant, E.E. 1968. Exploratory

experimental studies comparing online and offline programming

performance. Communications of the ACM. 11, 1, 3–11.

[6] Williams, S., Waterman, A. and Patterson, D. 2009. Roofline: an

insightful visual performance model for multicore architectures.

Communications of the ACM. 52, 4, 65–76.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]:

Heterogeneous (hybrid) systems —Performance; D.1.3 [Programming

Techniques]: Parallel programming—High-level synthesis

General Terms: Performance, Experimental

Additional Key Words and Phrases: OpenCL, FPGA, GPU, accelerators,

programming toolchain

This research was carried out within the framework of the IWT-TETRA

project GUDI, “A combined GP-GPU/FPGA desktop system for

accelerating image processing applications,” IWT-100132.

Create HOG image Pad image

Downscale image

Compute Gradients

Compute
Histograms

Normalize
Histograms

Linear SVM
evaluation

Format Results

Non-Maximal
suppression

HOST GPU

Pad image

Downscale image

Compute Gradients

Format Results

Non-Maximal
suppression

HOSTGPU FPGA

Normalize
Histograms

Create HOG image

Compute
Histograms

Linear SVM
evaluation

Figure 3: The object recognition application called fastHOG, designed for

GPUs, is adapted to be partially executed on the FPGA. The Histogram
computation and the SVM are ideal candidates for FPGAs. Figure 2: The roofline model suggests several optimizations when the

results of a measured algorithm are depicted on the roofline. In particular,

an improvement of the CI (green arrow) can lead to a better performance

by reducing the I/O bottleneck impact, while in the horizontal part the use

of more resources to obtain more parallelism, can lead to a higher peak

performance (red arrow).

Computational Performance (Gops/s)

I/O
 B

andwid
th

 (G
byt

es/
s)

Pe
ak

 P
er

fo
rm

an
ce

 (
G

o
p

s/
s)

Computational Intensity (Ops/byte)

X

X

X

