
ON THE DESIGN OF
ARCHITECTURE-AWARE ALGORITHMS

FOR EMERGING APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Seunghwa Kang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2011



ON THE DESIGN OF
ARCHITECTURE-AWARE ALGORITHMS

FOR EMERGING APPLICATIONS

Approved by:

Professor David A. Bader, Advisor
School of Computational Science and
Engineering/School of Electrical and
Computer Engineering
Georgia Institute of Technology

Professor Bo Hong
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor D. Scott Wills
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Richard W. Vuduc
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor George F. Riley
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: January 25th 2011



To my parents.

iii



ACKNOWLEDGEMENTS

First of all, I want to thank my academic advisor, Prof. David A. Bader. As David

holds his main affiliation in CSE and I joined Georgia Tech as an ECE student, I was

extremely lucky to meet David. David has been an excellent advisor. I could work for

the right project in the right timing under his guidance. He was also very supportive

and understanding, and I could focus on research to finish my PhD. Thank you very

much David!

I also want to thank Prof. Richard Vuduc. I could learn a lot during collaboration

with him, and he also served as my committee member. I gratefully acknowledge Prof.

D. Scott Wills, Prof. George F. Riley, and Prof. Bo Hong. Prof. Wills and Prof. Riley

have served as my reading committee member from the dissertation proposal exam.

Dr. Hong traveled from Savannah to serve as my dissertation defense committee

member.

My colleagues in the HPC lab has been very helpful and I want to thank them

as well. Thank you very much Kamesh Madduri, Virat Agarwal, Aparna Chan-

dramowlishwaran, Vipin Sachdeva, Manisha Gajbe, Amrita Mathuriya, David Ediger,

Karl Jiang, Xing Liu, Pushkar Pande, Sainath Mallidi, Robert McColl, Ivan Walker,

Zhaoming Yin, Prashant Gaurav, Vyomkesh Tripathi, Jason Riedy, and Henning

Meyerhenke. Logan Moon has provided great technical support during my doctoral

research, and I also want to gratefully acknowledge his efforts.

Last but not least, I want to thank my parents and my brother, Seung Yub. I

could not even start my PhD without them, and I definitely could not finish my PhD

without their support and encouragement. Thank you very much Mom, Dad, and

Seung Yub!

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Organization of This Dissertation . . . . . . . . . . . . . . . . . 3

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 6

II UNDERSTANDING THE DESIGN TRADE-OFFS AMONG CUR-
RENT MULTICORE SYSTEMS FOR NUMERICAL COMPUTA-
TIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Inter-architectural Design Trade-offs . . . . . . . . . . . . . . . . . . 9

2.1.1 Requirements for Parallelism . . . . . . . . . . . . . . . . . . 10

2.1.2 Computation Units . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Start-up Overhead . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Memory Latency Hiding . . . . . . . . . . . . . . . . . . . . 13

2.1.5 Control over On-chip Memory . . . . . . . . . . . . . . . . . 13

2.1.6 Main Memory Access Mechanisms and Bandwidth Utilization 13

2.1.7 Ideal Software Implementations . . . . . . . . . . . . . . . . 16

2.2 Kernel Descriptions and Qualitative Analysis . . . . . . . . . . . . . 17

2.2.1 Conventional Sequential Code . . . . . . . . . . . . . . . . . 17

2.2.2 Basic Algorithmic Analysis . . . . . . . . . . . . . . . . . . . 18

2.3 Baseline Architecture-specific Implementations . . . . . . . . . . . . 20

2.3.1 Intel Harpertown (2P) and AMD Barcelona (4P) Multicore
Implementations . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 STI Cell/B.E. (2P) Implementation . . . . . . . . . . . . . . 21

2.3.3 NVIDIA Tesla C1060 Implementation . . . . . . . . . . . . . 22

v



2.3.4 A Quantitative Comparison of Implementation Costs . . . . 23

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Kernel1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Kernel2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.3 Kernel3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III AN EFFICIENT TRANSACTIONAL MEMORY ALGORITHM
FOR COMPUTING A MINIMUM SPANNING FOREST OF SPARSE
GRAPHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Transactional Memory and Algorithm Design . . . . . . . . . . . . . 36

3.1.1 Transactional Memory and Lockfree Algorithms . . . . . . . 36

3.1.2 Algorithmic Model for Transactional Memory System . . . . 37

3.1.3 Transactional Memory and Graph Algorithms . . . . . . . . 41

3.2 Minimum Spanning Forest Algorithm for Sparse Graphs . . . . . . . 42

3.2.1 Sequential Minimum Spanning Forest Algorithm . . . . . . . 42

3.2.2 Parallel Minimum Spanning Forest Algorithm . . . . . . . . . 43

3.3 An Efficient Transactional Memory Algorithm for Computing a Min-
imum Spanning Forest of Sparse Graphs . . . . . . . . . . . . . . . . 45

3.3.1 MST Data Merging and Composability . . . . . . . . . . . . 48

3.3.2 Avoiding Excessively Large Transactions and Strong Atomicity 50

3.3.3 Color Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.4 Heap Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Experimental Results on STM . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Test Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Limitations of STM and Requirements for HTM . . . . . . . . . . . 57

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



IV ACCELERATING JPEG2000 STILL IMAGE ENCODING US-
ING THE IBM CELL BROADBAND ENGINE . . . . . . . . . . 61

4.1 Data Decomposition Scheme . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Parallelization of JPEG2000 . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Parallelism in JPEG2000 . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Parallelization Strategy . . . . . . . . . . . . . . . . . . . . . 66

4.3 Vectorization of JPEG2000 . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Encoding Time and Scalability . . . . . . . . . . . . . . . . . 72

4.4.2 A Comparison with the Previous Implementation . . . . . . . 74

4.4.3 A Comparison with the Intel x86 Architecture . . . . . . . . 76

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

V LARGE SCALE COMPLEX NETWORK ANALYSIS USING THE
HYBRID COMBINATION OF A MAPREDUCE CLUSTER AND
A HIGHLY MULTITHREADED SYSTEM . . . . . . . . . . . . . 80

5.1 Complex Network Analysis . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 MapReduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1 Algorithm Level Analysis . . . . . . . . . . . . . . . . . . . . 85

5.2.2 System Level Analysis . . . . . . . . . . . . . . . . . . . . . . 87

5.2.3 Finding Shortest Paths in the Subgraph . . . . . . . . . . . . 88

5.3 A Highly Multithreaded System . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Algorithm Level Analysis . . . . . . . . . . . . . . . . . . . . 91

5.3.2 System Level Analysis . . . . . . . . . . . . . . . . . . . . . . 92

5.3.3 Finding Shortest Paths in the Subgraph . . . . . . . . . . . . 93

5.4 The Hybrid System . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4.1 Algorithm Level Analysis . . . . . . . . . . . . . . . . . . . . 94

5.4.2 System Level Analysis . . . . . . . . . . . . . . . . . . . . . . 96

5.4.3 Finding Shortest Paths in the Subgraph . . . . . . . . . . . . 96

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vii



VI PHYLOGENETIC TREE RECONSTRUCTION USING GENE
ORDER DATA AND PARALLELIZING THE COGNAC SOFT-
WARE PACKAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.1 Phylogenetic Tree Reconstruction Using Gene Order Data . . . . . . 102

6.2 Disk-covering methods and GRAPPA . . . . . . . . . . . . . . . . . 105

6.3 COGNAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Nested Irregular Parallelism in COGNAC . . . . . . . . . . . . . . . 108

6.5 Parallelizing COGNAC with Intel TBB . . . . . . . . . . . . . . . . 111

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

VII CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1 Major Challenges in software development for Modern Parallel Com-
puters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 System Software Support for Nested Irregular Parallelism . . . . . . 121

7.3 Transactional Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4 Hybrid Data Transfer Mechanism . . . . . . . . . . . . . . . . . . . 126

7.5 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . 127

7.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

viii



LIST OF TABLES

1 Applications and architectures studied in this work. . . . . . . . . . . 4

2 Summary of the test systems. . . . . . . . . . . . . . . . . . . . . . . 9

3 A quantitative comparison of implementation costs in terms of code
size and implementation time. . . . . . . . . . . . . . . . . . . . . . . 23

4 Test graphs for MSF experiments. . . . . . . . . . . . . . . . . . . . . 53

5 A Performance comparison among different MSF implementations. . . 53

6 Latency for the SPE instructions . . . . . . . . . . . . . . . . . . . . 69

7 Technical specifications for the test platforms . . . . . . . . . . . . . 94

8 Genetic data in different levels . . . . . . . . . . . . . . . . . . . . . . 103

9 A part of the parallelism in COGNAC. . . . . . . . . . . . . . . . . . 109

10 Performance statistics collected using Intel Vtune. . . . . . . . . . . . 113

ix



LIST OF FIGURES

1 The feedback loop from emerging applications to future architectures. 3

2 The 2P Intel Harpertown system with the UMA architecture and the
4P AMD Barcelona system with the NUMA architecture. . . . . . . . 13

3 Sustained Gflop/s and bandwidth utilization (GB/s) for the initial
(top) and the blocking based (bottom) implementations of Kernel1
(single-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Sustained Gflop/s and bandwidth utilization (GB/s) (for the initial
(top) and the blocking based (bottom) implementations of Kernel1
(double-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Sustained Gflop/s and bandwidth utilization (GB/s) for the initial
(top) and the blocking based (bottom) implementations of Kernel2
(single-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Sustained Gflop/s and bandwidth utilization (GB/s) for the initial
(top) and the blocking based (bottom) implementations of Kernel2
(double-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Sustained Gflop/s and bandwidth utilization (GB/s) for the initial
(top) and the blocking based (bottom) implementations of Kernel3
(single-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

8 Sustained Gflop/s and bandwidth utilization (GB/s) for the initial
(top) and the blocking based (bottom) implementations of Kernel3
(double-precision). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9 Illustrations of high-contention and low-contention scenarios . . . . . 38

10 Transactional overhead as a function of a transaction size . . . . . . . 39

11 A common graph operation . . . . . . . . . . . . . . . . . . . . . . . 41

12 A high level illustration of our MSF algorithm . . . . . . . . . . . . . 45

13 A State transition diagram for our MSF algorithm . . . . . . . . . . . 45

14 A Modified state transition diagram for our algorithm . . . . . . . . . 50

15 Color filtering: filter out unnecessary inserts . . . . . . . . . . . . . . 51

16 A pathological case for our algorithm. . . . . . . . . . . . . . . . . . . 54

17 Sun UltraSparc T2 (Niagara 2) processor. . . . . . . . . . . . . . . . 54

18 Execution time and speedup for the 2-D grid graph (3.24M vertices,
6.48M edges). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

x



19 Execution time and speedup for the 3-D grid graph (3.38M vertices,
10.1M edges). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

20 Execution time and speedup for the web graph (3M vertices, 6M edges). 56

21 Execution time and speedup for the USA West roadmap graph (6.26M
vertices, 7.62M edges). . . . . . . . . . . . . . . . . . . . . . . . . . . 56

22 Execution time and speedup for the random graph (3M vertices, 90M
edges). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

23 Abort rate for varying numbers of threads. . . . . . . . . . . . . . . . 58

24 Data decomposition scheme for two dimensional array . . . . . . . . . 63

25 Work partitioning among the PPE and the SPEs for JPEG2000 encoding 66

26 The splitting step and the interleaved lifting step for the vertical filtering 69

27 Execution time and speedup for lossless encoding. . . . . . . . . . . . 73

28 Execution time and speedup for lossy Encoding. . . . . . . . . . . . . 73

29 An overall performance comparison with the previous implementations
for the Cell/B.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

30 An EBCOT (Tier-1 + Tier2) encoding performance comparison with
the previous implementations for the Cell/B.E. . . . . . . . . . . . . 74

31 A DWT performance comparison with the previous implementations
for the Cell/B.E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

32 An encoding performance comparison of the Cell/B.E. to that of the
Intel Pentium IV 3.2 GHz processor. . . . . . . . . . . . . . . . . . . 77

33 A DWT encoding performance comparison of the Cell/B.E. to that of
the AMD Barcelona (Quad-core Opteron) processor. . . . . . . . . . 78

34 The hybrid combination of a MapReduce cluster and a highly multi-
threaded system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

35 A MapReduce workflow. . . . . . . . . . . . . . . . . . . . . . . . . . 84

36 A directed acyclic graph (DAG) for MapReduce computation. . . . . 85

37 Experimental results for extracting a subgraph with 10% of the vertices
in the original graph and finding shortest paths. . . . . . . . . . . . . 97

38 Experimental results for extracting a subgraph with 5% of the vertices
in the original graph and finding shortest paths. . . . . . . . . . . . . 98

39 Experimental results for extracting a subgraph with 2% of the vertices
in the original graph and finding shortest paths. . . . . . . . . . . . . 98

xi



40 An exemplar phylogenetic tree. . . . . . . . . . . . . . . . . . . . . . 102

41 Intra-chromosomal genome rearrangement events. . . . . . . . . . . . 104

42 Inter-chromosomal genome rearrangement events. . . . . . . . . . . . 105

43 A model phylogenetic tree and a disk tree for the tree. . . . . . . . . 107

44 An illustration of the data synchronization issue in scoring a single tree
topology using multiple threads. . . . . . . . . . . . . . . . . . . . . . 110

45 Execution time and speedup on a 8-core 16-threads machine (two
Nehalem-EP processors). . . . . . . . . . . . . . . . . . . . . . . . . . 113

xii



SUMMARY

This dissertation maps various kernels and applications to a spectrum of pro-

gramming models and architectures and also presents architecture-aware algorithms

for different systems. Built on top of our experiences, we aim to provide feedback to

system software researchers and computer architects.

The kernels and applications discussed in this dissertation have widely vary-

ing computational characteristics. For example, we consider both dense numerical

computations—which are floating point intensive and have predictable data access

patterns—and sparse graph algorithms—which are highly irregular and require inten-

sive data synchronization. This dissertation also covers emerging applications from

image processing, complex network analysis, and computational biology. JPEG2000

is the successor of JPEG and uses a mix of kernels with different computational re-

quirements. To analyze large scale complex networks, we often need to process very

large data to extract a network of interest. The structure of the extracted network

often challenges modern hierarchical memory subsystems as well. We parallelize the

COGNAC software package which reconstructs a phylogenetic tree using gene order

data. The application has parallelism in multiple levels, and the degree of parallelism

in each level varies widely.

We map these problems to diverse multicore processors (the Intel Harpertown and

Nehalem architectures, the AMD Barcelona architecture, and the Sun UltraSparc

architecture) and manycore accelerators (such as the IBM Cell Broadband Engine

and NVIDIA GPUs). We also use new programming models—such as Transactional

Memory, MapReduce, and Intel TBB—to address the performance and productivity

xiii



challenges in the problems.

Our experiences highlight the importance of mapping applications to appropriate

programming models and architectures. We also find several limitations of current

system software and architectures and directions to improve those. The discussion

focuses on system software and architectural support for nested irregular parallelism,

Transactional Memory, and hybrid data transfer mechanisms. We believe that the

complexity of parallel programming can be significantly reduced via collaborative

efforts among researchers and practitioners from different domains. This dissertation

participates in the efforts by providing benchmarks and suggestions to improve system

software and architectures.

xiv



CHAPTER I

INTRODUCTION

Parallel algorithm design had been a topic of interest for only a portion of the pro-

grammers and researchers in the computing area. A group of researchers—often

referred as theoreticians—have worked on extracting parallelism from seemingly se-

quential problems and designing parallel algorithms assuming a certain theoretical

model; only a limited number of those algorithms have been implemented on real

systems. Another group of researchers in the supercomputing area worked on solving

large-scale science problems—mainly by manipulating extremely large matrices and

vectors—using very expensive supercomputers. These problems often have obvious

parallelism originated from the huge dimension of matrices and vectors, but scaling

such computations to a large number of processors is far from trivial due to commu-

nication bandwidth and latency issues. Addressing such a challenge have been a task

for a small number of highly-experienced top-notch programmers.

Microprocessor ' Multicore (or Manycore) processor

As a consequence,

Computing ' Parallel computing

Power wall, memory wall, and ILP wall [11] are forcing a paradigm shift to multi-

core and manycore architectures, and the landscape of computing is rapidly changing

with the advent of multicore processors. Multicore—and even manycore—processors

are replacing old single-core processors in nearly every area of computing. Most

single-core processors will retire in the near future, and most computing systems will

become parallel computing systems. Chip makers released and are developing micro-

processors with varying architectures to balance power efficiency, programmability,

1



and chip development cost for their target application areas. These changes impose

several new research challenges.

Traditional algorithm works focus on designing new algorithms with low asymp-

totic complexity for a well defined theoretical model. Yet, transforming such algo-

rithms to real implementations is not always straightforward. Due to the recent archi-

tectural changes in multicore processors and manycore accelerators, it becomes even

more challenging or nearly impossible in many cases. Different architectures have

widely varying execution units and memory subsystems, and this forces algorithm

designers to consider such architectural design trade-offs from the very beginning.

Parallel computers are becoming ubiquitous, and this calls for new applications

and more programmers to exploit those machines. New applications impose different

computing challenges to traditional supercomputing applications. Finding new appli-

cations and identifying major computing issues in those applications are important

research topics.

The computing industry cannot rely on a small number of highly-experienced pro-

grammers any more. However, new architectures often sacrifice programmability in

favor of power efficiency, and this further increases the programming complexity to

exploit parallel computers. System software researchers and computer architects are

struggling to solve these problems, but their efforts will not come to fruition without

help form researchers in application and algorithm domains. Designing future system

software and architectures necessitates the solid understanding of future applications,

key algorithms for those applications, and the role of software tools and hardware sup-

port in addressing the programming and performance challenges in those applications.

This feedback loop (see Figure 1) is crucially important.

However, most system software researchers and computer architects do not under-

stand applications and algorithms very well, and most researchers in the application

2



Figure 1: The feedback loop from emerging applications to future architectures.

and algorithm domains do not understand system software and computer architec-

ture. System software researchers and computer architects design new tools and new

microprocessors using old benchmarks. Researchers in the application and algorithm

domains are significantly lagging behind the system- and architecture-level innova-

tions. There have been several attempts to identify (e.g. [11, 19]) important kernels

in current and future applications, but real applications require multiple kernels and

mix those kernels in a complex way. Systems work well for individual kernels may

not perform well for complete applications.

This dissertation presents parallel algorithms and performance tuning techniques

for various applications and architectures (see Table 1). In presenting the algorithms

and the techniques, we also discuss major computational challenges in those ap-

plications and the match between the algorithms for the applications and different

programming models and architectures. Built on top of the lessons learned from the

works, this dissertation provides feedback to system software researchers and com-

puter architects.

1.1 The Organization of This Dissertation

The remainder of this dissertation is organized as the following. First, we discuss two

classes of kernels with completely different computational characteristics in Chap-

ters 2 and 3. Chapter 2 presents an inter-architectural comparison work for three

3



Table 1: Applications and architectures studied in this work.
area application/algorithm architecture
computational statistics Pearson’s and Kendall’s

methods (covariance com-
putation)

Intel Harpertown, AMD
Barcelona, IBM Cell Broad-
band Engine and Pow-
erXCell 8i, and NVIDIA
Tesla

graph algorithm minimum spanning forest Sun Niagara with software
Transactional Memory

image processing JPEG2000 IBM Cell Broadband Engine
and AMD Barcelona

complex network analysis sub-graph extraction and
analysis

Sun Niagara and a MapRe-
duce cluster with AMD
Opteron processors

computational biology phylogenetic tree recon-
struction using gene order
data

Intel Nehalem

kernels from computational statistics. These kernels are floating-point intensive and

have a high degree of spatial locality and predictable data access patterns. The

kernels also have large basic blocks (only a small number of branches) and do not

require data synchronization. We study the impact of design trade-offs on the per-

formance and programmability of the kernels for various multicore processors and

accelerators—such as the Intel Harpertown and the AMD Barcelona architectures,

the IBM Cell Broadband Engine and PowerXCell 8i architectures, and the NVIDIA

Tesla architecture.

Chapter 3 maps irregular graph algorithms to Transactional Memory. Many graph

algorithms are integer based and often have a very low degree of spatial and tem-

poral locality. Data access patterns are highly irregular. Graph algorithms are of-

ten branchy and heavily involve data synchronization issues. We demonstrate that

Transactional Memory can significantly reduce the programming and performance

challenges in many graph problems in the chapter. We also present a new efficient

Transactional Memory algorithm to compute a minimum spanning forest in irregular

graphs. Our experimental results show the potential of Transactional Memory but

4



also reveal the limitation of software Transactional Memory. We discuss the necessity

of hardware support.

Chapters 4, 5, and 6 present parallel algorithm design and performance tuning

works for three different emerging applications: JPEG2000, complex network analy-

sis, and gene order data based phylogenetic tree reconstruction. Chapter 4 studies

parallelization and performance tuning of JPEG2000 for the Cell Broadband Engine.

JPEG2000 is the successor of widely used JPEG still image coding standard and

consists of multiple kernels with different computational characteristics such as Em-

bedded Block Coding with Optimized Truncation (EBCOT) and Discrete Wavelet

transform (DWT). The EBCOT algorithm is irregular and branchy but has a fixed

memory footprint. The DWT is communication-intensive and requires both hori-

zontal and vertical scanning of the input image; this challenges current cache based

memory subsystems. The Cell Broadband Engine provides a DMA based block data

transfer mechanism, and we present performance tuning strategies to exploit the block

data transfer mechanism and the processors’s vector units.

Chapter 5 presents a hybrid system of a highly multithreaded architecture and a

MapReduce cluster as a solution to address the computational challenges in complex

network analysis problems which are both data- and communication-intensive. Ana-

lyzing complex networks involves managing very large data and traversing irregular

graphs. The hybrid system of the two widely different architectures efficiently ad-

dresses the computational challenges. The result shows the importance of using right

programming models and architectures for applications of interest.

We present parallelization of our COGNAC software package in Chapter 6. COGNAC re-

constructs a phylogenetic tree using gene order data. COGNAC enables accurate re-

construction of a phylogenetic tree but is also computationally expensive. COGNAC has

parallelism in multiple levels, and the degree of parallelism in each parallelization

point varies widely for different input data sets and throughout computing phases.

5



Managing nested irregular parallelism is key to address the computational challenges

in COGNAC using parallel computers. We use the combination of Intel TBB and

microprocessors with simultaneous multithreading support to address the challenges

with the minimum increase in programming complexity. The chapter highlights the

importance of system software and architectural support in solving the parallel pro-

gramming crisis.

Based on our experiences with different kernels, applications, programming mod-

els, and architectures, we discuss the major challenges in parallel algorithm design

and implementation for modern parallel computers and provide feedback to system

software researchers and computer architects in Chapter 7. Especially, we discuss is-

sues related to system software support for nested irregular parallelism, Transactional

Memory, and a hybrid data transfer mechanism. This dissertation is based on our

published papers—such as [66], [64], [12], [63], and [65].

1.2 Research Contributions

The following summarizes the major contributions of this dissertation.

1. This dissertation discusses parallelization and performance tuning of kernels

with widely varying computational characteristics and applications with a mix

of kernels for a variety of architectures and programming models.

2. This dissertation presents mappings between classes of kernels and applications

and different programming models and architectures.

3. This dissertation provides benchmarks for system software researchers and com-

puter architects to test new programming models and architectural features.

4. This dissertation provides feedback to the system software and computer archi-

tecture communities from an application- and architecture-centric viewpoint.

6



CHAPTER II

UNDERSTANDING THE DESIGN TRADE-OFFS

AMONG CURRENT MULTICORE SYSTEMS FOR

NUMERICAL COMPUTATIONS

This chapter discusses the impact of architectural design trade-offs among various

multicore processors and accelerators for dense numerical computations and is based

on the materials in Seunghwa Kang, David A. Bader, and Richard Vuduc, “Un-

derstanding the Design Trade-offs among Current Multicore Systems for Numerical

Computing,” The 23rd International Parallel and Distributed Processing Symposium

(IPDPS), Rome, Italy, May 25th-29th, 2009.

Multicore processors and accelerator architectures are replacing single-core pro-

cessors in nearly every computing area. These systems are attractive to application

developers because of their impressive peak computational potential and (in several

cases) their energy-efficient processing capabilities. However, the architectures them-

selves are diverse and reflect a wide variety of design trade-offs. Consequently, we

might expect the performance of a given application to be an even more sensitive

function of the architecture than in previous generation single-core general purpose

processors, which in turn is expected to affect software development costs significantly.

The research literature on software optimization for these multicore systems is

growing rapidly, particularly for platforms based on the Cell Broadband Engine (Cell-

/B.E.) [25, 62, 110] and for GPUs [100, 124]. Ryoo, et al. [108, 109] have published

extensively on generalizing optimization principles for the NVIDIA GPUs based on

the CUDA framework [96]. In addition to the optimization research for a single plat-

form, several inter-architecture comparisons have been published as well. Williams,

7



et al. [128] compared the performance of emerging multicore platforms, including the

AMD dual-core Opteron processor, the Intel quad-core Harpertown processor, the

Sun Niagara processor, and the Cell/B.E. processor for sparse matrix-vector mul-

tiplication. Also, there are several papers that compare the performance of CPUs,

GPUs, FPGAs, the Cell/B.E. processor, and the Cray MTA-2 [82, 33, 25].

The focus of this chapter is on evaluating the impact of fundamental design trade-

offs on a particular class of widely-used but simple-to-analyze software kernels. We

study a range of systems with native double-precision support, described in detail

in Section 2.1, including a two processor (2P) system with Intel quad-core Harper-

town 2.5 GHz E5420 processors, a four processor (4P) system with AMD quad-core

Barcelona 2.0 GHz 8350 processors, an IBM QS20 blade with two Cell/B.E. 3.2 GHz

processors, an IBM QS22 blade with two PowerXCell 8i 3.2 GHz processors, and a

desktop system equipped with one NVIDIA Tesla C1060 GPU. As the test systems

have varying numbers of chips, clock frequencies, prices, and power consumptions, we

focus on architectural design trade-offs and their impacts on different kernels rather

than identifying the best performing processor.

We evaluate these systems experimentally using three kernels from computational

statistics with differing computational characteristics. First, we create two kernels

by extracting the most computationally intensive part of the covariance/correlation

computation from the R statistics package [3]. These kernels are based on Pearson’s

method and Kendall’s method [68], which we hereafter refer to as Kernel1 and Ker-

nel2, respectively. The third kernel (Kernel3) is created by modifying Kernel2 to

highlight each system’s capability in processing highly floating-point intensive com-

putation. Section 2.2 describes these kernels in more detail.

We also discuss our implementation and software optimization process, to high-

light the challenges and complexities of software development for each architecture

(Section 2.3). However, we consider the main contribution of this chapter to be

8



our inter-architectural analysis, not the optimization work. Our experimental results

highlight the performance of each system in executing a different mix of instructions

for compute-bound and communication-intensive cases (Section 2.4). We consider

both single-precision and double-precision performance for floating-point operations

and aim to characterize the resulting performance in terms of each system’s design

choices.

2.1 Inter-architectural Design Trade-offs

This section describes five multicore systems of interest in this study, which are sum-

marized in Table 2. In particular, each subsection considers a particular design di-

mension, and qualitatively summarizes the differences among the architectures. For

additional processor details, we refer interested readers elsewhere [48, 34, 75].

Table 2: Summary of the test systems.
System 2P Harpertown 4P Barcelona

8350
QS20-Cell/B.E. QS22-

PowerXCell
Tesla C1060

E5420 8i
Clock 2.5 GHz 2.0 GHz 3.2 GHz 3.2 GHz 1.296 GHz
Num. chips 2 4 2 2 1
Num. cores 4 4 1 PPE + 1 PPE + 30 SMs × (8
/ chip 8 SPEs 8 SPEs single-precision

SPs + 1 double-
precision SP + 2
SFUs)

DP Gflop/s 80 128 29.2 204.8 78
SP Gflop/s 160 256 409.6 409.6 933
On-chip 6 + 6 MB L2 512 KB L2 cache 256 KB local 256 KB local 16 KB shared
memory cache per chip per core and 2

MB shared cache
per chip

store per SPE store per SPE memory per SM

DRAM type DDR2 DDR2 Rambus XDR DDR2 GDDR3
Shared DRAM UMA NUMA NUMA NUMA N/A
access
Latency hiding cache + cache + double (or triple) double (or triple) hardware-

prefetching prefetching buffering buffering multithreading
Theoretical 21.4 42.8 51.2 51.2 102
peak bandwidth
(GB/s)
Power (W) 2 × 80 (per chip) 4 × 75 (per chip) 315 (per blade) 250 (per blade) 200 (max., per

board)
Compiler Intel icc Intel icc IBM xlc (10.1) IBM xlc (10.1) NVIDIA nvcc

(10.1.018) (10.1.015) (release 2.0
V0.2.1221)

Optimization -fast -fast -O5 -qarch= -O5 -qarch=edp -O3 -arch sm 13
flag cellspu -qtune= -qtune=edp

cellspu

9



Among “conventional” general purpose multicore microprocessors, we consider the

Intel quad-core E5420 Harpertown processor and AMD’s quad-core 8350 Barcelona.

The Intel Harpertown and AMD Barcelona processors share a similar micro-architecture,

but take distinct approaches to cache hierarchy and memory subsystem design. The

Intel Harpertown has 12 MB L2 cache memory, and two cores among four cores in a

chip share 6 MB L2 cache. The AMD Barcelona has dedicated 512 KB L2 cache per

core in addition to 2 MB L3 cache shared by all four cores in a chip. Also, the AMD

Barcelona supports the NUMA (Non-Uniform Memory Access) architecture while the

Intel Harpertown is based on the UMA (Uniform Memory Access) architecture.

Among the multicore accelerator systems, we consider two generations of the STI

Cell/B.E. processor and the NVIDIA Tesla C1060 GPU. The Cell/B.E. processor is

a heterogeneous multicore processor with one conventional PowerPC core (“PPE”)

and eight specialized single-instruction multiple-data (SIMD) accelerators (“SPEs”).

The Tesla C1060 is a GPU from NVIDIA and delivers 933 Gflop/s in single-precision

with native 78 Gflop/s double-precision support. The C1060, based on the Tesla

architecture [75], has 30 SMs (Streaming Multiprocessors), and each SM has 8 SPs

(Streaming Processors) for single-precision and one SP for double-precision support.

Also, each SM has two SFUs (Special Function Units) for transcendental functions

and attribute interpolation.

2.1.1 Requirements for Parallelism

The Intel Harpertown, AMD Barcelona, and Cell/B.E. processors have four to nine

cores, and each core supports SIMD instructions for acceleration. To exploit the

parallelism in these processors, these chips require coarse-grain parallelism for their

multiple cores in addition to SIMD parallelism.

In contrast, the Tesla C1060 has 240 SPs and 60 SFUs for single-precision. In

10



addition, to be detailed in Section 2.1.4, the Tesla architecture adopts massive hard-

ware multithreading to hide DRAM access latency. The Tesla C1060 requires at least

several thousand-way parallelism to exploit its architectural features. Also, the Tesla

C1060 requires SIMT (Single Instruction Multiple Threads) parallelism, and every

thread in a single warp (a group of 32 threads) needs to agree on the execution path

to maximize chip utilization.

2.1.2 Computation Units

Each core of the Intel Harpertown or AMD Barcelona processor can retire up to two

SIMD floating-point instructions (one SIMD add and one SIMD multiply) [9, 58]; thus

each core can deliver 4 double-precision floating-point operations per cycle. Also the

Intel and AMD cores can execute integer instructions in parallel with floating-point

instructions. Each SPE in the Cell/B.E. processor has two (even and odd) pipelines.

The even pipeline can execute floating-point instructions, fixed point arithmetics,

and logical and word-granularity shift and rotate instructions. The odd pipeline

executes load/store instructions and fixed point byte-granularity shift, rotate mask,

and shuffle instructions. Each SPE can retire one SIMD FMA (fused-multiply-and-

add) instruction per cycle. Each SP in the Tesla C1060 executes one scalar instruction

per cycle, including a single-precision FMA instruction. Each SFU can also execute

four single-precision multiply instructions per cycle. One SP for double-precision

support can retire one double-precision FMA instruction per cycle.

The sustainable flop-rate is highly affected by the mix of different instruction

types in an execution stream and the structure of the computation unit. The Intel

and AMD cores have separate multiply and add units instead of a FMA unit and also

can run integer instructions in parallel; thus, they can more flexibly execute different

combinations of integer and floating-point instructions. Still, to fully utilize both

floating-point multiply unit and add unit, this chip requires a 1:1 ratio of multiply

11



and add instructions. One SPE of the Cell/B.E. can issue only one floating-point

instruction in a single cycle (whether it is FMA or not), so if multiply cannot be

fused with add, the achievable peak flop-rate becomes halved. Still, the Cell/B.E. can

run several types of fixed point instructions in parallel with floating-point operations.

Fully exploiting the SMs in the Tesla C1060 requires FMA instructions and additional

multiply instructions for the SFUs. Also, one SP can execute only one instruction

per cycle.

2.1.3 Start-up Overhead

Kernel launching is faster on the Intel or AMD processors than on the Cell/B.E. or

the Tesla C1060. Thus, for a small amount of computation, these general purpose pro-

cessors outperform the accelerators while the accelerator architectures often exhibit

impressive performance for larger data [82].

The test systems also incur different levels of data off-loading overhead. In the

Harpertown, Barcelona, and Cell/B.E. processors, the off-loading overhead is largely

determined by the off-chip memory bandwidth. In contrast, GPU systems incur ad-

ditional host memory to on-board device memory data transfer via a slower PCI

Express bus. While GPUs can partially hide the off-loading overhead with asyn-

chronous data transfer (i.e., double-buffering), this mechanism currently works only

for page-locked memory and incurs additional programming overhead [98]. To amor-

tize the off-loading overhead, GPUs require higher computational intensity than other

processors [32, 114, 82]. However, the Tesla C1060’s on-board memory is much larger

(4 GB) than the Harpertown or Barcelona’s cache memory (12 or 2 MB) or the Cell-

/B.E.’s local store (256 KB per SPE × 8 SPEs). Accordingly, the Tesla C1060 can

fit larger data into its on-board memory to minimize the data transfer over the PCI

Express bus.

12



2.1.4 Memory Latency Hiding

The Intel Harpertown and AMD Barcelona processors hide memory latency via cache

memory and prefetching mechanisms. The Cell/B.E. overlaps computation with com-

munication via double- or triple-buffering. Double buffering efficiently hides the la-

tency but requires explicit software intervention. The Tesla C1060 tolerates several

hundred cycle DRAM access latency via massive hardware multithreading. The Tesla

GPU also has per SM shared memory (16 KB) in addition to constant cache and tex-

ture cache. Yet, as each SM can run hundreds of threads in parallel, these on-chip

memories have little performance impact if there is only a low degree of data sharing

among different threads.

2.1.5 Control over On-chip Memory

For the cache-based multicore processors, cache memory is managed by hardware

using the LRU (Least Recently Used) policy (or its variants), and programmers have

essentially no control over cache partitioning. By contrast, programmers can explicitly

manage on-chip (“local store”) memory on the Cell/B.E. The Tesla C1060, along with

the NVIDIA CUDA framework, also allows programmers to control the placement of

data arrays to the chip’s different types of memories.

2.1.6 Main Memory Access Mechanisms and Bandwidth Utilization

Figure 2: The 2P Intel Harpertown system with the UMA architecture (left) and the
4P AMD Barcelona system with the NUMA architecture (right).

13



The AMD Barcelona and Cell/B.E. processors use the NUMA (Non-Uniform

Memory Access) architecture, while the Intel Harpertown processor adopts the UMA

(Uniform Memory Access) architecture. UMA is conceptually simpler but NUMA has

scalability advantages if cores running on different chips access distinct data arrays.

In particular, by locating data to the chip’s local main memory, we can minimize the

contention and interference in the main memory interface. For instance, if a com-

putation accesses read-only data multiple times, we can replicate the data to each

processor’s local DRAM to maximize the bandwidth utilization for accessing the data.

The Tesla C1060’s device memory does not support shared memory access over two

or more GPUs.

The systems also differ in their deliverable memory bandwidth [102]. In terms of

peak aggregate bandwidth, the 2P Harpertown system can deliver 21.4 GB/s, the 4P

Barcelona system supports 42.8 GB/s, and the QS20 and QS22 blades support 51.2

GB/s for main memory access. The Tesla C1060 supports 102 GB/s peak bandwidth

to its 4 GB device memory. However, there is often a significant gap between the

peak bandwidth and the sustainable bandwidth [59, 94]. The gap is even larger for

multicore processors due to the interference among multiple threads performing data

accesses [93, 103, 105].

The systems adopt different memory controller architectures. In general, most

memory controllers are designed to deliver the highest data transfer rate when ac-

cessing a large contiguous chunk of data, in particular by exploiting the maximum

locality of a row buffer and bank level parallelism. Switching between DRAM reads

and writes should also be minimized to achieve the highest bandwidth utilization.

However, even for simple computations in which each thread is reading a linear ar-

ray with stride one, memory requests coming from multiple cores can be intermixed,

thereby destroying the locality and parallelism of a DRAM chip. For the Intel Harper-

town and AMD Barcelona processors, the granularity of memory access is the lowest

14



level cache line size (64 byte). For data-intensive applications, memory access re-

quests from multiple cores with the size of 64 bytes can be heavily interleaved. The

situation is even worse for the Intel Harpertown processor with its UMA configura-

tion, as the memory controller hub must mix memory access requests coming out

from two different chips. For NVIDIA GPUs, the access granularities are 32, 64, and

128 bytes [98].

By contrast, the Cell/B.E. adopts a different memory subsystem. First, each

SPE generates DMA requests with significantly larger sizes—up to 16 KB. Even

for communication-intensive applications, each SPE issues DMA requests in an in-

termittent fashion. This minimizes the inter-core interference in DRAM accesses.

Therefore, programmers can maximize the bandwidth utilization by increasing the

size of DMA accesses [62, 110]. Thus, the Cell/B.E. architecture fundamentally lends

itself to higher bandwidth utilization than other systems, in spite of the significant

effort toward increasing bandwidth utilization in general purpose multicore proces-

sors [93, 79, 59]. The AMD Barcelona processor adopts optimized scheduling algo-

rithms especially for interleaved DRAM access streams as well [9]. Williams, et al.,

also demonstrated the first-generation Cell/B.E.’s high bandwidth utilization [128],

though an open question is the impact of adopting different DRAM technologies

(i.e., the first- and second-generation Cell/B.E. architectures adopt different DRAM

technologies, namely, XDR and DDR2, respectively). Finally, the Cell/B.E. has an

additional advantage in optimizing its memory controller, as this processor targets

streaming applications that are highly latency tolerant. The Cell/B.E.’s memory con-

troller can focus on bandwidth utilization, while general purpose multicore processors

attempt to address the significantly more difficult problem of balancing bandwidth

utilization with fairness and latency issues [94, 93, 103].

15



2.1.7 Ideal Software Implementations

To optimize the code for the Intel Harpertown, AMD Barcelona, and Cell/B.E. proces-

sors, one first needs to identify coarse-grain parallelism and partition data to exploit

all the cores. One then needs to consider data layout for higher data transfer and vec-

torization efficiency. The Harpertown and Barcelona processors are significantly less

sensitive to data alignment than the Cell/B.E., since they support multiple additional

instructions for unaligned data accesses; however, data layout still affects the perfor-

mance in a non-negligible amount. At high level, optimizing for the Cell/B.E. does

not differ much from the Harpertown and Barcelona processors, but the actual imple-

mentation is significantly more complex as programmers need to explicitly program

for data transfer within the local store size limit of 256 KB. In addition, the gap

between the performance of baseline and optimized code is significantly higher for

the Cell/B.E., and this often mandates manual optimization.

The optimization process for the Tesla C1060 is largely different from the above

three processors. For the Tesla C1060, easily identifiable coarse-grain parallelism does

not suffice to fully exploit the chip. Thus, the optimization should focus on extracting

additional parallelism. To benefit from the high bandwidth and low latency on-chip

memories, programmers need to modify an algorithm to maximize data sharing among

multiple threads. Data coalescing and broadcasting mechanisms are also crucial to

achieve high performance, and this also needs to be considered in algorithm design.

For the Tesla C1060 or other CUDA enabled GPUs, the key challenge arises from

high level algorithm design, and the actual implementation is less complex in terms

of code size.

For the NUMA-based systems, one can gain significant speedup for bandwidth-

intensive algorithms by controlling thread binding and data allocation. The optimiza-

tion result for the Cell/B.E. often is more predictable than the x86 based architectures

or the Tesla C1060 owing to its simpler architecture. For the x86 based architectures,

16



the multi-level memory hierarchy with different latency, size, and associativity in each

level and complex and adaptive prefetching mechanisms across the memory hierar-

chy significantly complicate performance analysis. The Tesla C1060 optimization is

complicated by its large search space as well, which is non-linear in nature [109].

2.2 Kernel Descriptions and Qualitative Analysis

For our evaluation, we consider two versions of covariance computation based on Pear-

son’s method and Kendall’s method, as implemented in the open-source R statistics

package [3]. We also create the third Kernel by modifying the second kernel based

on Kendall’s method. Given two test data sets, represented by an nX × n matrix X,

an nY × n matrix Y , and pre-computed mean vectors x̄ and ȳ of length nX and nY ,

respectively, the basic covariance computation (based on Pearson’s method) produces

an nX × nY matrix C such that

Cij ← 1

n− 1

n∑

k=1

(Xik − x̄i) · (Yjk − ȳj)

In this section, we describe the three kernels, and explain their high-level charac-

teristics.

2.2.1 Conventional Sequential Code

Code 2.1 presents the C implementation of the basic covariance kernel based on Pear-

son’s method. We refer to this code as “Kernel1.” “Kernel2” computes covariance

using Kendall’s method, and we artificially create “Kernel3” by modifying Kernel2.

Code 2.2 depicts Kernel2 and Kernel3. Kernel1 and Kernel2 are adopted from the R

project source code [3].

In Kernel1, we can first subtract the mean vector from each matrix operand to

remove the redundant subtracts. Then, transposing matrix Y converts this algorithm

to a dense matrix multiplication problem, which is extensively studied and also there

17



//p x : a po in t e r f o r X
//p y : a po in t e r f o r Y
//p xm : a po in t e r f o r x̄
//p ym : a po in t e r f o r ȳ
// p ans : a po in t e r f o r C
f o r ( i = 0 ; i < nX ; i++) {

p xx = &p x [ i ∗ n ] ;
xxm = p xm [ i ] ;
f o r ( j = 0 ; j < nY ; j++) {

p yy = &p y [ j ∗ n ] ;
yym = p ym [ j ] ;
sum = 0 . 0 ;
f o r ( k = 0 ; k < n ; k++) {

sum += ( p xx [ k ] − xxm) ∗ ( p yy [ k ] − yym) ;
}
p ans [ i ∗ nY + j ] = sum / (n − 1 ) ;

}
}

Code 2.1: C code for Kernel1

is a highly optimized BLAS library for the problem. Kernel2 and Kernel3 have more

complex data access patterns but still can be optimized based on the cache blocking

approach. Initially, we intentionally ignore these particular optimization opportunities

for the following two reasons. First, we wish to stress the memory systems experi-

mentally, and secondly, we want to show the more typical and intuitive optimization

process that is common in practice. Then, if memory bandwidth turns out to be a

performance bottleneck, we implement the blocking approach. We focus on highlight-

ing the impact of architectural design trade-offs on performance and programmability.

In particular, we do not intend to conclude which system is the “best” for computing

covariance, nor do we claim to have implemented the best possible covariance code.

2.2.2 Basic Algorithmic Analysis

The memory footprint of all three kernels is O((nX + nY ) × n) and the size of two

input matrices are typically much larger than mean vectors or the output matrix. The

computational complexity is O(nX × nY × n) for Kernel1 and O(nX × nY × n2) for

Kernel2 and Kernel3. While these kernels are compute-intensive in their asymptotic

18



//p x : a po in t e r f o r X
//p y : a po in t e r f o r Y
// p ans : a po in t e r f o r C
f o r ( i = 0 ; i < nX ; i++) {

p xx = &p x [ i ∗ n ] ;
f o r ( j = 0 ; j < nY ; j++) {

p yy = &p y [ j ∗ n ] ;
sum = 0 . 0 ;
f o r ( k = 0 ; k < n ; k++) {

f o r ( n1 = 0 ; n1 < n ; n1++) {
#i f SIGN// Kernel2

sum += s ign ( ( p xx [ k ] − p xx [ n1 ] )
∗ ( p yy [ k ] − p yy [ n1 ] ) ) ;

#e l s e // Kernel3
sum += ( p xx [ k ] − p xx [ n1 ] )
∗ ( p yy [ k ] − p yy [ n1 ] ) ) ;

#end i f
}

}
p ans [ i ∗ nY + j ] = sum ;

}
}

Code 2.2: C code for Kernel2 and Kernel3

notations, if the entire memory footprint does not fit into the on-chip memory of

the test systems, then these kernels can be bandwidth-bound. All three kernels have

obvious nX × nY way parallelism as every pair of rows from matrix X and Y can be

computed independently. Also, if we ignore the floating-point associativity issues, we

can also trivially parallelize the innermost loop of Kernel1 and the second innermost

loop of Kernel2 and Kernel3. For Kernel1, if we execute the code in a sequential

way, there is higher temporal locality in the row data of matrix X than the row

data of matrix Y. For Kernel2 and Kernel3, if we can place two rows from matrix

X and Y on on-chip memory, we can perform O(n2) computation over O(n) data

without off-chip memory access. The total number of flops executed by Kernel1 is

(nX + nY )× n + nX × nY × n× 2, and nX × nY × n2 × 4 for Kernel2 and Kernel3.

19



2.3 Baseline Architecture-specific Implementations

For subsequent evaluation, we create a basic parallel implementation for each archi-

tecture, described in this section. These implementations include “baseline” paral-

lelization and tuning, meaning they include some degree of platform-specific tuning

but are not extensively tuned. Again, as Section 2.2.1 states, our focus is on system

evaluation and not on kernel optimization.

2.3.1 Intel Harpertown (2P) and AMD Barcelona (4P) Multicore Imple-
mentations

We can easily parallelize the outermost loop of all three kernels with OpenMP or

pthreads for our 8 and 16 core systems, assuming sufficiently large nX (nY ). For

Kernel1, we apply auto-vectorization with two directives, #pragma unroll(16) and

#pragma vector aligned, achieving comparable performance to an intrinsics-based

vectorization approach.

For Kernel2, sign() function involves branches, lowering the performance signif-

icantly. We replace the branch with an SSE compare (e.g., mm cmpgt pd() and

mm cmplt pd()) and bitwise operations (e.g., mm and pd() and mm or pd()). The

Intel icc compiler have failed to perform this replacement automatically, and so we

hand-code this translation to use SIMD intrinsics. The Kernel3 code can be trivially

vectorized in the same way.

For the 4P Barcelona system, which is NUMA-based, our code replicates the

input matrices to all four chips’ local DRAM, and pins the threads to each core.

The replication cost can be amortized with multiple reads, and this optimization

maximizes the available bandwidth while minimizing the interference.

Even though our test kernels are asymptotically compute-intensive, if the input

matrices do not fit into the on-chip cache memory, these algorithms can be bandwidth-

bound. The blocking approach can reduce the amount of off-chip data transfer at the

cost of increased implementation complexity. Also, for the Harpertown and Barcelona

20



processors, selecting the optimal block size requires exhaustive search over parameter

space as it is a complex function of the multiple levels of cache hierarchy and their

size and associativity. This exhaustive search is beyond the scope of our work and we

set the block size based on heuristics.

2.3.2 STI Cell/B.E. (2P) Implementation

The Cell/B.E. implementation resembles the 4P AMD Barcelona implementation,

though the Cell/B.E. provides an additional opportunity for fine-tuning owing to

the higher level of control over on-chip memory supported by the architecture. In

particular, observe that a row data of matrix X has, assuming the given loop order,

higher temporal locality than a row data of matrix Y . Thus, we can assign a larger

buffer for matrix X than Y . Furthermore, to reduce the bandwidth requirement even

when a single row does not fit into the local store, our code allocates additional small

buffers for streaming. In this case, our code reads data from the larger buffer for

matrix X and Y for accessing the initial part of the row (which fits into the local

store), and then our code switches to the streaming mode with the smaller buffers for

the remaining.

However, fine-grained control over on-chip memory significantly increases the cod-

ing complexity, especially when the on-chip memory requirement varies as a function

of the input data size. The blocking approach, even though it adds additional com-

plexity in high level, fixes the on-chip memory requirement regardless of the input

data size. Accordingly, the blocking approach can reduce the coding complexity for

the Cell/B.E. in addition to the improved performance. For the Cell/B.E., the impact

of different block size is easier to understand owing to its simple memory subsystem.

Larger block height reduces the amount of traffic whereas larger block width increases

the iteration count of the innermost loop to improve the compute efficiency. We can

21



also simply pick the largest block size that fits into the local store instead of consid-

ering different cache sizes in the memory hierarchy.

2.3.3 NVIDIA Tesla C1060 Implementation

For the NVIDIA Tesla C1060, the nX × nY -way parallelism may not be sufficient

for practical data set sizes. Even when nX × nY is very large, having every thread

processes a distinct pair of rows can lead to poor bandwidth utilization (no coalescing

in data transfer) or low on-chip cache utilization (no data sharing). For Kernel1, we

partition the innermost loop with chunks of size 16 elements (a half warp, as high

memory bandwidth utilization is achieved when the memory accesses from a half

warp can be coalesced [98]). Each thread in a half warp processes one element out

of 16 elements in a chunk to maximize the coalescing. For Kernel2 and Kernel3, we

partition the second innermost loop identical to the case of Kernel1. In this case,

every thread in a half warp traverses same row data in a synchronized way (in the

innermost loop of Code 2.2, array index k remains constant and only array index

n1 changes. In our optimized code, every thread in a same half warp accesses p xx

and p yy with same n1 but different k), and we can use the on-chip shared memory

to exploit this fact. As every thread accesses a same data element, we can use the

shared memory’s broadcasting mechanism as well.

One critical issue is sign() function, which involves branch instructions. The

NVIDIA CUDA compiler replaces branch instructions with predicates when the num-

ber of instructions controlled by the branch is equal to or less than the threshold value

(4 or 7 instructions) [98]. Therefore, by using the CUDA framework, we do not need

to manually optimize for sign() function, as we do on the Intel Harpertown, AMD

Barcelona, and Cell/B.E. platforms. Optimization for the Tesla C1060 is more in-

volved in high level, but simpler to program than the Cell/B.E. for these kernels.

Also, the proper use of on-chip cache memory significantly reduces the bandwidth

22



requirement, and Kernel2 and Kernel3 become compute-bound even without explicit

blocking.

2.3.4 A Quantitative Comparison of Implementation Costs

Table 3: Quantitative comparison of implementation costs in terms of code size and
implementation time. This excludes the code for kernel invocation and the residual
part computation.

kernel code size (# of
lines)

approximate coding
time

Harpertown and Barcelona - initial 335 1 day
Harpertown and Barcelona - blocking 419 2 days
Cell/B.E. - initial 1620 7 days
Cell/B.E. - blocking 1004 2 days
Tesla C1060 - initial 52 (Kernel1) + 97

(Kernel2/3)
2 days

Tesla C1060 - blocking 88 (Kernel1) 1 day

Table 3 summarizes the comparison. For the Cell/B.E., the blocking approach

fixes the local store space requirement regardless of the input data size, and simplifies

the coding in addition to the improved performance. We can also identify that the

code size for the Tesla C1060 is significantly smaller than the other architectures.

For the Tesla C1060, the challenge is in extracting additional parallelism and best ex-

ploiting the memory subsystem (based on the data access coalescing and broadcasting

mechanisms and the efficient use of the shared memory).

2.4 Experimental Results

Recall the evaluation platforms from Table 2. To measure the sustained bandwidth

of the 2P Harpertown system, we use PAPI [2] and count the number of memory

bus transactions. For the 4P Barcelona system, we use AMD CodeAnalyst [1] and

count the number of DRAM accesses. For the systems with the Cell/B.E. processors,

we attach counter variables to every DMA memory requests and ignore the PPE

initiated traffic. For the Tesla C1060, we estimate the total bandwidth requirement

using the following equations: nX × nY × n× sizeof(float or double) ×2 for Kernel1

23



and nX×nY ×n×n× sizeof(float or double) ×2× 1
16

(a half warp width, owing to data

sharing) for Kernel2 and Kernel3. For the NUMA-based AMD Barcelona and Cell/-

B.E. architectures, our code replicates matrix X and Y, which are read multiple times,

for higher bandwidth utilization. The reported numbers include this replication cost

and the off-loading overhead to the device memory in the Tesla C1060.

Figure 3: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel1 (single-
precision). Missing points for the QS20 are due to memory allocation failure. Here,
nX = nY = 1024.

24



Figure 4: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel1 (double-
precision). Missing points for the QS20 are due to memory allocation failure. Here,
nX = nY = 1024.

2.4.1 Kernel1

The top half of Figure 3 depicts the sustained Gflop/s and bandwidth utilization for

Kernel1 in single-precision with the initial implementation. Although the algorithm is

computationally intensive, the performance is bounded by memory bandwidth since

the entire data do not fit into the on-chip memory. The Tesla C1060 benefits from

its high bandwidth to on-board DRAM, but the sustained bandwidth is lower than

the theoretical peak and varies significantly for different input matrix sizes. The

25



off-loading overhead accounts for 18% (for the smallest matrix) to 2.4% (for the

largest matrix) of the total execution time. The QS20 and QS22 blades achieves the

highest bandwidth utilization on average across the different values of n owing to

their DMA based data transfer mechanism with a large chunk size. The QS20 blade

(with Rambus XDR) achieves higher bandwidth utilization than the QS22 blade (with

DDR2). The 4P Barcelona system achieves significantly higher sustained bandwidth

and bandwidth utilization than the 2P Harpertown system. This exemplifies the

scalability benefit of the NUMA architecture. The AMD Barcelona equips optimized

memory access scheduling algorithms for interleaved streaming accesses, and this also

contributes to higher bandwidth utilization. However, the 2P Harpertown system

delivers higher flop rates per unit bandwidth consumption owing to the large shared

cache memory.

The blocked implementations yield significantly better results than the initial

implementation, as shown in the bottom half of Figure 3, but still deliver significantly

lower performance than the theoretical peak. In the case of the x86 architectures,

there are a number of possible explanations. First, we need to tune the blocking with

respect to the different sizes and associativities at all levels of the cache hierarchy

to achieve higher performance. This task would be daunting task even for skilled

programmers. Secondly, the blocked implementation may interact, and may even

interfere, with the various hardware mechanisms in an unintentionally negative way.

For example, the blocked version has a more complex memory access pattern, which

may reduce the effectiveness of the hardware prefetchers. Thirdly, the behavior of

the memory system mechanisms are complex and challenging to reason about. For

instance, on the Harpertown, data in DRAM is first read into the lower level (L2)

cache, whereas it is read into the highest level (L1) cache first and moved to the

non-inclusive L2 and L3 caches (when the cache line is evicted) on the Barcelona. All

these differences can affect the performance in non-intuitive ways and this imposes

26



challenges to a programmer if one wishes to extract the highest achievable flop rates

out of the chip.

In contrast, for the Cell/B.E. based systems, it is significantly easier to understand

the data transfer related performance issues owing to its simple architecture. Still, to

achieve the highest flop rate, programmers need to consider their code at the assembly

level. Each iteration of the innermost loop in Kernel1 requires two vector loads, one

vector stores, two address increments, and one vector FMA (fused-multiply-and-add)

instructions. As the result, the fixed-point instructions and load/store instructions

can become a performance bottleneck. Extensive low level tuning is required to

balance the even and odd pipelines and minimize the address calculation overhead.

For the Tesla C1060, the delivered performance is lower than 10% of its theoretical

peak even in the best case. The off-loading overhead (11%-70% of the total execution

time, which increases as n decreases), integer instructions for address increments,

and the lack of additional multiply instructions to feed the SFU lower the deliverable

performance. Also, to load data to the block array in the shared memory, the Tesla

C1060 needs to calculate the address and issue a load instruction for every single

real number even though DRAM access latency can be in principle efficiently hidden

with the hardware multithreading mechanism; thus the device memory to the shared

memory traffic cannot be perfectly overlapped with the computation as is the case of

the Cell/B.E. The Tesla C1060 architecture is less transparent than the Cell/B.E.’s,

and so the performance impact of the tunable parameters (e.g. thread block size,

block width and height in the blocking approach, and loop unrolling factors) are

more difficult to predict, thereby requiring explicit search and tuning.

Figure 4 shows the results for double-precision. Interestingly, we can see that

the sustained bandwidth for the Tesla C1060 is higher than the single-precision case,

largely due to the increased granularity of data transfer from 64 byte (16 threads in

a half warp × 4 byte floating point number) to 128 byte (16 × 8 byte floating point

27



number). In the case of double-precision, the QS22 blade delivers higher performance

than the QS20 blade, and the QS20 blade becomes compute-bound. We can also note

that QS20 and the Tesla C1060 achieve a significantly higher fraction of its theoretical

peak than the single-precision case. This shows that the QS20 and the Tesla C1060’s

peak double-precision performances are easier to achieve than their single-precision

counterpart.

Figure 5: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel2 (single-
precision). Here, nX = nY = 128.

28



Figure 6: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel2 (double-
precision). Here, nX = nY = 128.

2.4.2 Kernel2

Figures 5 and 6 summarize the results for Kernel2 in single- and double-precisions,

respectively. This kernel is highly compute-intensive, and if a pair of two rows can

fit into the on-chip memory, Kernel2 becomes compute-bound even without blocking.

For single-precision, the Tesla C1060 delivers nearly 100 Gflop/s. Still, this number

is significantly lower than the advertised peak numbers, for similar reasons discussed

in the case of Kernel1 in addition to sign() function. Kernel2’s invocation of sign() is

replaced with predicated instructions; however, computing predication also requires

additional cycles. In addition, as the SP has only one execution pipeline and does

29



not have separate integer execution units, performance is more susceptible to the mix

with integer instructions than on other architectures. For the QS20 and QS22 blades,

the kernel is compute-bound for small n and bandwidth-bound for large n without

blocking. In contrast, the QS20 and QS22 blades become compute-bound even for

large n with blocking. In the bandwidth-limited cases, the QS20 blade achieves nearly

full bandwidth utilization while the QS22 blade delivers approximately 80% of the

theoretical peak bandwidth. The QS20 blade uses XDR DRAM and the QS22 blade

uses DDR2 DRAM, which explains the reason for the different sustained bandwidth.

For the Tesla C1060, the kernel becomes compute-bound, even without blocking,

because of the efficient use of the shared memory. Indeed, blocking does not improve

performance, and so we need not consider it further.

2.4.3 Kernel3

Kernel3 is highly floating-point intensive, and its performance is given in Figure 7 and 8.

For single-precision, the QS20 blade, the QS22 blade, and the Tesla C1060 card de-

liver comparable performance for small n. The QS20 and QS22 blade’s performance

drop sharply with large n without blocking, but the flop rates remain nearly con-

stant with blocking. Considering that our kernel has more adds and subtracts than

multiplies, the QS20 and QS22 blades demonstrate near the maximum achievable

floating-point performance. Yet, the performance for the Tesla C1060 is only one-

quarter of its advertised peak performance. For double-precision, the Tesla C1060

delivers over one-half of its peak flop rates in comparison to one-quarter in the single-

precision case as double-precision SP can be solely used for floating-point operations

and single-precision SPs can be exploited for integer instructions (e.g. address calcu-

lation).

30



Figure 7: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel3 (single-
precision). Here, nX = nY = 128.

2.5 Summary

In this chapter, we empirically evaluate fundamental design trade-offs among the

most recent multicore processors and accelerator technologies. Our primary aim is

to aid application designers in better mapping their software to the most suitable

architecture, with an additional goal of influencing future computing system design.

We specifically examine five architectures, based on: the Intel quad-core Harper-

town processor, the AMD quad-core Barcelona processor, the Sony-Toshiba-IBM

Cell Broadband Engine processors (both the first-generation chip and the second-

generation PowerXCell 8i), and the NVIDIA Tesla C1060 GPU. We illustrate the

31



Figure 8: Sustained Gflop/s (left) and bandwidth utilization (GB/s) (right) for the
initial (top) and the blocking based (bottom) implementations of Kernel3 (double-
precision). Here, nX = nY = 128.

software implementation process on each platform for a set of widely-used kernels

from computational statistics that are simple to reason about; measure and analyze

the performance of each implementation; and discuss the impact of different archi-

tectural design choices on each implementation.

32



CHAPTER III

AN EFFICIENT TRANSACTIONAL MEMORY

ALGORITHM FOR COMPUTING A MINIMUM

SPANNING FOREST OF SPARSE GRAPHS

This chapter discusses the match between irregular graph algorithms and Transac-

tional Memory. This chapter is based on the materials in Seunghwa Kang and David

A. Bader, “An Efficient Transactional Memory Algorithm for Computing Minimum

Spanning Forest of Sparse Graphs,” The 14th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming (PPoPP), Raleigh, NC, February 14th-

18th, 2009.

Data synchronization is one of the most prominent bottlenecks for the widespread

and efficient use of multicore computing. A major class of supercomputing applica-

tions is based on array data structures and have regular data access patterns; thus

data partitioning for parallel programming is relatively simple, and data synchroniza-

tion is required only at the boundaries of partitioned data. In contrast, another class

of important applications uses pointer-based irregular data structures. This raises

complex data synchronization issues and significantly exacerbates the situation.

Researchers have attempted to solve this problem in several directions targeting a

spectrum of programming efforts and flexibility trade-offs. Thread Level Speculation

[130, 123] extracts an additional level of parallelism without programmer intervention

by speculatively executing instructions with unresolved data dependency. Kulkarni

et al. [71] have developed the Galois run-time system to automatically parallelize

irregular applications with user provided hints. However, to achieve the highest level

of flexibility or chip utilization over widely varying applications using ever increasing

33



number of cores, explicit parallel programming is often mandated.

Lock and barrier are the most popular data synchronization primitives for parallel

programming but are problematic in programming complexity, scalability, or compos-

ability for complex applications. Coarse-grained locking has affordable programming

complexity but often sequentializes program execution. Fine-grained locking provides

superior scalability at the expense of notoriously complex programming. Frequent

invocation of barrier primitives can be a significant performance bottleneck as well.

Also, for lock-based programs, even correct implementations cannot be simply com-

bined to form larger programs [51].

Transactional Memory (TM) [55] attempts to remedy this problem and promises to

provide the scalability of fine-grained locking at the programming complexity of a sin-

gle lock approach. TM also has great potential to resolve the composability problem

[51]. Within a TM framework, we can seamlessly combine different transaction-based

codes while maintaining the atomicity of the transactions. Moreover, the assumption

under TM fits well to the requirements to benefit from parallelization. von Praun

et al. [125] classified applications based on data dependence densities and argued

that applications with high data dependency cannot benefit significantly from paral-

lelization while applications with low data dependency can. TM also becomes more

efficient as the degree of data dependency drops, and this suggests that if an appli-

cation can benefit from parallelization, then that application can also benefit from

TM.

Programmers only need to demarcate the critical sections for shared data accesses

based on TM semantics. Then, if there is no conflict in the shared data accesses,

the underlying TM system executes critical sections (or transactions) in parallel. If

there are conflicts, the affected transactions are aborted and re-executed to provide

the semantics of sequential execution for transactions. TM systems based on software

(STM) [54, 78, 43], hardware (HTM) [50, 10, 104, 86, 22], and hybrid (HyTM) [39,

34



84, 116] approaches have been proposed, which have trade-offs in flexibility, dedicated

hardware requirements, and performance overhead for different stages of deployment.

There are already multiple open source STM implementations. Sun Microsystems

had been expected to release its Rock processor [121], the first microprocessor with

hardware support for accelerating TM, though the project was canceled during the

Oracle’s acquisition process.

Up to this point, most research on Transactional Memory has focused on systems

and architectures, but few have considered its impact on algorithms and applications.

There are several existing benchmarks [36, 49, 41, 101] for TM systems, but these

applications do not reveal the full potential of TM for real-world applications. Scott et

al. [115] implemented Delaunay triangulation using their TM system as a real-world

application. Yet, for their implementation, data synchronization is required only at

the boundaries of partitioned data. Watson et al. [126] reported an implementation

of Lee’s circuit routing algorithm using TM. They achieved a high level of parallelism

using TM in combination with deep understanding of the algorithm to reduce the

number of aborted transactions.

In this chapter, we investigate the impact of Transactional Memory on algorithm

design for applications with intensive data synchronization requirements. We believe

that TM has great potential to facilitate scalable parallel algorithm design without in-

volving the complexity of fine-grained locking or the ingenuity of lockfree algorithms.

We provide an algorithmic model for TM to assist the development of efficient TM al-

gorithms. Perfumo et al. [101] suggested commit phase overhead, read-to-write ratio,

wasted time, useful work, and cache accesses per transactional access as metrics for

characterizing STM applications. System researchers may feel comfortable with these

metrics, but algorithm designers may not. Our model aims to reveal the key features

of TM systems to be considered in designing algorithms. Then, we move our focus

35



to graph algorithms. Graph algorithms are typically pointer-based and have irreg-

ular data access patterns with intensive data synchronization requirements. Graph

algorithms also have interesting characteristics that fit well to TM systems at the

same time. As a case study, we present an efficient Transactional Memory algorithm

for computing a minimum spanning forest (MSF) of sparse graphs. Our algorithm

adopts a key idea from Bader and Cong’s MSF algorithm [13], which implements a

lockfree parallel MSF algorithm by combining Prim’s algorithm with Bor̊uvka’s algo-

rithm. Our algorithm replaces the Bor̊uvka’s algorithm part with tree merging and

exploits TM to achieve high scalability with low performance overhead. We present

our algorithm with special emphasis on TM specific design issues. We implement and

test our algorithm using the Stamp [83] framework based on Transactional Locking II

[43] STM. Our implementation demonstrates remarkable speedup for different sparse

graphs throughout the experiments. Yet, as our algorithm executes a significant frac-

tion of the code inside transactions, the high STM overhead nullifies the speedup.

This reveals the limitation of STM and highlights the necessity of the low overhead

hardware support. Dice et al. [42] had experimented our algorithm on the Rock

processor—with few modifications to work around the Rock processor’s limitations—

and achieved both high scalability and high-performance. The result confirms our

argument.

3.1 Transactional Memory and Algorithm Design

3.1.1 Transactional Memory and Lockfree Algorithms

Lock is a popular synchronization primitive in multi-threaded programming. If mul-

tiple threads access shared variables concurrently, fine-grained locking is required

to avoid sequentialization on a single lock. However, this approach involves a no-

toriously difficult programming challenge. Remembering the relationship between

multiple locks and multiple shared variables is already a non-trivial issue. Deadlock

36



and livelock problems, starvation, and other related issues, often increase the pro-

gramming complexity to a prohibitive level. Therefore, many algorithm designers use

coarse-grained locking instead and make an effort to reduce the size of critical sections

to minimize the sequentialization problem. Unfortunately, this does not always work

especially with a large number of cores. Ambitious researchers devote their effort to

write lockfree algorithms that avoid race conditions using novel algorithmic innova-

tions instead of locks. Yet, lockfree algorithm design requires deep understanding of

the algorithm and the underlying system. As a consequence, lockfree algorithms are

usually hard to understand and often rely on architecture-specific assumptions. Also,

lockfree algorithms often involve additional computation to avoid data races.

Transactional Memory has great potential to change this situation. Programmers

only need to mark the start and the end of transactions in their explicitly parallel code.

Then, the TM system will automatically run non-conflicting transactions in parallel

to achieve high-performance while roll-back and re-execute conflicting transactions to

provide the semantics of sequential execution for transactions. If the TM system can

support this mechanism with high scalability and low performance overhead, we may

not need to rely on lockfree algorithms anymore. Bader and Cong’s parallel MSF

algorithm [13] is a lockfree algorithm and incurs the overheads discussed above. As

an illustration of our arguments, we design a new algorithm for computing a MSF

using Transactional Memory. Section 3.3 further discusses the topic.

3.1.2 Algorithmic Model for Transactional Memory System

Transactional Memory can help programmers to write explicitly parallel programs,

but TM cannot guarantee scalable performance for every implementation. To best

exploit TM, we need to write an algorithm that fits well with the underlying TM

framework. However, it is difficult for algorithm designers to decide which design

37



Figure 9: When multiple transactions access one shared variable at the same time,
those transactions are highly likely to conflict (top). In contrast, if concurrent trans-
actions mostly access different shared variables, those transactions will conflict with
low probability (bottom).

choice will lead to the best result without in depth knowledge of TM systems. We de-

sign our algorithmic model for TM towards this goal. Our model focuses on revealing

the common key features of widely varying TM systems, which need to be considered

in algorithm design. Our model does not aim to estimate precise execution time as

this complicates the model without providing significant intuition in algorithm design.

Let, Tpar. and Tseq. denote parallel and sequential execution time, respectively, and

p is the number of concurrent threads (assuming w.l.o.g. one thread per core). Then,

the following equation states our model assuming that an algorithm does not have an

inherently sequential part.

38



Tpar. =
Ttr. + Tnon−tr.

p

Ttr. = Tseq. ×
# transactions∑

i=1

(τi ×# trials× ov(si))

Tnon−tr. = Tseq. × (1− τ)

# trials =
∞∑

j=1

j × pi
j−1 × (1− pi)

τ =

# transactions∑
i=1

τi

Figure 10: Transactional overhead ov(si) varies as a function of transaction size si.
This figure assumes per core transactional cache for HyTM or full HTM and two-level
memory hierarchy.

where, Ttr.

p
and Tnon−tr.

p
denote the execution times for the transactional part and the

non-transactional part of an algorithm with p threads. An algorithm may consists of

multiple transactions (# transactions), which account for different fractions of the

total number of operations to run the algorithm (τi) and conflict with other trans-

actions with the probability pi. Transactions may execute several times to commit

(# trials) due to conflicts. pi in each trial may vary according to the system specific

contention management schemes. Also, an operation inside a transaction runs ov(si)

times slower than an operation outside a transaction owing to the TM overhead,

where si is the transaction size. We rely on algorithm designers to estimate the value

39



of pi, as algorithm designers are likely to best understand the data access patterns

of their own algorithm. To systematically estimate the level of data conflict in the

legacy code, we refer the readers to von Praun et al.’s work [125]. ov(si) is specific

to the underlying TM system and also varies as the function of the transaction size.

Figure 10 portrays the overhead assuming per core transactional cache. If the under-

lying TM system has a shared transactional cache, the overhead becomes a function

of the aggregate concurrent transaction size.

Our model provides several guidelines to algorithm designers. STM incurs large

ov(si) regardless of the transaction size, and this suggests that algorithm designers

should focus on minimizing τ . Yet, this increases the programming complexity and

hampers the benefit of Transactional Memory. Moreover, if τ is small, a single lock

approach may suffice to achieve scalability. The key disadvantage of a single lock

approach is the sequentialization of critical sections on a single lock. This may not

significantly limit the scalability of the algorithm if every thread spends only a neg-

ligible fraction of the time inside critical sections. HyTM incurs only low overhead

for transactions that fit to the transactional cache. The excessively large transactions

still can incur high overhead. Full HTM may able to provide relatively low overhead

even in the case of overflow, and Ananian et al. [10] presented UTM (Unbounded

Transactional Memory) towards this goal. However, full HTM requires significant

modification to the existing microprocessor architecture or even the DRAM architec-

ture. This may not happen within the foreseeable future. Even with the full HTM

support, an excessively large transaction can still be a problem as it spans a longer

period of time and accesses multiple memory locations; thus likely to get aborted

multiple times or aborts many other transactions and increases pi. In summary, our

model suggests that algorithm designers should focus on minimizing pi while avoiding

excessively large transactions.

40



3.1.3 Transactional Memory and Graph Algorithms

Figure 11: A common graph operation: pick one vertex (black) and find (and
apply operations on) its neighbors (gray)

Graph algorithms represent one important class of applications that use pointer-

based irregular data structures and have multiple features that can take advantage

of Transactional Memory. While some of the synthetic graphs, scientific meshes, and

regular grids can be easily partitioned in advance [71], many other graphs representing

real-world data are hard to partition and thus, are challenging to efficiently execute on

parallel systems [18]. Many graph algorithms also finish their computation by visiting

multiple vertices in the input graph, and even with the optimal partitioning, we can

traverse from one partition to the other partitions with a relatively small number of

hops. Therefore, any vertex in the graph can be concurrently accessed by multiple

threads, and this necessitates data synchronization over the entire graph. However, if

the graph size is large enough relative to the number of threads, two or more threads

will access the same vertex at the same time with very low probability. This leads to

low pi in our TM model. Then, TM can abstract the complex data synchronization

requirements involving a large number of vertices, and high scalability can be achieved

owing to the low degree of data contention.

In addition, we can easily decompose many graph algorithms to multiple transac-

tions. Figure 11 depicts a common graph operation: pick one vertex and find (and

apply operations on) its neighbors. Many graph algorithms iterate this process,

41



and this common routine can be implemented as a single transaction. Thus, an al-

gorithm can be implemented as iterations of transactions. This leads to large τ and

exemplifies the key benefit of TM over lock-based approaches. A single lock approach

will sequentialize nearly the entire computation while fine-grained locking involves

prohibitively difficult programming challenges. In contrast, TM can significantly re-

duce the gap between high level algorithm design and its efficient implementation, as

the independent tasks can easily map to transactions without compromising scalabil-

ity. However, if the underlying TM system incurs high overhead, this overhead can

nullify the high scalability as most operations need to be executed inside transactions.

This necessitates a low overhead hardware mechanism to obtain superior performance

from high scalability. We may see low overhead HTMs (or HyTMs) within the near

future, but excessively large transactions are likely to incur high overhead for longer

time period, if not forever, as full HTM design is more challenging and unlikely to be

commercialized in the foreseeable future. If we decompose graph algorithms in the

above way, a vertex degree determines the size of a transaction, and for sparse graphs,

most transactions have relatively small size; thus, transactional cache overflow may

not be an issue. Still, there can be a small number of vertices with a exceptionally

large vertex degree, and this can be a performance bottleneck. In our MSF algo-

rithm, we modify the algorithm to address this issue, and this is further discussed in

Section 3.3.2.

3.2 Minimum Spanning Forest Algorithm for Sparse Graphs

3.2.1 Sequential Minimum Spanning Forest Algorithm

Given a fully connected undirected graph, minimum spanning tree (MST) algorithms

find a set of edges which fully connects all vertices in the graph without cycles while

minimizing the sum of edge weights. If the input graph has multiple connected

components, minimum spanning forest (MSF) algorithms find multiple MSTs, one

42



MST per each connected component. MST has multiple practical applications in

the area of VLSI layout, wireless communication, distributed networks, problems in

biology and medicine, national security and bioterrorism, and is often a key module

for solving more complex graph algorithms [13]. Prim’s, Kruskal’s, and Bor̊uvka’s

algorithms are three well known approaches for solving MST problems. Even though

there are other algorithms with lower asymptotic complexity, they run slower on real

systems than these algorithms [88] due to large hidden constants in the asymptotic

complexities. Based on the experimental results in [88, 13], there is often no clear

winner among these three algorithms as execution time depends on the topology of

the input graph and the characteristics of the computing system.

3.2.2 Parallel Minimum Spanning Forest Algorithm

Prim’s and Kruskal’s algorithms are inherently sequential, while Bor̊uvka’s algorithm

has natural parallelism. Therefore, most previous parallel MST algorithms are based

on Bor̊uvka’s approach (see Bader and Cong’s paper [13] for a summary). Even

though these algorithms’ achieve parallel speedup for relatively regular graphs, none

of these Bor̊uvka’s algorithm-based implementations runs significantly faster than the

best sequential algorithm for a wide range of irregular and sparse graphs. Bader and

Cong [13] also introduced a new parallel MST algorithm which marries Prim’s al-

gorithm with Bor̊uvka’s algorithm. This new algorithm grows multiple MSTs using

Prim’s algorithm until conflict occurs. While growing MSTs, each thread marks the

vertices in its own MST as visited and also colors all neighbors of the marked vertices

with its own color. If the algorithm encounters a vertex marked or colored by other

threads, conflict occurs. Then, the thread starts to grow a new MST with a new ver-

tex. If there is no remaining unmarked and uncolored vertex, the algorithm switches

to the Bor̊uvka’s algorithm stage, finds the connected components, and compacts the

graph. The algorithm iterates this process until the number of remaining vertices

43



falls below the given threshold value. When this happens, the algorithm runs the

best sequential algorithm to finish the computation. If the input graph has multiple

connected components, this algorithm finds an MSF of the graph. Actually, if there

is only one thread, this algorithm behaves similar to Prim’s algorithm while it works

as Bor̊uvka’s algorithm if the number of threads is equal to the number of vertices.

This algorithm avoids data races without using locks. To achieve this goal, this

algorithm uses two arrays, visited and color. However, it is not trivial to fully under-

stand the mechanisms to avoid data races. Also, this algorithm assumes sequential

consistency for the underlying system, and if the underlying system supports only the

relaxed consistency model, additional fence operations are required. Therefore, even

assuming that a high level description of the algorithm is given, expertise in both

algorithm and architecture is required to implement the algorithm correctly.

Moreover, the lockfree nature of the algorithm is achieved at the cost of additional

performance overhead. If a vertex is colored by other threads but not marked as

visited, adding this vertex to the thread’s own MST may not lead to true conflict

in most cases. However, this algorithm takes a conservative position and treats this

case as a conflict to avoid possible race conditions. If the input graph has a relatively

small diameter, this can lead to an excessive number of conflicts, and the algorithm

may not perform much useful work in the Prim’s algorithm stage. Then, the Prim’s

algorithm stage just wastes computing cycles, and the Bor̊uvka’s algorithm stage

performs the most useful work. Even when the graph has a large diameter, and

conflicts occur infrequently, this algorithm runs both Prim’s algorithm and Bor̊uvka’s

algorithm and also additional computation to achieve its lockfree nature; this leads

to additional performance overhead. Due to this overhead, this algorithm requires 2

to 6 processors to outperform the best sequential algorithm depending on the input

graph.

44



3.3 An Efficient Transactional Memory Algorithm for Com-
puting a Minimum Spanning Forest of Sparse Graphs

Figure 12: A high level illustration of our MSF algorithm

Figure 13: A State transition diagram for our MSF algorithm

In our new MSF algorithm, each thread runs Prim’s algorithm independently

similar to Bader and Cong’s algorithm [13]. However, our MSF algorithm does not

45



while true do
TM BEGIN();
if current thread’s state is THREAD PRIM then

w = heap extract min(H); /* pick one vertex */
if w is already in the current thread’s MST then

TM END();
continue();

end
if w is unmarked by other threads then

Add w to the current thread’s MST and insert its neighbors to the heap
H. /* find (and apply operations on) its neighbors */
TM END();

else
/* w is already marked by another thread */
if the other thread marked w is in THREAD PRIM state then

Steal the other thread’s MST data and invalidate that thread.
TM END();
break; /* go to THREAD MERGING state */

else
/* the other thread marked w is in THREAD MERGING state */
Release own MST data to that thread.
TM END();
break; /* go to THREAD INVALID state */

end
end

else
/* invalidated by other thread */
TM END();
break; /* go to THREAD INVALID state */

end
end

Algorithm 1: Pseudo-code for THREAD PRIM state. TM BEGIN() marks the start
of a transaction, and TM END() marks its end.

have the Bor̊uvka’s algorithm stage. Instead, if one thread attempts to add a ver-

tex in another thread’s MST, or conflict occurs, one thread merges two MSTs, and

the other thread starts Prim’s algorithm again with a new randomly picked vertex.

Our new algorithm also does not detect conflicts in a conservative way as Bader and

Cong’s algorithm. Instead, our new algorithm relies on the semantics of transactions

46



to avoid data races. Figure 12 illustrates our algorithm in high level, and Figure 13

and Algorithm 1 give further details. There are three states: THREAD INVALID,

THREAD PRIM, and THREAD MERGING. A thread starts in THREAD INVALID

state, and changes its state from THREAD INVALID state to THREAD PRIM by

assigning a new color for the thread and also randomly picking a new start vertex.

Then it runs Prim’s algorithm in THREAD PRIM state, and grows its MST (newly

added vertices are colored with the thread’s color). In this state, we iterate a com-

mon graph operation, pick one vertex and find (and apply operations on) its

neighbors, as a single transaction as depicted in Algorithm 1. When two threads

(assume Thread A and Thread B) conflict, we merge the two trees of the two con-

flicting threads by merging their MST data. When Thread A detects a conflict and

finds Thread B is in THREAD PRIM state, Thread A invalidates Thread B and

merges the MST data of the two threads. Thread B restarts by picking a new vertex.

When Thread A detects a conflict and finds Thread B is in THREAD MERGING

state, Thread A releases its MST data to Thread B and moves to THREAD IN-

VALID state to restart with a new vertex. In a single-threaded case, our algorithm

runs nearly identical to sequential Prim’s algorithm with small additional overhead

related to the state management.

To implement our algorithm, a complex data synchronization issue arises. Every

vertex can be accessed concurrently, and every thread’s state variable can be modified

by multiple threads at the same time. To implement this algorithm with fine-grained

locking, one thread may need to acquire up to four locks (one for its own state vari-

able, two for the source and destination vertices in a new MST edge, and one more for

the conflicting thread’s state variable). This can lead to many complex scenarios that

can cause race conditions, deadlocks, or other complications, and it is far from trivial

to write correct and scalable code. In contrast, Transactional Memory can gracefully

47



abstract all the complications related to the data synchronization issues in our al-

gorithm. As our algorithm executes a large fraction of the code inside transactions

(τ is large), this may not fit well with STM, but future TM systems with efficient

hardware support will resolve this problem. Also, if the input graph is large enough,

the level of data contention is low (low pi in our TM model), and our algorithm fits

well with TM systems.

However, our algorithm has other sources for parallel overhead. First, we need to

pick a new start vertex multiple times. If a newly picked vertex is already included in

other threads’ MST, we need to pick a new one again. Second, MST data merging can

take a significant amount of time. The first overhead may not be significant at the

beginning of the algorithm, and even at the end of the algorithm (when almost every

vertex is included in other threads’ MST), this does not significantly slow down other

threads’ execution if we ignore the impact on the memory subsystem. To minimize

the impact on the memory subsystem, if a thread picks a vertex in another thread’s

MST, we suspend the thread for a short time before picking a new vertex. Therefore,

we need to focus on estimating and minimizing the overhead of MST data merging.

3.3.1 MST Data Merging and Composability

Assuming Thread A merges its own MST data with Thread B’s MST data, MST

data merging consists of two tasks. First, as every vertex in Thread A and Thread B’s

MST needs to be marked with a same color after the merging, Thread A needs to

recolor all the vertices in Thread B’s MST to Thread A’s color. Second, Thread A

needs to merge its own heap (a heap data structure is maintained to find the mini-

mum weight edge efficiently as other Prim’s algorithm based implementations) with

Thread B’s heap. We can also expect that there will be a few merges of large MST

data at the beginning of the algorithm followed by more frequent merges of large

MST data with small MST data at the end of the algorithm.

48



If we recolor all the vertices in other thread’s MST in a näıve way, it will signif-

icantly increase the parallel overhead of our algorithm. Instead, we add one level of

indirection. We create a color array that maps an index to a color. When we add

a new vertex to the MST, we mark that vertex with the index to the color array

element for the thread instead of the color of the thread. Thus, for re-coloring, we

need to only update the color array elements for the MST data of Thread B. The

number of color array elements to be updated is identical to the number of MST data

mergings that happened in Thread B’s MST data.

For actual implementation, this requires two additional shared data arrays to map

an index to a color and a color to the owner thread. Under fine-grained locking, this

requires additional lock arrays, and we need to re-design the entire lock acquisition

protocol to avoid dead-lock or other lock related issues. Within a TM framework, in

contrast, we can easily extend our algorithm without re-designing data synchroniza-

tion schemes. This exemplifies TM’s benefit over lock in composability.

To exploit the fact that there will be more frequent merges of large and small MST

data, we switch Thread A’s MST data with Thread B’s MST data before merging

if Thread B’s heap is larger than Thread A’s heap. Then, we merge two heaps

by inserting the elements of the smaller heap (Thread B’s heap) to the larger heap

(Thread A’s heap). These inserts are the most expensive parallel overhead in our

algorithm.

We grow multiple MSTs concurrently, and this involves the overhead of MST data

merging. However, this also decreases the average heap size during the execution.

Instead of one thread growing a large MST to the end, there will be multiple small

MSTs grown by multiple threads. A small MST has less elements in its heap. If

a heap has n elements, heap inserts or extracts costs O(log(n)) memory accesses.

Therefore, a single heap operation costs less for a smaller MST. Especially, if a heap

does not fit into the cache memory, multiple non-contiguous memory accesses in a

49



single heap operation leads to multiple cache misses, and these cache misses can be the

most expensive cost of the algorithm. Combined with the modern cache subsystem

with multiple layers, the smaller heap size can have more significant impact on the

performance than it appears in the asymptotic notation. If the impact of this is larger

than the MST data merging overhead, our algorithm can scale super-linearly.

3.3.2 Avoiding Excessively Large Transactions and Strong Atomicity

As discussed in Section 3.1.2, excessively large transactions are undesirable. There

are two sources for large transactions in our algorithm. First, if we merge tree data

inside a transaction, this creates a very large transaction. Second, if there are high

degree vertices, this leads to large transactions.

In our state transition diagram, if a thread in THREAD PRIM state (say Thread A)

attempts to add a vertex in the MST of a thread in THREAD MERGING state (say

Thread B), Thread A invalidates itself and appends its own MST data to Thread B’s

queue for MST data. If MST data are fetched out from the queue for merging, this

data cannot be accessed by other threads, and only the queue access needs to be

executed inside a transaction. Therefore, MST data merging in our algorithm does

not create a large transaction.

Figure 14: A Modified state transition diagram for our algorithm

50



High degree vertices also create a large transaction. If we extract a vertex and

insert all neighbors of the extracted vertex in a single transaction, the size of a

transaction grows proportional to the vertex degree. This can be solved in a similar

way to the first case. If we change our state transition diagram to Figure 14 and

insert neighbors outside a transaction, we can avoid large transactions even with high

degree vertices.

These changes require accessing shared data both inside and outside transactions.

At first glance, as MST data fetched out from the queue can only be accessed by

a single thread, one can easily assume that this may not cause a problem. This is

true assuming strong atomicity [23] but can be problematic under weak atomicity,

which does not define the correct semantics among interleaved transactional and non-

transactional code. If a transaction doomed to be aborted reads data updated outside

a transaction, which in turn can raise a segmentation fault, or non-transactional code

reads data updated by a doomed transaction before it is restored, this can introduce

a bug that is hard to find. One can easily assume that accessing shared data outside a

transaction is a näıve program bug, but this may not be true if we consider algorithm

optimization. Our experience advocates strong atomicity in TM semantics.

3.3.3 Color Filtering

Figure 15: Color filtering: filter out unnecessary inserts

51



Our algorithm works well if the input graph has a large diameter as conflict occurs

only infrequently in that case. However, if the input graph has a small diameter and

conflict occurs more frequently, the increased MST data merging cost can reduce the

performance benefit of parallelization. However, for graphs with a small diameter,

there is another opportunity for the optimization. Assume we insert a neighbor ver-

tex into the heap. If the heap already includes a vertex, which connects the current

thread’s MST to other threads’ MST with a lower weight than the new vertex to

insert, we do not need to insert the new vertex as it cannot be an MST edge. Fig-

ure 15 illustrates the case. We can use the color of a vertex to filter out heap inserts.

We maintain an additional data structure that maps a color to the minimum edge

weight to connect the current thread’s MST to the MST of that color. Considering

that the heap operations account for the large fraction of the total execution time,

reduced heap inserts can mitigate the increased parallel overhead owing to the fre-

quent conflicts. Actually, this has similar impact to the connected component and

compact graph steps in Bor̊uvka’s algorithm without incurring the high overhead of

those steps.

3.3.4 Heap Pruning

When we merge the heap of two threads (assume Thread A and Thread B), Thread A’s

heap can include vertices in Thread B’s MST, and Thread B’s heap can include ver-

tices in Thread A’s MST. If Thread B’s heap has less elements, we merge two heaps

by inserting Thread B’s heap elements to Thread A’s heap. In this case, we do not

insert Thread B’s heap element which belongs to Thread A’s MST. Yet, Thread A’s

heap can still include vertices in Thread B’s MST. Thus, after merging, the heap can

include vertices in its own MST, which cannot be an MST edge. When we extract a

heap element, we check whether the extracted vertex is in its own MST or not, and

this does not affect the correctness. Still, if the merging iterates multiple times, and

52



near the end of the algorithm, there can be a very large heap with almost every vertex

included in its own MST. At this time, there will be only one thread that includes

almost all the vertices in the graph with few remainings. This thread will spend most

time for extracting vertices in its own MST, while all the other threads are idling. To

prevent this situation, we count the number of extracted heap elements that belong

to its own MST. If this number grows above the given threshold, we scan the heap

and remove the vertices in its own MST. By combining this heap pruning with the

above color filtering, this can significantly reduce the heap size, especially for graphs

with a small diameter.

3.4 Experimental Results on STM

3.4.1 Test Graphs

Table 4: Test graphs for experiments. For graph generators that generate edges with
uniform weight, we modify the code to generate random weight edges.

graph type generator comments
2-D grid LEDA -
3-D grid LEDA 3-D grid has a relatively small diameter.
Web graph EM-BFS Web graph with 2K levels, and each level has 3M/2K

vertices.
USA West graph - USA West roadmap graph. Included as a real word

graph.
Random GTgraph Edges added by randomly picking two vertices from the

entire vertices of the graph. Reveals the worst case be-
havior of our algorithm except for few pathological cases
(Figure 16)

Table 5: A Comparison of the single-threaded execution time (in seconds) with
the STM overhead (compiled with Makefile.stm in the Stamp framework), single-
threaded execution time without STM overhead (compiled with Makefile.seq in the
Stamp framework), and total MST data merging time in 64 threads case.

2-D grid 3-D grid web graph USA West Random
with STM overhead 983.1 1197 911.2 1143 1017
without STM overhead 12.96 18.60 12.00 17.33 97.34
MST data merging time 1.386 5.459 1.330 0.2734 59.31

53



Figure 16: A pathological case for our algorithm.

We use a variety of graphs to experimentally test the performance of our algo-

rithm. These inputs are chosen because they represent diverse collection of real-

world instances, or because they have been used in the previous MST studies. We

use the road map graph from 9th DIMACS implementation challenge website (http:

//www.dis.uniroma1.it/~challenge9) and also use EM-BFS and GTgraph graph

generators available from the DIMACS website in addition to LEDA [81]. The test

graphs summarized in Table 4 cover different graphs with varying diameters as well.

3.4.2 Experimental Setup

Figure 17: Sun UltraSparc T2 (Niagara 2) processor.

We test our implementation on a system with a Sun UltraSparc T2 Niagara 2

processor (Figure 17) and 32 GB main memory. The Niagara 2 processor has 8

cores, and each core has 8 hardware threads (HTs). 8 HTs share a single execution

54



pipeline. If an application kernel has frequent non-contiguous memory accesses and

the execution time is limited by memory access latency, HTs can efficiently share

the single execution pipeline without significant performance degradation in single-

threaded performance. As our MSF algorithm has multiple non-contiguous memory

accesses and the memory latency of the accesses is the key cost of the kernel, the Sun

Niagara 2 processor is a suitable architecture for the algorithm.

We use the Stamp (STAMP 0.9.9) framework [83] based on Transactional Locking

II (TL2-x86 0.9.5) STM [43] for the implementation and the experiments. We use

gcc 4.0.4 compiler with -O3 -mcpu=niagara2 -mtune=niagara optimization flags.

We compile the code with Makefile.stm (in the Stamp framework) for the STM-based

executable and Makefile.seq (also included in the Stamp framework) for the executable

without STM overhead. Also, we increase the STM lock array size ( TABSZ in tl2.c)

from 220 (default value) to 225 to reduce the number of false transaction conflicts.

3.4.3 Experimental Results

Figure 18: Execution time and speedup for the 2-D grid graph (3.24M vertices,
6.48M edges).

Figures 18, 19, 20, 21, and 22 summarize the execution time and speedup in the

experiments. The dashed horizontal line in the figures denotes the single-threaded

execution time for running the same algorithm (nearly identical to the sequential

Prim’s algorithm) without STM overhead. Our algorithm scaled more than 8 times

55



Figure 19: Execution time and speedup for the 3-D grid graph (3.38M vertices,
10.1M edges).

Figure 20: Execution time and speedup for the web graph (3M vertices, 6M edges).

Figure 21: Execution time and speedup for the USA West roadmap graph (6.26M
vertices, 7.62M edges).

(18.5 in the best case) for 8 cores for all the test graphs and demonstrated remarkable

speedup up to 64 HTs for all the test graphs except for the random graph. Super-linear

speedup is achieved by reduced average heap size and the color filtering as expected

56



Figure 22: Execution time and speedup for the random graph (3M vertices, 90M
edges).

in Section 3.3. For the graphs with a relatively large diameter (the 2-D grid, the web

graph, and the USA West graph), our algorithm exhibits smaller numbers of conflicts,

which lead to the high scalability. For the graphs with a smaller diameter (the 3-D

grid and the random graph as the worst case), the number of conflicts increases but

the color filtering compensates for this increase. Our implementation demonstrates

remarkable speedup for the 2-D grid, the 3-D grid, the web graph, and the USA West

graph. Even for the random graph which involves more frequent data mergings, we

achieve parallel speedup using up to 16 threads. The lower scalability after 8 threads

in the random graph case is also affected by higher spatial locality; the random graph

has higher average vertex degree, which leads to higher spatial locality in accessing

neighbor arrays, and in turn, reduces the effectiveness of hardware threads. However,

even with this level of scalability, our parallel algorithm runs only at the comparable

speed to the single-threaded case which does not incur STM overhead.

3.5 Limitations of STM and Requirements for HTM

Even though our STM implementation demonstrates remarkable scalability, the high

overhead of the STM system nullifies the speedup. A single memory read or write

operation outside a transaction is translated to a single LOAD or STORE instruction.

A single shared data read or write operation inside a STM transaction, in contrast,

57



Figure 23: Abort rate for varying numbers of threads.

involves multiple checks and data structure accesses, and this requires a significantly

larger number of instructions. Initial bookkeeping and commit time overhead exacer-

bates the situation. This overhead is not acceptable if we execute a large fraction of

the code inside transactions. Ironically, if we execute only a small fraction of the code

inside transactions, the single lock approach will suffice to achieve scalability, and we

may not need Transactional Memory. This reveals the clear limitation of STM.

HTM can change this situation as a single read or write operation inside a HTM

transaction requires only one LOAD or STORE instruction in most currently pro-

posed HTM systems. Still, initial bookkeeping or final commit time overhead can

increase the cost of transactions, but this can be managed to a moderate level with

hardware support. If HTM can realize this low overhead mechanism in commercial

microprocessors, then we can replay the high scalability of our algorithm with only

moderate overhead assuming sufficient memory bandwidth and scalable memory sub-

system. Then, our algorithm can run significantly faster than the best sequential

algorithm for irregular sparse graphs to the level that has not yet been demonstrated

by others.

58



One remaining point to check is MST data merging overhead, as it can be under-

estimated owing to the high STM overhead. In Table 5, we compare the MST data

merging time in the 64 thread cases (the sum of MST data merging time for all 64

threads) with the single-threaded execution time without STM overhead, which will

be similar to the single-threaded execution time on an efficient HTM system. Based

on the comparison, we can identify that MST data merging time will not significantly

lower the scalability except for the case of the random graph. Also, we can expect

lower abort rates in HTM systems as the execution time for the transactions will

account for a smaller fraction of the total execution time owing to lower transac-

tional overhead. Accordingly, there will be fewer concurrent transactions, and this

will contribute to lower abort rates than the case of STM (summarized in Figure 23).

Actually, Dice et al. [42] confirmed our argument by running our algorithm—with

few modifications to work around Rock processor’s limitations. They achieved high

scalability and low overhead, which translate to high-performance.

3.6 Summary

Multicore and manycore processors are arising as a new paradigm to pursue. However,

to fully exploit all the cores in a chip, parallel programming is often required, and the

complexity of parallel programming raises a significant concern. Data synchronization

is a major source of this programming complexity, and Transactional Memory has

been proposed to reduce the difficulty caused by data synchronization requirements,

while providing high scalability and low performance overhead.

The previous literature on Transactional Memory mostly focuses on architectural

designs. Its impact on algorithms and applications has not yet been studied thor-

oughly. In this chapter, we investigate Transactional Memory from algorithm design-

ers’ perspective. This chapter presents an algorithmic model to assist the design of

59



efficient Transactional Memory algorithms and a novel Transactional Memory algo-

rithm for computing a minimum spanning forest of sparse graphs. We emphasize

multiple Transactional Memory related design issues in presenting our algorithm. We

also provide experimental results on an existing software Transactional Memory sys-

tem. Our algorithm demonstrates excellent scalability in the experiments, but at

the same time, the experimental results reveal the clear limitation of software Trans-

actional Memory due to its high performance overhead. Based on our experience,

we highlight the necessity of efficient hardware support for Transactional Memory to

realize the potential of the technology.

60



CHAPTER IV

ACCELERATING JPEG2000 STILL IMAGE ENCODING

USING THE IBM CELL BROADBAND ENGINE

This paper discusses the optimization of JPEG2000 still image encoding for the IBM

Cell Broadband Engine. This chapter is based on Seunghwa Kang and David A.

Bader, “Optimizing JPEG2000 Still Image Encoding on the Cell Broadband Engine,”

The 37th International Conference on Parallel Processing (ICPP), Portland, OR,

September 8th-12th, 2008 and a part of David A. Bader, Virat Agarwal, and Seunghwa

Kang, “Computing Discrete Transforms on the IBM Cell Broadband Engine,” Parallel

Computing, 35(3):119-137, 2009.

JPEG2000 [60] is the latest still image coding standard issued by the JPEG com-

mittee, which supports both lossless and lossy compression with superior image qual-

ity in a low bit rate and additional new features. JPEG2000 adopts Embedded Block

Coding with Optimized Truncation (EBCOT) [120] and Discrete Wavelet Transform

(DWT) [27, 122] as key algorithms. The EBCOT algorithm consists of three steps: bit

modeling, arithmetic coding, and tag tree building. JPEG2000 executes the EBCOT

algorithm in two tiers, Tier-1 and Tier-2. Bit modeling and arithmetic coding are

performed in Tier-1, whereas tag tree building is performed in Tier-2. Prior analyses

of JPEG2000 execution time [74, 6, 80] revealed that Tier-1 coding in the EBCOT

and the DWT are the most computationally expensive algorithmic kernels.

The Cell Broadband Engine (or the Cell/B.E.) has unique architectural features

with a simple core design and an alternative memory subsystem. The Cell/B.E. chip

consists of two types of cores, one PPE and eight SPEs. The PPE is a power efficient

version of the PowerPC architecture, and the SPE is a SIMD accelerator. The SPE

61



lacks dynamic branch prediction and runtime out-of-order execution support. It has

256 KB local memory called Local Store. Data transfers between main memory and

Local Store require explicit DMA instructions.

Previously, Muta et al. optimized Motion JPEG2000 encoder on the Cell/-

B.E. [92]. Motion JPEG2000 encoding lacks inter-frame compression and is nearly

identical to JPEG2000 still image encoding, and the authors optimized the DWT

and EBCOT algorithms. However, their DWT implementation did not scale beyond

a single SPE despite having high single SPE performance. Their EBCOT implemen-

tation showed better scalability but did not scale above a single Cell/B.E. processor.

This suggests that we need to take a different approach.

Our Cell/B.E. JPEG2000 library is based on Jasper [6], which is a JPEG2000 still

image transcoder. Jasper was previously parallelized by Meerwald et al. [80] using

OpenMP. However, the authors parallelized Tier-1 coding in the EBCOT and the

DWT only to minimize code modification. The maximum achievable speedup was

limited by the sequentialization in this loop-level parallelization approach.

We analyze the whole code to investigate the existing concurrency in JPEG2000

and parallelize the level shift stage, the inter-component transform stage, the quan-

tization stage, and a portion of the stream I/O routine in addition to the Tier-1

encoding and DWT stages. We also use a novel data decomposition scheme (dis-

cussed in Section 4.1) to achieve high performance while reducing the programming

complexity, and we apply the scheme to multiple algorithmic kernels in JPEG2000.

The DWT is one of the most computationally intensive parts in JPEG2000 and

also an important kernel in other application areas [97]. This chapter provides a

detailed analysis of its performance on the Cell/B.E. We optimize and tune the column

grouping strategy based on our data decomposition scheme to increase spatial locality

and design a new loop merging approach to increase temporal locality. In addition,

we investigate the relative performance of the floating point operations and its fixed

62



point approximation [6] on the Cell/B.E.

We achieve an overall speedup of 6.6 and 3.1 for lossless and lossy encoding with

8 SPEs compared to the single SPE performance. Also, our implementation obtains

6.9 and 7.4 times higher performance over the PPE-only case. The Cell/B.E. demon-

strates 3.2 and 2.7 times faster encoding time relative to the Intel Pentium IV 3.2

GHz processor for the lossless and lossy cases, respectively. For the DWT, the Cell-

/B.E. outperforms the Pentium IV processor by 9.1 and 15 times for the lossless and

lossy cases, respectively. We further test our implementation on a single IBM QS20

blade with two Cell/B.E. processors. The performance scaled up to 16 SPEs. We

obtain significantly higher performance than the previous Motion JPEG2000 encoder

implementation [92] for the Cell/B.E. as well. Also, we compare the performance of

the Cell/B.E. with the AMD Barcelona (Quad-core Opteron) processor for the DWT.

We apply various optimization techniques and use PGI C compiler for the Barcelona

processor, which enable the head to head comparison of the Cell/B.E. with the general

purpose multicore prcoessor. The source code of this work is freely available from our

CellBuzz project in SourceForge (http://sourceforge.net/projects/cellbuzz).

4.1 Data Decomposition Scheme

Figure 24: Data decomposition scheme for two dimensional array

63



Data layout is an important design issue in parallel programming. It is even

more important for the Cell/B.E. due to the alignment and size requirements for

DMA data transfer and SIMD load/store. DMA on the Cell/B.E. requires 1, 2,

4, 8 byte alignment to transfer 1, 2, 4, 8 bytes of data and 16 byte alignment to

transfer a multiple of 16 bytes. DMA data transfer becomes most efficient if the data

addresses are cache line aligned in both main memory and SPE Local Store, and the

data transfer size is an even multiple of the cache line size [69]. SIMD load/store

instructions for vectorization also require quad-word data alignment.

Our data decomposition scheme, shown in Figure 24, satisfies the above require-

ments for two dimensional arrays with an arbitrary width and height, assuming that

every row can be arbitrarily partitioned into multiple chunks for independent process-

ing. First, our data decomposition scheme pads every row to force the start address

of every row to be cache line aligned. Then, the scheme partitions the data array

to multiple chunks, and every chunk except for the last has the width a multiple of

the cache line size. All the chunks have the height identical to the data array height.

These data chunks become a unit of data distribution to the processing elements.

The constant width chunks are distributed to the SPEs, and the PPE processes the

last remainder chunk. The SPE traverses the assigned chunks by processing every

single row in the chunk as a unit of data transfer and computation.

This data decomposition scheme has several impacts on the performance and the

programmability. First, every DMA transfer in the SPE becomes cache line aligned,

and the transfer size becomes a multiple of the cache line size. This results in effi-

cient DMA transfers and reduced programming complexity. If data are not properly

aligned, or the data transfer size has an arbitrary value, additional programming

would have been required to satisfy the conditions for correctness. Reduced program-

ming complexity, or in other words, the shorter code size also saves the Local Store

space, and this is important for the Cell/B.E. since the Local Store size is relatively

64



small. Also, under our data decomposition scheme, there is no cache conflict since

every cache line in the data array is accessed either by the PPE or a DMA instruction

issued by one SPE. The remainder chunk with an arbitrary width is processed by the

PPE to enhance the overall chip utilization. Our data decomposition scheme also

satisfies the alignment requirement for SIMD load/store.

Second, the Local Store space requirement becomes constant independent of data

array size. As mentioned above, a single row in a chunk, which has the constant

width, becomes a unit of data transfer and computation in the SPE. This leads to

a constant memory requirement, and we can easily adopt optimization techniques

that require additional Local Store space. For example, double buffering or multi-

level buffering is an efficient technique for hiding latency but increases the Local

Store space requirement at the same time. However, owing to the constant memory

requirement in our data decomposition scheme, we can increase the level of buffering

to a higher value that fits within the Local Store.

In addition, fixed data size leads to a constant loop count, which enables com-

pilers to better predict the program’s runtime behavior. This helps compilers to use

optimization techniques such as loop unrolling, instruction rescheduling, and compile

time branch prediction. Compile time instruction rescheduling and branch predic-

tion compensate for the lack of runtime out-of-order execution and dynamic branch

prediction support in the SPE.

4.2 Parallelization of JPEG2000

4.2.1 Parallelism in JPEG2000

The level shift, inter-component transform, and quantization stages are basically

pixel-wise independent. Therefore, arbitrary partitioning is possible. Discrete Wavelet

Transform (DWT) consists of two steps. First, the vertical filtering step partitions

the original image to the low pass subband and the high pass subband in the vertical

65



direction, and then the horizontal filtering step is followed to partition in the horizon-

tal direction. In the vertical filtering, every column can be processed independently,

and in the horizontal filtering, every row can be processed independently. For Tier-1

encoding in the EBCOT algorithm, an image array is partitioned to multiple code

blocks, and every code block can be processed independently.

4.2.2 Parallelization Strategy

Figure 25: Work partitioning among the PPE and the SPEs for JPEG2000 encoding

Figure 25 summarizes the work partitioning among the PPE and the SPEs for

JPEG2000 encoding. We fully parallelize the level shift, inter-component transform,

DWT, Tier-1 encoding and quantization stages using both the PPE and the SPEs.

We also merge the level shift and inter-component transform stages to minimize the

data transfer. We partially parallelize the read component data stage, which includes

type conversion from the Jasper specific intermediate data type to the four byte

66



integer data type. We apply our data decomposition scheme to every parallelized

stage except for the Tier-1 encoding stage. For the Tier-1 encoding stage, we adopt

a work queue to distribute the workloads to the processing elements.

In Tier-1 encoding, efficient DMA data transfer is less important owing to the

relatively high computation to communication ratio. Thus, we focus on increasing

the overall chip utilization while minimizing the interaction among the processing

elements. Our code uses the PPE and SPE threads to encode the code blocks and

maintains a work queue for load balancing. Note that the processing time for Tier-1

encoding is dependent on the input data characteristics, and we cannot achieve load

balancing by merely distributing an identical number of code blocks to the processing

elements. Both our implementation and the previous Motion JPEG2000 encoder [92]

use a work queue for load balancing but the two use the PPE for different purposes.

In [92], the authors implemented lossless encoding only and overlapped the Tier-1

encoding stage with the Tier-2 encoding stage. In their implementation, the PPE

(or the PPEs in their two Cell/B.E. implementations) performs Tier-2 encoding and

the code block distribution to the SPEs, while only the SPE threads perform Tier-1

encoding. In the lossy encoding process, the rate control stage appears between the

Tier-1 encoding stage and the Tier-2 encoding stage. This prevents the overlap in our

implementation, and our code uses the PPE and SPE threads for Tier-1 encoding.

Another distinction is the code block size. In [92], the authors selected 32 by 32 pixels

code block size instead of 64 by 64, the maximum code block size in the standard.

Smaller code block size reduces the Local Store memory requirements and enables

double buffering, but increases the interaction among the PPE and SPE threads and

lowers scalability. We use 64 by 64 in favor of scalability.

Previous parallelization strategies for the DWT [129, 97, 31] involve trade-offs

between computation and communication overhead for different underlying architec-

tures. Sweldens [117] proposed a lifting based DWT, by which, an in-place DWT can

67



be performed faster than the previous convolution based DWT [70]. Still, poor cache

behavior in a column-major traversal in a C language implementation becomes a bot-

tleneck in performance. Initially, a matrix transpose, which converts a column-major

traversal to a row-major traversal, was adopted to improve cache behavior. Chaver

et al. introduced loop tiling (or column grouping) to improve cache behavior without

matrix transpose. In [92], the authors parallelized the convolution based DWT for the

Cell/B.E. by partitioning the data array to 128 by 128 pixels tiles with the overlap

among the adjacent tiles. The authors used the net tile size of 112 by 112 pixels,

which does not satisfy the cache line alignment requirements for the most efficient

DMA transfer due to the overlapped area. We optimize the lifting based DWT for

the Cell/B.E. For the horizontal filtering, our code assigns an identical number of

rows to each SPE, and a single row becomes a unit of data transfer and computation.

Every row is cache line aligned, and the data transfer size becomes a multiple of the

cache line size owing to the row padding in our data decomposition scheme. For

the vertical filtering, we tune the column grouping approach by fixing column group

size to a multiple of the cache line size to use our data decomposition scheme. Our

implementation enhances DMA data transfer efficiency, which is essential to achieve

high scalability.

4.3 Vectorization of JPEG2000

Based on our data decomposition scheme, we vectorize the level shift, inter-component

transform, and quantization stages in a straightforward way. Yet, vectorization of the

DWT involves interesting issues related to the Cell/B.E., and we discuss the issues

in this section.

In [6], the authors suggested the fixed point representation for the real numbers in

the JPEG2000 lossy encoding process to enhance the performance and the portability.

The authors assumed that fixed point instructions are generally faster than floating

68



Table 6: Latency for the SPE instructions

Instruction Description Latency

mpyh two byte integer multiply high 7 cycles
mpyu two byte integer multiply unsigned 7 cycles

a add word 2 cycles
fm single precision floating point multiply 6 cycles

point instructions. However, the current version of the Cell/B.E. chip is optimized for

(single precision) floating point operations, and the floating point instructions have

comparable speed to the fixed point instructions. Moreover, the SPE instruction

set architecture does not support four byte integer multiplications; thus four byte

integer multiplications need to be emulated by two byte integer multiplications and

additions. Table 6 summarizes the latency for the two byte integer multiplication, four

byte integer addition, and single precision floating point multiplication. Therefore,

the fixed point representation loses its benefit on the Cell/B.E. We replace the fixed

point representation in Jasper code with the floating point representation to achieve

high performance.

Figure 26: The splitting step and the interleaved lifting step for the vertical filtering

The DWT algorithm consists of multiple steps: one splitting step and two lifting

steps in the lossless mode and one splitting step, four lifting steps, and one optional

scaling step in the lossy mode. Considering that the entire column group data for a

large image does not fit into the Local Store, 3 or 6 steps in the vertical filtering involve

3 or 6 DMA data transfers of the entire column group data. As the number of SPEs

69



Input: an image data array array data, number of rows number of rows, row width
including padding stride

Output: an image data array array data

high start← number of rows/2;

/* 1st lifting step for the vertical filtering */

p low ← array data[0];
p high← array data[high start ∗ stride];

n← high start− 1;
for i← 0 to n− 1 do
∗p high← ∗p high− ((∗p low + ∗(p low + stride))/2);
p low ← p low + stride;
p high← p high + stride;

end

∗p high← ∗p high− ∗p low;

/* 2nd lifting step for the vertical filtering */

p low ← array data[0];
p high← array data[high start ∗ stride];

∗p low ← ∗p low + ((∗p high + 1)/2);
p low ← p low + stride;

n← high start− 1;
for i← 0 to n− 1 do
∗p low ← ∗p low + ((∗p high + ∗(p high + stride) + 2)/4);
p low ← p low + stride;
p high← p high + stride;

end

Algorithm 2: Pseudo code for the original implementation

increases, the limited off-chip memory bandwidth becomes a bottleneck and nullifies

the performance enhancement achieved by vectorization. To reduce the amount of

DMA data transfer, we interleave the lifting steps. Algorithm 2 illustrates the original

algorithm for the lossless mode assuming that the number of rows is even and larger

than four. By analyzing the data dependency in Algorithm 2, we notice that two

lifting steps can be interleaved. Algorithm 3 depicts our interleaved algorithm. The

splitting step can also be merged with the next two lifting steps. Figure 26 illustrates

the splitting step and the interleaved lifting step in the lossless vertical filtering.

Initially, the low and high pass components are interleaved in the input array, and

the splitting step separates the low and high pass components. This splitting step

70



Input: an image data array array data, number of rows number of rows, row width
including padding stride

Output: an image data array array data

high start← number of rows/2;

/* interleaves 1st and 2nd lifting steps for the vertical filtering */

p low ← array data[0];
p high← array data[high start ∗ stride];

∗p high = ∗p high− ((∗p low + ∗(p low + stride))/2);
∗p low = ∗p low + ((∗p high + 1)/2);
p low ← p low + stride;
p high← p high + stride;

n← high start− 2;
for i← 0 to n− 1 do
∗p high← ∗p high− ((∗p low + ∗(p low + stride))/2);
∗p low ← ∗p low + ((∗(p high− stride) + ∗p high + 2)/4);
p low ← p low + stride;
p high← p high + stride;

end

∗p high← ∗p high− ∗p low;
∗p low ← ∗p low + ((∗(p high− stride) + ∗p high + 2)/4);

Algorithm 3: Pseudo code for our interleaved implementation

involves the DMA data transfer of the whole column group data. If we adjust the

pointer addresses for the low and high pass components and increase the increment

size in the next interleaved lifting step, the splitting step can be merged with the

interleaved lifting step. This merges three steps in the lossless mode to a single step

and reduces the amount of data transfer. However, updating the high pass part in

the merged single step overwrites the input data before it is read, and this leaves us

with a problem. In Figure 26, high0 and low0 are updated first in the interleaved

lifting step, and high1 and low1 are updated next. If we adjust the input data pointer

and skip the splitting step, updating high0 overwrites low2 in the input data array

before it is read. To remedy this problem, our code uses an auxiliary buffer (in main

memory), and the updated high pass data are written to the buffer first and copied

to the original data array after the single merged step is finished. The amount of

data transfer related to the auxiliary buffer is half of the entire column group, and

71



this halves the amount of data transfer for the splitting step. We recently find that

a similar idea appears in [72] for the lossy case. Loop fusion for the four lifting steps

is described in the paper. By combining this idea with our approach, we merge one

splitting step, four lifting steps, and the optional scaling step in the lossy mode into

a single loop to further reduce the DMA bandwidth requirement.

4.4 Experimental Results

We use the gcc compiler in the Cell SDK 2.1 with -O5 optimization flag for the

performance analysis. Our baseline code is the open source Jasper 1.900.1 (http://

www.ece.uvic.ca/~mdadams/Jasper), and we use a 28.3 MB 3800×2600 color image

as a test file. The default option and -O mode=real -O rate=0.1 are applied for lossless

and lossy encoding, respectively. We transcode the image from the BMP format to

the JPEG2000 format and record the JPEG2000 encoding time. We disregard the

BMP decoding time. Our experiments use an IBM QS20 Cell blade server with dual

Cell/B.E. 3.2 GHz chips (rev. 3) and 1 GB main memory.

4.4.1 Encoding Time and Scalability

Figures 27 and 28 display execution time and speedup for lossless and lossy encoding,

respectively. As the EBCOT algorithm is branchy and integer based, the PPE runs

the code faster than the SPE for Tier-1 encoding. Therefore, the 1 PPE only case

outperforms the single SPE’s performance. Still, we achieve near linear speedup with

increasing numbers of SPEs and the extra speedup with additional PPE threads. As

a consequence, the 16 SPE + 2 PPE case completes Tier-1 encoding significantly

faster than the 1 PPE only case.

In the case of the DWT, the 1 SPE case outperforms the 1 PPE only case by

far, and we demonstrate a remarkable speedup with additional SPEs. Vectorization

contributes to the superb single SPE performance, and in the lossy encoding case,

the execution time is further reduced by replacing the fixed point representation with

72



Figure 27: Execution time and speedup for lossless encoding. Additional PPEs
participate in Tier-1 encoding.

Figure 28: Execution time and speedup for lossy Encoding. Additional PPEs par-
ticipated in Tier-1 encoding.

the floating point representation. The efficient use of the off-chip memory bandwidth

based on our data decomposition scheme and the reduced bandwidth requirement

owing to the loop interleaving realize the high scalability.

73



Overall lossless encoding demonstrates a parallel speedup while the lossy encoding

performance flattens with increasing numbers of SPEs due to the sequential rate

allocation stage, which accounts for approximately 60% of the total execution time

in the 16 SPE + 2 PPE case.

4.4.2 A Comparison with the Previous Implementation

Figure 29: An overall performance comparison with the previous implementations
for the Cell/B.E. The numbers above the bars denote the speedup relative to Muta0.

Figure 30: An EBCOT (Tier-1 + Tier2) encoding performance comparison with the
previous implementations for the Cell/B.E. The numbers above the bars denote the
speedup relative to Muta0.

74



Figure 31: A DWT performance comparison with the previous implementations for
the Cell/B.E. The numbers above the bars denote the speedup relative to Muta0

We compare the performance of our code with Muta et al.’s implementations [92].

Figures 29, 30, and 31 summarize the performance comparison. Muta0 and Muta1

in the figures denote the implementations in [92]. In Muta0, two encoding threads

encoded two different frames concurrently with two Cell/B.E. processors. The two

chips worked in a synergistic way to increase the overall throughput. In Muta1, one

encoding thread encoded all the frames using two Cell/B.E. processors.

We use the performance numbers reported by the authors for the comparison.

The authors excluded the Motion JPEG2000 format building time and measured

the encoding time for 24 frames with the size of 2048 × 1080. Total execution time

was divided by the number of encoded frames to compute per frame encoding time.

In Muta0, the encoding time for one frame can be up to two times higher than the

reported number. We scale down the test image for our implementation to 2048×1080

for fair comparison.

Still, there are multiple caveats in the comparison. First, the Cell/B.E. 2.4GHz,

instead of the Cell/B.E. 3.2 GHz, was used in [92]. Second, the experimental results

for our implementation based on Jasper include reading and type conversion time

from the Jasper specific intermediate stream, JPEG2000 format building time, and

75



final file I/O time to save the encoded file. This may be different from [92]. Third,

even though the test images have the identical size, different characteristics of the

images may affect the result.

Our implementation with one Cell/B.E. processor and two Cell/B.E. processors

demonstrates superior overall performance than the previous implementations with

the two Cell/B.E. processors. This is mainly due to the following reasons. First,

our EBCOT implementation demonstrates higher scalability than the previous im-

plementation. Minimized communication between the PPE and the SPEs enhances

the scalability in addition to the implementation details. Second, adopting the lifting

based scheme instead of the convolution based scheme, combined with the higher

chip clock frequency, results in the higher single SPE performance for the DWT, and

our data decomposition scheme and the loop interleaving contribute to the higher

scalability. Third, we parallelized the level shift, inter-component transform, and

quantization stages while these stages were executed on the PPE in [92] to avoid the

offloading overhead. The offloading overhead in our implementation is insignificant

owing to the effective data decomposition scheme.

4.4.3 A Comparison with the Intel x86 Architecture

Figure 32 summarizes a performance comparison between the Cell/B.E. and the Intel

Pentium IV 3.2 GHz with 2 MB cache memory and 2 GB main memory. Jasper code

on the Pentium IV processor is compiled with the gcc version 4.1.2 and -O5 optimiza-

tion flag (instead of the default -g -O2 ). To make the comparison as fair as possible,

we apply the optimizations except for parallelization, vectorization, and other opti-

mizations specific to the Cell/B.E. to both architectures. Note that the Pentium IV

processor also supports SIMD instructions, but vectorization is not implemented in

the Jasper code for the Pentium IV processor. Also, for lossy encoding, the Cell/-

B.E. performs the floating point arithmetic while the Pentium IV processor emulates

76



Figure 32: An encoding performance comparison of the Cell/B.E. to that of the Intel
Pentium IV 3.2 GHz processor. The numbers above the bars denote the speedup
relative to the Intel Pentium IV processor.

the floating point operations with the fixed point instructions. The Cell/B.E. outper-

forms the Pentium IV in the comparison. Especially, the Cell/B.E. demonstrates the

impressive performance for the DWT while the sequential part of the code running

on the PPE lowers the overall speedup. These performance numbers show that the

Cell/B.E. has superb performance for the floating point based loop intensive algo-

rithms, and its relatively low single core performance for the branchy and integer

based algorithms can be compensated by exploiting multiple SPEs.

We also optimize the DWT code for the AMD Barcelona for the comparison. We

optimize the code for Barcelona using PGI C compiler, a parallel compiler for multi-

core optimization, and user provided compiler directives. The following summarizes

the performance optimizations applied.

• Parallelization: OpenMP based parallelization.

• Vectorization: Auto-vectorization with compiler directives for pointer disam-

biguation.

77



• Real number representation: Identical to the Cell/B.E. case.

• Loop merging: Identical to the Cell/B.E. case.

• Run-time profile feedback: Compile with the run-time profile feedback (-

Mpfo).

Figure 33: A DWT encoding performance comparison of the Cell/B.E. to that of
the AMD Barcelona (Quad-core Opteron) processor. The numbers above the bars
denote the speedup relative to the baseline implementation on the Cell/B.E.

Figure 33 summarizes the performance comparison between the Cell/B.E. and the

AMD Barcelona 2.0 GHz (Quad-Core Opteron Processor 8350) for the DWT part.

The above result shows that the baseline implementation for the Cell/B.E. (running

on the PPE only) runs slower, but the Cell/B.E. optimized code runs significantly

faster than the AMD Barcelona optimized code. This demonstrates the Cell/B.E.

processor’s performance potential in processing regular and communication-intensive

applications. This also reveals the importance of the architecture-aware algorithm

design and tuning as well as the performance potential of emerging accelerator archi-

tectures.

78



4.5 Summary

JPEG2000 is the latest still image coding standard from the JPEG committee, which

adopts new algorithms such as Embedded Block Coding with Optimized Truncation

(EBCOT) and Discrete Wavelet Transform (DWT). These algorithms enable superior

coding performance over JPEG and support various new features at the cost of the

increased computational complexity. The Sony-Toshiba-IBM Cell Broadband Engine

(or the Cell/B.E.) is a heterogeneous multicore architecture with SIMD accelera-

tors. In this work, we optimize the computationally intensive algorithmic kernels of

JPEG2000 for the Cell/B.E. and also introduce a novel data decomposition scheme

to achieve high performance with low programming complexity. We compare the

Cell/B.E.’s performance to the performance of the Intel Pentium IV 3.2 GHz pro-

cessor (for the entire encoding process) and also the AMD Barcelona architecture

(for the DWT). The Cell/B.E. demonstrates 3.2 times higher performance for lossless

encoding and 2.7 times higher performance for lossy encoding. For the DWT, the

Cell/B.E. outperforms the Pentium IV processor by 9.1 times for the lossless case

and 15 times for the lossy case. The Cell/B.E. also outperforms the Barcelona in our

experiments. We also provide the experimental results on an IBM QS20 blade with

two Cell/B.E. chips and the performance comparison with the existing JPEG2000

encoder for the Cell/B.E.

79



CHAPTER V

LARGE SCALE COMPLEX NETWORK ANALYSIS

USING THE HYBRID COMBINATION OF A

MAPREDUCE CLUSTER AND A HIGHLY

MULTITHREADED SYSTEM

This chapter analyzes major computational challenges in large scale complex net-

work analysis and suggests a hybrid system to address the challenges. This chapter

is based on the materials in Seunghwa Kang and David A. Bader, “Large Scale Com-

plex Network Analysis using the Hybrid Combination of a MapReduce cluster and a

Highly Multithreaded System,” The 4th Workshop on Multithreaded Architectures and

Applications (MTAAP), Atlanta, Georgia, April 23rd, 2010.

Complex Networks [38] abstract interactions among entities in a wide range of

domains—including sociology, biology, transportation, communication, and the Internet—

in a graph representation. Analyzing these complex networks solves many real-world

problems. Watts and Strogatz [127] found that a small graph diameter, which is

a common feature in many complex networks [127], has a significant impact on the

spread of infectious diseases. Albert et al. [8] studied the impact of a power-law degree

distribution [7, 44] on the vulnerability of the Internet and the efficiency of a search

engine. Bader and Madduri [17] computed the betweenness centrality of protein-

interaction networks to predict the lethality of the proteins, and Madduri et al. [77]

applied an approximate betweenness centrality computation to the IMDb movie-actor

network and found important actors with only a small number of connections.

Analyzing large scale complex networks, however, imposes difficult computing

80



challenges. Graphs that represent complex networks commonly have millions to bil-

lions of vertices and edges. These graphs are often embedded in raw (and often

streaming) data—e.g. web documents, e-mails, and published papers—of terabytes

to petabytes. Extracting a compact representation of a graph or subgraph from large

volumes of data is a significant challenge. The irregular structure of these graphs

stresses traditional hierarchical memory subsystems as well. These graphs also tend

not to partition well for multiple computing nodes; the partitioning of these graphs

has significantly larger edge cuts than the partitioning of traditional graphs which are

derived from physical topologies [18]. This necessitates large volumes of inter-node

communication. In this chapter, we study a problem of extracting a subgraph from a

larger graph—to capture the challenge in processing large volumes of data—and find-

ing single-pair shortest paths in the subgraph—to capture the challenge in irregularly

traversing complex networks.

Figure 34: The hybrid combination of a MapReduce cluster and a highly multi-
threaded system.

We map our problem onto three different platforms: a MapReduce cluster, a

highly multithreaded system, and the hybrid combination of the two. Cloud com-

puting, using the MapReduce programming model, is becoming popular for data-

intensive analysis. A Cloud computing system with the MapReduce programming

model—or a MapReduce cluster—is efficient in extracting a subgraph via filtering.

Finding a single-pair shortest path, however, requires multiple dependent indirections

with irregular data access patterns. The MapReduce algorithm to find a single-pair

81



shortest path is not work optimal and also requires large bisection bandwidth to scale

on large systems (see Section 5.3). In our experiment, a single-pair shortest path

problem runs five orders of magnitude slower on the MapReduce cluster than the

highly multithreaded system with a single Sun UltraSparc T2 processor.

A highly multithreaded system—with the shared memory programming model—is

efficient in supporting a large number of irregular data accesses all across the memory

space. This system, however, often has limited computing power, memory and disk

capacity, and I/O bandwidth and inefficient or even impossible to process very large

graph data. Finding a single-pair shortest path in the subgraph, in contrast, fits well

with the programming model and the architecture.

The hybrid system (see Figure 34) exploits the strengths of the two different

architectures in a synergistic way. A MapReduce cluster extracts a subgraph, and a

highly multithreaded system loads the subgraph from the cluster and finds single-pair

shortest paths. The subgraph loading time is less significant if the subgraph size is

much smaller than the original data. The hybrid system solves our problem in the

most efficient way in our experimentation.

5.1 Complex Network Analysis

Complex networks are often embedded in large volumes of real-world data. Extract-

ing a graph representation from raw data is a necessary step in solving many complex

network analysis problems. Analyzing subgraphs of a larger graph is also an in-

teresting problem. Costa et al. [38] surveyed measurement parameters for complex

networks and presented several examples in this direction. Subgraphs with the edges

created in different time intervals along the growth of a network reveal the dynamic

characteristics of the network. Rich-club coefficient measures interactions among only

highly influential entities—or high degree vertices using terminologies in graph the-

ory. Filtering only a certain type of vertices—e.g. finding the network of Atlantans

82



or computer scientists in the larger Facebook network—also creates interesting sub-

graphs to investigate. A common operation involved in the above cases is filtering

large input data. A large part of the raw data is unnecessary in generating a graph

representation. Extracting a subgraph involves scanning large volumes of data and

filtering out vertices and edges that are not part of the subgraph.

The size of an extracted graph is often significantly smaller than the size of the

input data, and the memory requirement is less demanding with the sparse graph

representation—i.e. the adjacency list format which stores the list of neighbors for

every vertex. The sparse graph representation requires O(n + m) memory space—

for n vertices and m edges—with a small hidden constant. Graphs with multiple

millions to billions of edges fit into the main memory of moderate size systems—

e.g. Madduri et al. [77] computed the approximate betweenness centrality of a graph

with 134 million vertices and 1.07 billion edges using a Sun T5120 server with 32 GB

of DRAM. For graphs represented in the sparse representation, a large fraction of

practical complex networks and subnetworks is likely to fit into the memory capacity

of moderate size systems, and if this is the case, the match between the graph analysis

problems’ computational requirements and the architectures’ capability becomes more

important than the mere capacity.

A Description of Our Problem. We study the problem of extracting a subgraph

from a larger graph and finding single-pair shortest paths in the subgraph. We find

shortest paths (one shortest path per pair) for up to 30 pairs, which are randomly

picked out of the vertices in the subgraph. To extract a subgraph, we filter the

input graph to include only the edges that connect the vertices in the subnetwork—

we experiment with three subnetworks that cover approximately 10%, 5%, and 2%

of the entire vertices—and create adjacency lists from the filtered edges. We also

assume that the input graph is generated in advance and stored in the MapReduce

cluster.

83



The input graph is an R-MAT graph [29] with 232 (4.29 billion) vertices and 238

(275 billion) undirected edges. Sampling from a Kronecker product generates an

R-MAT graph which exhibits several characteristics similar to social networks such

as the power-law degree distribution and the clustering structure. The graph has

an order of magnitude more vertices than the Facebook network with a comparable

average vertex degree—the Facebook network has over 250 million active users with

120 friends per user in average. We use the R-MAT parameters a=0.55, b=0.1, c=0.1,

d=0.25. The graph size is 7.4 TB in the text format.

5.2 MapReduce

A MapReduce cluster is typically composed of a large number of commodity comput-

ers connected with off-the-shelf interconnection technologies. The MapReduce pro-

gramming model frees programmers from the work of partitioning, load balancing,

explicit communication, and fault tolerance in using clusters. Programmers provide

only map and reduce functions (see Figure 35). Then, the runtime system partitions

the input data and spawns multiple mappers and reducers. The mappers apply the

map function—which generates an output (key, value) pair—to the partitioned input

data. The reducers shuffle and sort the map function output and invoke the reduce

function once per each key with a key and the values associated with the key as input

arguments.

Figure 35: A MapReduce workflow. A programmer provides map and reduce func-
tions (gray shading), and the runtime system is responsible for the remaining parts.

84



5.2.1 Algorithm Level Analysis

In this section, we provide a criterion to test the optimality of MapReduce algo-

rithms based on the number of MapReduce iterations and the amount of work in

each MapReduce iteration. Assume an edge list with m edges. To extract a subgraph

from the list, we need to inspect the edges and include only the edges that belong to

the subnetwork of interest. This is local computation which only uses data in a single

edge representation, and a single invocation of a map function is sufficient to process

one edge. Forming adjacency lists from the filtered edges requires global computation

which accesses multiple edges at the same time. All edges incident on a same vertex

need to be co-located. A MapReduce algorithm co-locates the edges in the shuffle and

sort phases via indirections with a key. This is different from O(1) complexity ran-

dom accesses, or indirections with an address, for the random access machine (RAM)

model. One pair of the shuffle and sort phases can serve all independent indirections.

As co-locating incident edges for one vertex is independent of co-locating incident

vertices for other vertices, a single MapReduce iteration is sufficient for the subgraph

extraction.

Figure 36: A directed acyclic graph (DAG) for MapReduce computation.

Given a pair of vertices s and t, we find a shortest path from s to t by running

two breadth-first searches from s and t until the frontiers of the two meet each other.

Each breadth-first search first inspects every vertex one hop away from the source

vertex, then visits the vertices one hop away from the neighbors of the source vertex,

and so on. This expands the frontier by one hop in each step, and there is dependency

85



between indirections involved in the successive steps. Assume a directed acyclic graph

(DAG) is constructed with an element (say A[i]) of the input data (say A) as a vertex

and indirections as edges (see Figure 36)—one adjacency list of the input adjacency

lists is mapped as a vertex in our case. Local computation, which accesses only

A[i], is ignored in constructing the DAG. The longest path of dependent indirections

determines the depth of the DAG and accordingly the number of required MapReduce

iterations. dd/2e, where d denotes the distance from s to t, sets the minimum number

of MapReduce iterations to find the shortest path in our problem.

Assume the input data A has n elements, and each element of A is smaller than a

certain constant that is much smaller than the input data size. Then, the amount of

work in the map, shuffle, sort, and reduce phases and a single MapReduce iteration—

Wmap, Wshuffle, Wsort, Wreduce, and Witeration, respectively—become the following.

Wmap = O(n(1 + f))

Wshuffle = O(nf)

Wsort = pr × Sort

(
nf

pr

)

Wreduce = O(nf(1 + r))

Witeration = O(n + nf + nfr) + pr × Sort

(
nf

pr

)

where f = map output size
map input size

, pr = a number of reducers, and r = reduce output size
reduce input size

. Each

reducer sorts its input data sequentially, and Sort(n) is O(n)—with bucket sort—

assuming a finite key space and O(n log n) otherwise. If solving a problem requires

k iterations, the amount of work to solve the problem on a MapReduce cluster, or

WMapReduce becomes

86



WMapReduce =
k∑

i=1(
O(ni + nifi + nifiri) + pr × Sort

(
nifi

pr

))

where n1 = n and ni+1 = nifiri. fi and ri are f and r for the ith iteration, respectively.

A parallel random access machine (PRAM) algorithm is optimal if WPRAM(n) =

Θ(T ∗(n)) [61], where WPRAM is the amount of work for the PRAM algorithm and T ∗

is the time complexity of the best sequential algorithm assuming the RAM model [61].

We extend this optimality criterion for MapReduce algorithms, and a MapReduce

algorithm is optimal if WMapReduce(n) = Θ(T ∗(n)). Every phase in a MapReduce

iteration is trivially parallel, and the time complexity of MapReduce computation

to solve a problem with p nodes, or TMapReduce(n, p), is WMapReduce(n)/p assuming

p ¿ n. To realize this time complexity in physical systems, communication in the

shuffle phase needs to be minimized and overlapped with the preceding map phase

unless bisection bandwidth of the MapReduce cluster grows in proportion to the

number of compute nodes.

5.2.2 System Level Analysis

Here, we analyze the architectural features of a MapReduce cluster and their impact

on MapReduce algorithms’ performance. The MapReduce programming model is

oblivious to the mapping of specific computations to specific computing nodes, and

the real-world implementations of the programming model—Google MapReduce [40]

and open-source Hadoop [4]—provide very limited control over this mapping. Thus,

the communication patterns in the shuffle phase are arbitrary, and with arbitrary

communication patterns, approximately one half of the map phase output crosses

the worst case bisection of a MapReduce cluster. Dividing the map phase output

by one half of the bisection bandwidth of a MapReduce cluster calculates the execu-

tion time for the shuffle phase, or Tshuffle as a result. The shuffle phase, however,

87



can be overlapped with the preceding map phase. Say Tmap is the execution time

for the map phase. Then, the execution time for the map and shuffle phases is

max(Tmap, Tshuffle). Tshuffle does not affect the overall execution time as long as

Tmap ≥ Tshuffle. Tmap involves only local computations and scales trivially. Scaling

Tshuffle to a large number of nodes is much more demanding as this requires linear

scaling of the bisection bandwidth to the number of nodes—the network cost increases

superlinearly to the number of nodes to scale the bisection bandwidth proportional

to p. Disk I/O overhead—the representative MapReduce runtime systems store in-

termediate data in disks instead of DRAM—increases Tmap and lowers the bisection

bandwidth requirement. If f ¿ 1, the bisection bandwidth requirement is even lower.

If f is large, however, the bisection bandwidth is likely to become a bottleneck if the

system size becomes very large.

Disk I/O overhead is unavoidable for workloads that overflow the aggregate DRAM

capacity of a MapReduce cluster—e.g. to store the large input graph in our problem.

If workloads’ memory footprint fits into the aggregate DRAM capacity, however, the

relatively low disk I/O bandwidth compared to the DRAM bandwidth incurs a sig-

nificant performance overhead—e.g. finding a shortest path in the smaller subgraph.

5.2.3 Finding Shortest Paths in the Subgraph

To find shortest paths in the subgraph, we first need to extract the subgraph from the

larger input graph (see Algorithm 5.1). For the subgraph extraction, f ≤ 0.01 ¿ 1

in our problem, and a single MapReduce iteration is sufficient as discussed in Sec-

tion 5.2.1. Wmap dominates the execution time as f ¿ 1, and Wmap is O(m), where m

is a number of edges in the input graph. The best sequential algorithm also requires

the asymptotically same amount of work, and the MapReduce algorithm is optimal

under our optimality criterion. The bisection bandwidth requirement is also low as

the volume of communication in the shuffle phase—O(mf)—is much smaller than the

88



amount of the disk I/O and computation in the map phase—O(m). The disk I/O

overhead in reading the input graph is unavoidable, and the amount of disk I/O in

the following phases are much smaller.

Input : an edge l i s t f o r the input graph
Output : adjacency l i s t s f o r the subgraph
map(key/∗ unused ∗/ , edge/∗ connects head and tail ∗/) {

i f (edge be longs to the subnetwork o f i n t e r e s t )
output (head , tail ) ; /∗ a ( key , va lue ) pa i r ∗/
output (tail , head ) ;

}
}
reduce (vertex , adjacent vertices) {

degree = number o f v e r t i c e s in adjacent vertices ;
output (vertex , degree + ‘ ‘ ’ ’ + adjacent vertices ) ;

}

Algorithm 5.1: Extracting a subgraph using MapReduce.

Once we extract the subgraph, the next step is finding a single-pair shortest path

in the subgraph. This requires multiple MapReduce iterations (say k iterations) as

analyzed in Section 5.2.1. Our shortest path algorithm extends the breadth-first

search algorithm designed for the MapReduce programming model (see [20]) and

sets initial distances from the two vertices in the pair (say s and t) first—0 for the

source vertex and∞ for the others. Then, our implementation invokes Algorithm 5.2

(iteration number is passed as a command line argument) repeatedly to expand the

breadth-first search frontiers from s and t by one hop in each invocation.

Assume m/n is constant, where n is the number of vertices and m is the number

of edges. Then, setting initial distances from s and t requires only the map phase and

costs O(n) work. For Algorithm 5.2, f ≥ 1, fr ' 1, and f varies only slightly during

k iterations. Each invocation of Algorithm 5.2 costs O(n + nf) + p× Sort(nf
p

). The

amount of work to find the shortest path becomes (O(n + nf) + p × Sort(nf
p

)) × k.

The best sequential algorithm for breadth-first search runs in O(n), and the work

required to find the shortest path—by running breadth-first searches from both s and

t with the heuristic of expanding the smaller frontier of the two—is even lower as the

algorithm visits only a portion of the graph.

89



Input : adjacency l i s t s f o r the subgraph with d i s t an c e s from
s and t (distance s and distance t ) .
Output : adjacency l i s t s f o r the subgraph with updated
d i s t an c e s from s and t .
map(key/∗ unused ∗/ , adjacency list) {

parse adjacency list to f i nd vertex , adjacenct vertices ,
distance s and distance t ;
remove vertex from adjacency list ;
output (vertex , adjacency list ) ;
i f (distance s = iteration number ) {

output (neighbor , ‘ s ’ ) f o r every element neighbor o f
adjacenct vertices ;

}
i f (distance t = iteration number ) {

output (neighbor , ‘ t ’ ) f o r every element neighbor o f
adjacenct vertices ;

}
}
reduce (vertex , values) {

new distance s = ∞ ;
new distance t = ∞ ;
whi l e (values i s not empty ) {

value = remove values ’ next element ;
i f (value i s ‘ s ’ ) new distance s = iteration number + 1 ;
e l s e i f (value i s ‘ t ’ ) new distance t = iteration number
+ 1 ;
e l s e adjacency list = value ;

}
parse adjacency list to f i nd distance s and distance t ;
i f (distance s < new distance s) new distance s = distance s ;
i f (distance t < new distance t) new distance t = distance t ;
r e p l a c e distance s and distance t in adjacency list with
new distnace s and new distance t ;
output (vertex , adjacency list ) ;

}

Algorithm 5.2: Expanding breadth-first search frontiers from s and t using MapRe-
duce.

Retrieving the shortest path from the output is also problematic as the MapReduce

programming model lacks a random access mechanism. In the RAM model, visiting

at most k vertices and their neighbors in the backward directions towards s and t is

sufficient to retrieve the shortest path. In the MapReduce programming model, in

contrast, retrieving the shortest path requires additional MapReduce iterations and

scanning the entire graph in each iteration. Thus, the MapReduce algorithm to find

a single-pair shortest path is clearly suboptimal under our optimality criterion.

Bisection bandwidth is likely to become a bottleneck for large systems as the

volume of communication is comparable or larger than the amount of work in the

map phase, or f ≥ 1. The overhead of the MapReduce runtime system and disk I/O

exacerbates the situation as the workload incurs multiple MapReduce iterations with

90



large volumes of the intermediate data. Cohen [37] presented several graph algorithms

under the MapReduce programming model, and these algorithms also have large f

and require multiple MapReduce iterations. Many of the algorithms require more

work than the best sequential algorithm and necessitate a large bisection bandwidth

to scale in large systems. The performance of these algorithms may not be good on

large systems with limited bisection bandwidth as the author also commented.

5.3 A Highly Multithreaded System

Highly multithreaded systems support the shared memory programming model with

the efficient latency hiding mechanism via multithreading and relatively large mem-

ory bandwidth and network bisection bandwidth for the system size. The shared

memory programming model provides a randomly accessible global address space to

programmers.

5.3.1 Algorithm Level Analysis

Highly multithreaded architectures adopt the shared memory programming model

with a randomly accessible global address space, which matches well with irregular

data access patterns over large data. A memory reference requires only a comparable

number of instructions to the ideal RAM model. Memory access latency is higher

than the ideal RAM model, but a large number of threads efficiently hide the latency

assuming sufficient parallelism.

Bader et al. [14] provided a complexity model for highly multithreaded systems by

extending Helman and JáJá’s work [53] for symmetric multiprocessors (SMPs). This

model encompasses the architectural characteristics of highly multithreaded systems.

For SMPs, running time to solve a problem of size n with p processors, or T (n, p)

is expressed by the triplet 〈TM(n, p), TC(n, p), B(n, p)〉, where TM(n, p) is the max-

imum of the number of non-contiguous memory accesses by any processor, TC(n, p)

is the maximum of local computational complexity of any processor, and B(n, p) is

91



the number of barrier synchronizations. This model penalizes non-contiguous mem-

ory accesses with higher latency and a large number of barrier synchronizations.

Bader et al. [15] extended this model for multicore architectures as well. For highly

multithreaded architectures, memory access latency is efficiently hidden, and a non-

contiguous memory access costs O(1). Multithreading also reduces B(n, p). Bader et

al. [14] concluded that considering only TC(n, p) is sufficient for highly multithreaded

systems. An algorithm with TC(n, p) time complexity has at most p× TC(n, p) work

complexity.

5.3.2 System Level Analysis

Highly multithreaded systems are known to be efficient for applications with a large

number of irregular data accesses [14, 16, 17, 77] and also lower programming bur-

den to consider data locality. These are mainly due to relatively large memory

bandwidth—for single-node systems—or bisection bandwidth—for multi-node systems—

to the system size in addition to the efficient latency hiding mechanism.

Traditional microprocessors with powerful integer and floating point execution

units—but only one thread per core—suffer from low processor utilization for latency-

bound workloads. Highly multithreaded architectures, in contrast, achieve high pro-

cessor utilization for those workloads [16]. Thus, highly multithreaded systems can

perform a same amount of computation using a smaller number of processors than a

system with the traditional microprocessors. A typical highly multithreaded system

consists of a small number of tightly integrated nodes with large memory bandwidth

and network bisection bandwidth, and this addresses the communication issue in

bandwidth-bound applications with random access patterns as well. However, these

systems have limited aggregate computing power, memory and disk capacity, and I/O

bandwidth as a downside due to a small number of nodes in the system.

92



5.3.3 Finding Shortest Paths in the Subgraph

In order to extract the subgraph from the input graph of multiple terabytes, we first

need to store the input graph in a highly multithreaded system. For a single node

system with a small number of disks, even storing the input data is not possible, and

our problem cannot be solved. If the input graph fits into the capacity, then we can

find shortest paths in the subgraph as the following.

1. Read the graph data from the disks and filter the edges in parallel and in a

streaming fashion, store only the filtered edges in the main memory.

2. Transform the edge list with the filtered edges to the adjacency lists.

3. Run the single-pair shortest path algorithm optimized for highly multithreaded

systems and complex networks (see [16]).

For the first step, the aggregate disk I/O bandwidth or the network bandwidth

to the file server—when the input graph is stored in the separate file server—limits

the data read rate. As typical highly multithreaded systems have limited disk I/O

bandwidth or the network bandwidth to the separate file server, reading the entire

input graph data takes a significant amount of time. Transforming the edge list to

the adjacency lists is straightforward with the random access capability. Bader and

Madduri [16] designed an efficient algorithm to find the shortest path on the Cray

MTA, and the SNAP package [18], which is portable to shared memory architectures,

also provides a breadth-first search implementation that matches well with highly

multithreaded architectures and complex networks. We tune this breadth-first search

implementation to find a single-pair shortest path with a heuristic of expanding the

smaller frontier (see [16]). This algorithm has the asymptotically same work com-

plexity compared to that of the best sequential algorithm.

93



System MapReduce cluster highly multithreaded hybrid
Nodes (# nodes, type) (4, IBM System x3755) (1, Sun SPARC T5120)

MapReduce
cluster +
highly
multithreaded

Processors (# processors,
type, power) / node

(4, AMD Opteron 2.4
GHz 8216, 95 W / pro-
cessor)

(1, Sun UltraSparc T2 1.2
GHz, 91 W / processor)

DRAM size / node 8 GB 32 GB
DRAM bandwidth /
node

42.8 GB/s 60+ GB/s

Interconnect Dual-link 1 Gb/s Ether-
net

N/A

Disk Capacity 96 disks × 1 TB / disk 2 disks × 146 GB / disk
Software Hadoop 0.19.2, Sun JDK

6
Sun Studio C compiler
5.9

Table 7: Technical specifications for the test platforms

5.4 The Hybrid System

Analyzing a large scale complex network imposes distinct computational challenges

(see Section 5.1), which cannot be efficiently served with a MapReduce cluster or a

highly multithreaded system on its own (see Section 5.2 and 5.3).

We design a novel hybrid system to address the computational challenges in large

scale complex network analysis. Our hybrid system tightly integrates a MapReduce

cluster and a highly multithreaded system and exploits the strengths of both in a syn-

ergistic way. In each step of the complex network analysis, we select a MapReduce

cluster or a highly multithreaded system—based on the match between the computa-

tional requirements and the architectural capabilities—and perform the computation

for the step. We transfer the data from one system to the other if we switch from

one to the other in the consecutive steps, and the tight integration of the two systems

reduces the data transfer time.

5.4.1 Algorithm Level Analysis

Solving our problem, which finds single-pair shortest paths in the subgraph, requires

filtering the large input graph; transforming the edge list with the filtered edges

to the adjacency lists; and running the shortest path algorithm on the subgraph.

The MapReduce algorithm in Section 5.2.3 finishes the first two steps in a single

94



MapReduce iteration, and this algorithm is optimal (under our optimality criterion for

MapReduce algorithms) assuming f ¿ 1. A highly multithreaded system, in contrast,

suffers from limited disk capacity and the disk I/O bandwidth to finish the first

step. For the last step, the MapReduce algorithm necessitates a significantly larger

amount of work than the best sequential algorithm, and the disk I/O and runtime

system overhead further exacerbates the performance. The extracted subgraph—in

the sparse representation—has a higher chance to fit into the main memory of a

highly multithreaded system, and if this is the case, a highly multithreaded system

can find shortest paths in an efficient way. Using a MapReduce cluster for the first

two steps and a highly multithreaded system for the last step exploits the strengths

of both architectures, and we need to transfer the output of the second step from the

MapReduce cluster to the highly multithreaded system in this case.

We generalize the above discussion to design a model that estimates the time

complexity on the hybrid system. Assume the computation requires l steps. Then,

execution time on the hybrid system is

Thybrid = Σi=1 to l min(Ti, MapReduce + ∆, Ti, hmt + ∆)

where ∆ = ni

BW inter
× δ(i− 1, i). Ti, MapReduce and Ti, hmt are time complexities for the

ith step on the MapReduce cluster and the highly multithreaded system, respectively.

ni is input data size for the ith step, and BWinter is the bandwidth between the

MapReduce cluster and the highly multithreaded system. δ(i − 1, i) is 1 if selected

platforms for the (i− 1)th and ith steps are different and 0 otherwise. As the input

data resides in the MapReduce cluster, δ(0, 1) is 0 for the MapReduce cluster and 1

for the highly multithreaded system.

95



5.4.2 System Level Analysis

In the hybrid system, data transfer between the MapReduce cluster and the highly

multithreaded system is necessary in addition to computation on each. The hybrid

system becomes more effective if this data transfer time is minimized, and the data

transfer time reduces as BWinter increases. Minimizing the distance between the

MapReduce cluster and the highly multithreaded system and tightly coupling the

two is important to provide large BWinter and to maximize the effectiveness of the

hybrid system.

5.4.3 Finding Shortest Paths in the Subgraph

We find shortest paths in the subgraph using the hybrid system through the following

steps.

1. Extract the subgraph using the MapReduce cluster with the algorithms de-

scribed in Section 5.2.3.

2. Switch to the highly multithreaded system, and load the extracted graph from

the MapReduce cluster to the highly multithreaded system’s main memory.

3. Find shortest paths using the highly mutltithreaded system by running the

algorithm described in Section 5.3.3 multiple times.

As f ¿ 1 in our problem, the size of the extracted graph is much smaller than the

input graph. Thus, the subgraph has a higher chance to fit into the main memory

of the highly multithreaded system. The MapReduce algorithm to solve the shortest

path problem incurs significantly more work than the best sequential algorithm while

the algorithm for the highly multithreaded system incurs only a comparable amount

of work to the best sequential algorithm. For graphs that fit into the main memory,

the disk I/O and runtime system overhead even widens performance gap between the

MapReduce cluster and the highly multithreaded system. If the difference between

96



execution time on the MapReduce cluster and the highly multithreaded system to

find single-pair shortest paths is larger than the subgraph loading time, using the

highly multithreaded system for the third step reduces the execution time to solve

our problem.

5.5 Experimental Results

Table 7 summarizes the test platforms. Hadoop is configured to spawn up to 8 mapper

processes and 3 reducer processes per node. Hadoop Distributed File System (HDFS)

is configured to create one replica per block. We add an additional system with the

Intel Xeon processors to coordinate the map and reduce processes for the MapReduce

cluster.

Figures 37, 38, and 39 summarize experimental results in finding shortest paths

in the subgraphs which cover 10%, 5%, and 2% of the vertices in the input graph,

respectively. The extracted subgraphs have 351 million vertices and 2.75 billion undi-

rected edges, 178 million vertices and 1.49 billion undirected edges, and 44.9 million

vertices and 109 million undirected edges (excluding isolated vertices), respectively.

We find single-pair shortest paths in the subgraphs for up to 30 pairs.

MapReduce
cluster
(hours)

hybrid
(hours)

subgraph extraction 23.9 23.9
memory loading - 0.832
shortest paths (for 30
pairs)

103 0.000727

Figure 37: Execution time to extract the subgraph (which covers 10% of the vertices)
and find single-pair shortest paths (left) and the decompositions of the execution time
on the MapReduce cluster and the hybrid system (right). The highly multithreaded
system fails to solve the problem on its own as the input graph overflows its disk
capacity.

97



MapReduce
cluster
(hours)

hybrid
(hours)

subgraph extraction 22.0 22.0
memory loading - 0.418
shortest paths (for 30
pairs)

61.1 0.000467

Figure 38: Execution time to extract the subgraph (which covers 5% of the vertices)
and find single-pair shortest paths (left) and the decompositions of the execution time
on the MapReduce cluster and the hybrid system (right). The highly multithreaded
system fails to solve the problem on its own as the input graph overflows its disk
capacity.

MapReduce
cluster
(hours)

hybrid
(hours)

subgraph extraction 20.5 20.5
memory loading - 0.0381
shortest paths (for 30
pairs)

5.22 0.000191

Figure 39: Execution time to extract the subgraph (which covers 2% of the vertices)
and find single-pair shortest paths (left) and the decompositions of the execution time
on the MapReduce cluster and the hybrid system (right). The highly multithreaded
system fails to solve the problem on its own as the input graph overflows its disk
capacity.

The MapReduce cluster successfully extract the subgraphs, while the UltraSparc

T2 blade fail to solve the problems on its own as the input graph size overflows the

system’s disk capacity. Using a network file system with a larger disk capacity is

another option for the highly multithreaded system, but even in this case, the net-

work bandwidth to the file system or the limited computing power of the highly

multithreaded system is likely to become a performance bottleneck. Pre-processing

the data before the transfer using a file system with a filtering capability—as is the

98



case of the hybrid system—provides a better mechanism to work around these limi-

tations. Finding single-pair shortest paths in the extracted subgraphs is significantly

slower on the MapReduce cluster than the shared memory system. The hybrid sys-

tem outperforms the MapReduce cluster in overall throughout the experiments. The

performance gap widens as the subgraph size or the number of input pairs to find

a shortest path increases. Adopting a faster interconnection technology between the

MapReduce cluster and the highly multithreaded system will further widen the gap.

This justifies the use of the hybrid system, especially when the analysis of the ex-

tracted subgraph requires a large amount of work.

The MapReduce cluster runs significantly slower than the highly multithreaded

system in finding shortest paths. This performance gap is mainly due to the match

between computational requirements of the problem and the programming model and

the architectural capability of the two different systems. The MapReduce algorithm for

the problem is clearly suboptimal under our optimality criterion while the algorithm

for the highly multithreaded system executes only a comparable number of operations

to the best sequential algorithm. The input pairs to find shortest paths are 6.04 hops

away from each other in average (in the case of the 10% subnetwork, excluding the

disconnected pairs) and the UltraSparc T2 blade visits approximately 100 thousand

vertices in average—owing to the random access mechanism—with the heuristic of

expanding the smaller frontier. The MapReduce algorithm needs to visit the entire

vertices multiple times. The tightly connected network for the highly multithreaded

system and the highly multithreaded system’s latency hiding mechanism naturally

match with the workload’s irregular data access patterns, while the disk I/O and the

runtime system overhead of the MapReduce cluster becomes more prominent with

the graph data that fits within the main memory capacity.

99



5.6 Summary

Complex networks capture interactions among entities in various application areas

in a graph representation. Analyzing large scale complex networks often answers

important questions—e.g. estimate the spread of epidemic diseases—but also imposes

computing challenges mainly due to large volumes of data and the irregular structure

of the graphs.

In this chapter, we aim to solve such a challenge: finding relationships in a sub-

graph extracted from large data. We solve this problem using three different plat-

forms: a MapReduce cluster, a highly multithreaded system, and a hybrid system of

the two. The MapReduce cluster and the highly multithreaded system reveal lim-

itations in efficiently solving this problem, whereas the hybrid system exploits the

strengths of the two in a synergistic way and solves the problem at hand. In par-

ticular, once the subgraph is extracted and loaded into memory, the hybrid system

analyzes the subgraph five orders of magnitude faster than the MapReduce cluster.

100



CHAPTER VI

PHYLOGENETIC TREE RECONSTRUCTION USING

GENE ORDER DATA AND PARALLELIZING THE

COGNAC SOFTWARE PACKAGE

This chapter discusses the parallelization of COGNAC software package which re-

constructs a phylogenetic tree using gene order data. We are under preparation to

submit a paper based on the materials in this chapter.

Gene order data captures the chromosome structure of a species. Phylogenetic

trees reconstructed using gene order data are often more accurate than trees recon-

structed using nucleotide sequence data for distant genomes, and gene order data

based phylogenetic tree reconstruction methods are becoming popular. However,

gene order data based reconstruction methods are computationally expensive, and

parallel processing—along with the development of novel algorithms—is needed to

address the computational challenges.

This chapter presents the parallelization of the COGNAC software package which

reconstructs a phylogenetic tree of multiple species using their gene order data.

COGNAC has parallelisms in multiple levels. All those combined, COGNAC provides

a very high degree of parallelism. However, parallelization points in COGNAC are

heavily nested, and the degree of parallelism in each parallelization point varies widely

based on the input data and also throughout the computing phases. Exploiting heav-

ily nested and irregular parallelism is very challenging without a proper system soft-

ware support, and there are several attempts to solve the challenge by developing new

libraries, languages, or compilers. We use Intel TBB and the Intel Nehalem architec-

ture with simultaneous multithreading support to parallelize the COGNAC software

101



Figure 40: An exemplar phylogenetic tree [95].

package and achieve high scalability with little effort. This shows the importance

of mapping an application to an appropriate programming model and an architec-

ture. The remainder of this chapter explains gene order data based phylogenetic tree

reconstruction and our approaches to solve the problem.

6.1 Phylogenetic Tree Reconstruction Using Gene Order
Data

A phylogenetic tree (see Figure 40) captures speciation events among multiple or-

ganisms. Constructing a phylogenetic tree requires inferring ancestral relationship

among multiple organisms based on currently available data. Traditionally, scientists

had studied this problem by inspecting fossils or comparing the morphology and the

physiology of living creatures, but these approaches revealed limitations due to an

incomplete set of fossils or the complex nature of evolutionary mechanisms affecting

the morphology and the physiology of organisms [95].

The increasing availability of genetic data (Table 8 explains genetic data in dif-

ferent levels) opens a new opportunity to solve the problem. Constructing a phy-

logenetic tree by comparing nucleotide sequences of a single gene or a few genes

has been intensively studied, and there are several representative approaches. The

neighbor-joining method [111] is a heuristic, and the method greedily merges a pair

of genomes based on the minimum evolution principle. Maximum parsimony (MP)

methods (e.g. [47, 52]) find a topology with the minimum number of mutations (or

the lowest parsimony score), and maximum likelihood (ML) methods (e.g. [28, 45])

102



Table 8: Basic units of genome sequence data in different levels (genome 3 chromo-
some 3 gene 3 nucleotide).

genome the genome of an organism captures all the
genetic information for the organism.

chromosome a chromosome is a thread-like structure in
a cell, and a chromosome contains multiple
genes.

gene a gene is a basic unit that affects a trait of
an organism and consists of multiple nu-
cleotides.

nucleotide a nucleotide is a basic building block of
DNA and RNA. For example, DNA con-
sists of four types of nucleotides: adenine
(A), thymine (T), cytosine (C), and gua-
nine (G). Uracil (U) replaces thymine (T)
for RNA.

attempt to find a tree with the highest likelihood value under a certain evolutionary

model. MP and ML methods are generally more accurate than the neighbor-joining

method but also more computationally expensive. These methods, using nucleotide

sequence data, find a reasonably accurate tree topology for close genomes. For dis-

tant genomes, these methods become significantly less accurate due to the high rate

of nucleotide sequence level mutations.

Sankoff and Blanchette [112] pioneered in inferring a phylogenetic tree using gene

order data [112], and the following explains gene order data. The genome of an

organism captures all the genetic information for the organism, and a nuclear genome

of many species consists of multiple chromosomes. There are multiple genes in a

chromosome. We can also identify a set of genes originated from a common ancestral

gene. If two genes (possibly located in chromosomes of different species) are originated

from a common ancestral gene, scientists say the two genes are homologous. If we

assign a unique number to a set of homologous genes, we can represent a chromosome

as a sequence of numbers; numbers appear in the order the genes corresponding to

103



Figure 41: Intra-chromosomal genome rearrangement events. Each gene is repre-
sented by an unsigned number and its strandedness (in the double stranded structure
of DNA, some genes are found in one strand and read in a direction for the strand
while other genes are found in another strand [113].) is represented by the sign of the
number.

the numbers appear in a chromosome. If a genome has multiple chromosomes, we

can represent the genome with multiple sequences of numbers—one sequence per

chromosome. Such sequences of numbers are gene order data.

Genome rearrangement events (see Figures 41 and 42 for examples) change the

structure of chromosomes (or reorder numbers in gene order data). By comparing

gene order data of multiple organisms, we can infer mutations occurred in chromosome

level. Chromosome level mutations are significantly less frequent than nucleotide

sequence level mutations and have a higher impact in speciation. This enables us to

reconstruct a more accurate tree for distant genomes.

ML methods require a good model to simulate the evolutionary process, but we

do not have such a model for gene order data yet. Therefore, MP methods are widely

used for gene order data. MP methods for gene order data require significantly

more computing than MP methods for nucleotide sequence data. MP methods first

enumerate candidate tree topologies; compute parsimony scores for the enumerated

trees; and select the trees with the lowest parsimony score. For N organisms there are

(2N−5)!! = 3×5×· · ·×(2N−7)×(2N−5) possible unrooted candidate tree topologies,

this makes MP methods challenging for large N . Scoring a single tree topology costs

104



Figure 42: Inter-chromosomal genome rearrangement events. Each gene and the
gene’s strandedness are represented by an unsigned number and its sign, respectively.
Two sequences represent gene order data of two chromosomes.

only a polynomial number of operations [95] for nucleotide sequence data. For gene

order data, scoring a single topology is NP-hard. There is no known algorithm to find

the most parsimonious labeling of the internal genomes in a tree with more than three

leaf genomes [91]. Even heuristics [46] to score a single topology require solving many

NP-hard median problems. A median genome of three genomes is the genome that

minimizes the sum of distances between the genome and the three genomes. A median

problem finds a median genome. MP methods reconstruct internal genomes and score

a tree topology by solving multiple median problems till the tree score converges. Yet,

a median problem is NP-hard even with linear-time computable pairwise distance

metrics (e.g. breakpoint distance, inversion distance, and DCJ distance). Actually,

computing the distance between two genomes can be NP-hard based on the definition

of the distance [46]. All these combined, constructing a phylogenetic tree using gene

order data necessitates an enormous amount of computing.

6.2 Disk-covering methods and GRAPPA

Warnow and her group [56, 57, 107] proposed several disk-covering methods (DCMs)

to reduce candidate tree search space—recall that we need to consider (2N − 5)!!

candidate tree topologies for N species with a brute force method. DCMs decompose

105



the input genomes to multiple overlapping disks; find a tree topology for each disk;

and merge the topologies to reconstruct a tree for the entire input genomes. Rec-I-

DCM3 [107], which is the most recently published DCM, recursively decomposes the

input genomes to further reduce the search space and iterates the process multiple

times to refine the reconstructed tree. Roshan et al. reported that Rec-I-DCM3

reconstructed a highly accurate tree for very large N (up to 13,921). However, existing

DCMs have several shortcomings. Computing a disk decomposition is expensive for

the original DCM [56] and DCM2 [57]. Rec-I-DCM3 computes a decomposition faster

but requires multiple iterations to achieve high accuracy. The existing DCMs place

a significant number of genomes in the overlapping region, and this also increases

computing time.

GRAPPA (Genome Rearrangements Analysis under Parsimony and other Phy-

logenetic Algorithms) [91, 87, 89, 90, 118, 119]—along with MGR [26]—is the most

accurate software package for gene order data based phylogenetic tree reconstruction.

The first version of GRAPPA is based on BPAnalysis [112], and the GRAPPA was

implemented using several high-performance computing techniques to accelerate BP-

Analysis. GRAPPA has been updated multiple times, and DCM-GRAPPA combines

GRAPPA and DCM2.

6.3 COGNAC

We designed a new DCM and the COGNAC (Comparing Orders of Genes using

Novel Algorithms and high-performance Computers) software package [67]. The new

DCM remedies the shortcoming of existing DCMs, and COGNAC marries GRAPPA

with the new DCM. The new DCM is based on the spectral method. The DCM

recursively decomposes the input leaf genomes to two smaller and possibly overlapping

sets—or disks. The method first constructs a Laplacian matrix using the pairwise

distances between the leaf genomes in a disk and uses an eigenvector for the second

106



smallest eigenvalue of the Laplacian matrix to find an initial bi-partitioning of the

leaf genomes. The method applies a heuristic to refine the initial bi-partitioning, and

the heuristic places several genomes in both disks in certain cases. The new DCM

recursively decomposes a disk till three or less genomes are left and builds a binary

disk tree (see Figure 43).

Figure 43: A model phylogenetic tree and a disk tree for the tree. The disk tree is
constructed using only the pairwise distances between the leaf genomes in the model
tree. Genomes placed in the overlapping region of two disks are marked in bold.

To reconstruct a tree for the entire input genomes, COGNAC traverses the binary

disk tree in a bottom up fashion and merges the reconstructed trees of two child disks

to reconstruct a tree for their parent disk. In merging two disks, COGNAC enu-

merates multiple candidate trees first and selects the trees with the lowest parsimony

score. Algorithm 4 summarizes COGNAC ’s phylogenetic tree construction algorithm.

107



Input: Gene order data for the input genomes.

Output: An output phylogenetic tree of the input genomes.

Compute the (n−1)×(n−1)
2

pairwise distances between the n input genomes.
Apply the DCM in a recursive way and construct a binary disk tree.
Push all the leaf disks to a work queue.
while the work queue is not empty do

Pull out a disk from the work queue.
if the disk is a leaf disk then

if the disk has three genomes then
Build a tree topology using the three leaf genomes.
Solve a median problem to initialize the internal genome in the tree.

end
else

Enumerate candidate tree topologies by merging the disk’s two child disks.
Score the enumerated candidate tree topologies.
Select the trees with the lowest parsimony score.

end
If the processed disk’s sibling disk is also processed, push the disk’s parent
disk to the work queue.

end

Algorithm 4: A high-level overview of COGNAC ’s phylogenetic tree construction
algorithm.

6.4 Nested Irregular Parallelism in COGNAC

GRAPPA—without DCM—needs to score a very large number of trees. Scoring a

single tree is compute-intensive as well. Moret et al. [87] had parallelized GRAPPA by

scoring different candidate trees using different processors and achieved linear speedup

up to 512 processors. However, with the new DCM, COGNAC needs to score only a

small number of tree topologies per disk; we cannot achieve such a speedup by simply

scoring different trees using different processors (or cores). Yet, we can still achieve a

high level of scalability by using parallelism in multiple levels. For example, we can

process all the leaf disks in a binary disk tree in parallel. Also, in scoring a single

topology, we can solve multiple median problems in parallel. Table 9 presents a part

of the parallelism in COGNAC.

108



Table 9: A part of the parallelism in COGNAC.
parallelism comment
We can compute the pairwise distances be-
tween the input genomes in parallel.

Computing the pairwise distances has a
O(N2)-way parallelism.

We can compute the distance between two
genomes using multiple cores.

-

We can process multiple leaf disks in a disk
tree in parallel.

Accessing the work queue holding disks—
which are ready to be processed—requires
data synchronization.

We can score multiple tree topologies for a
single disk in parallel.

We can apply the branch-and-bounding
approach. If a lower-bound of a tree score
is larger than the current best tree score,
we do not need to score the tree. This
requires coordination among the threads
scoring tree topologies for a single disk.

We can solve multiple median problems in
parallel to score a single tree topology.

We can remove the data synchronization
issue by an algorithm modification.

We can parallelize a median solver. We can mix breadth-first search and
depth-first search based approaches. The
breadth-first based approach provides a
higher level of parallelism but is less ef-
ficient and requires more memory. The
depth-first search based approach is se-
quential but more efficient and has a small
memory footprint.

COGNAC has easily identifiable parallelisms in multiple levels. Exploiting paral-

lelisms often involves data synchronization issues, but identifying critical sections is

mostly straightforward. For example, to process multiple disks in parallel, we need to

protect the work queue using data synchronization primitives. One exception is the

following. We can update multiple internal genomes in parallel to score a single tree

topology, but this involves a non-trivial data synchronization issue. To score a tree,

COGNAC first reconstructs the internal genomes and computes and sums the lengths

of the edges in the tree. To reconstruct the internal genomes, COGNAC solves one

median problem per one internal genome and initializes an internal genome to a me-

dian genome of the internal genome’s three closest leaf genomes. Then, COGNAC up-

dates internal genomes by replacing an internal genome with a median genome of the

internal genome’s three neighboring genomes till the tree score converges. Yet, if one

109



of the three neighboring genomes is updated by another thread while computing a

median genome, this can lead to an unpredictable result. Figure 44 illustrates the

point.

Figure 44: An illustration of the data synchronization issue in scoring a single tree
topology using multiple threads.

To update I2 in the figure, COGNAC needs to find a median genome of I1, I3,

and I5. Another thread can update I5 while solving the median problem. This

raises a data synchronization issue. We can assign a lock to every internal genome

to avoid the problem, but this significantly complicates the implementation. Instead,

COGNAC divides the internal genomes to two groups. One group includes all the

internal genomes which are an odd number of hops away from one leaf genome, and

another group includes all the internal genomes which are an even number of hops

away from the leaf genome. In the figure, all the internal genomes in dark-gray falls

into one group, and the remaining internal genomes (in light-gray) belongs to another

group. Then, COGNAC updates two groups in turn—but updates all the internal

genomes in one group in parallel. This solves the data race problem at the cost of

halving the “best” case parallelism.

All the parallelism combined, COGNAC has a very high degree of parallelism. In

high-level, we can scale COGNAC to a large number of cores by exploiting all the

parallelism in COGNAC by creating an “appropriate” number of threads in every

110



parallelization points. If one thread has no work but there is a thread with too

much work, we can steal work from the thread with too much work to achieve load

balancing. However, transforming this high level algorithm to low level code can be

very difficult if we do not use an appropriate language, compiler, or library.

6.5 Parallelizing COGNAC with Intel TBB

There are several programming languages, compilers, and Libraries that support

nested parallelism. Blumofe et al. [21] implemented Cilk, and Cilk supports nested

parallelism and work stealing. More recently, Intel announced Thread Building

Block (TBB) [106]. DARPA had launched the High Productivity Computer Systems

(HPCS) project, and several companies released experimental languages [76] to sup-

port high productivity in parallel programming—e.g. IBM’s X10, Cray’s Chapel, and

Sun’s Fortress. Intel TBB targets shared memory systems, and HPCS languages are

mainly for large scale supercomputers. Intel TBB adopts a library based approach.

X10, Chapel, and Fortress are newly designed languages.

We parallelize COGNAC using Intel TBB. We implemented COGNAC consider-

ing parallelization from the very beginning, and potential parallelization points and

critical sections are already marked in the code. The parallelization work is mechan-

ical with one exception; we use parallel do in one place (to process the work queue

for a disk tree), and we restructure the code to use parallel do. COGNAC has 116

marked parallelization points, and we enable 30 of the 116 parallelization points using

TBB. We guard critical sections using two different mechanisms—locks and OpenMP

critical sections. Code 6.1 and 6.2 present an original COGNAC code segment and

the modified segment to use Intel TBB, respectively. OpenMP currently guards all

the critical sections using a single lock, but Transactional Memory can replace the

current implementation in the future.

111



//PARALLEL
for ( i n t i = 0 ; i < v t r e e0 . s i z e () ; i++) {
//PARALLEL
for ( i n t j = 0 ; j < v t r e e1 . s i z e () ; j++) {
vector<PhylTree> v tmpEnumTree ;
enumCandidateTreesFromTwoOvlpTrees ( v leafGnm , vv d i s t , v exclGnmIdx0 ,
v ovlpGnmIdx , v t r e e 0 [ i ] , v exclGnmIdx1 , v t r e e 1 [ j ] , v tmpEnumTree ) ;
//BEGIN ATOMIC
v enumTree . i n s e r t ( v enumTree . end ( ) , v tmpEnumTree . begin ( ) ,
v tmpEnumTree . end ( ) ) ;
//END ATOMIC
}
}

Code 6.1: A code segment from the original COGNAC

p a r a l l e l f o r ( b locked range<in t >(0 , v t r e e 0 . s i z e ( ) ) , [&]( b locked range<in t>& r ) {
f o r ( i n t i = r . beg in () ; i < r . end () ; i++) {
p a r a l l e l f o r ( b locked range<in t >(0 , v t r e e 1 . s i z e ( ) ) , [&]( b locked range<in t>& r2 ) {
f o r ( i n t j = r2 . beg in () ; j < r2 . end () ; j++) {
vector<PhylTree> v tmpEnumTree ;
enumCandidateTreesFromTwoOvlpTrees ( v leafGnm , vv d i s t , v exclGnmIdx0 ,
v ovlpGnmIdx , v t r e e 0 [ i ] , v exclGnmIdx1 , v t r e e 1 [ j ] , v tmpEnumTree ) ;

#i f d e f LOCK
omp se t l ock (& lock ) ;

#e l s e
#pragma omp c r i t i c a l
{

#end i f
v enumTree . i n s e r t ( v enumTree . end ( ) , v tmpEnumTree . begin ( ) ,
v tmpEnumTree . end ( ) ) ;

#i f d e f LOCK
omp unset lock(& lock ) ;

#e l s e
}

#end i f
}
} ) ;
}
} ) ;

Code 6.2: the modified COGNAC code segment to use Intel TBB

6.6 Experimental Results

We experiment using a system with two Nehalem-EP (E5530 2.4 GHz) processors. A

single Nehalem-EP processor has four cores and two hardware threads per core. We

use a random tree described in [119] as input data. The generator in [119] accepts

an average edge length (say r) and the deviation of edge lengths (say d) as input

parameters. We set r=8 and d=8. The generator sets edge lengths by randomly

sampling an integer value between r - d and r + d. Figure 45 presents the results,

and Table 10 shows several statistics collected using Intel Vtune.

112



Figure 45: Execution time and speedup on a 8-core 16-threads machine (two
Nehalem-EP processors).

Table 10: Performance statistics collected using Intel Vtune.
# threads # retired CPI # local # remote cache &

instructions DRAM accesses DRAM accesses
1 4,210,411,175,936 0.59 62,300,000 6,400,000
8 4,267,145,691,136 0.66 48,200,000 84,300,000
16 4,452,142,546,944 0.89 52,800,000 91,600,000

We observe 5.7 times speedup with 8 cores and 8.4 times speedup with 16 threads

(8 cores × 2-way simultaneous multithreading). 5.7 times speedup is sub-optimal.

There are several factors for the result. First, the Intel Nehalem processor supports

turbo boosting [30]. If a chip is under low utilization (e.g. if we are using just one core),

the Nehalem processor increases its clock up to two frequency steps (one frequency

step is 133 MHz). We cannot achieve 8 times speedup if the chip runs in lower clock

speed with eight threads. The number of executed instructions also increase with

eight threads; our system executed 1.3% more instructions with eight threads than

a single thread case. TBB overhead is one source of the increase. COGNAC can

score more trees when it runs in parallel, and this is the second source of the increase.

Before COGNAC scores a tree, COGNAC checks whether the tree’s lower-bound is

lower than the current best score or not. If the lower-bound is higher than the current

best score, COGNAC does not score the tree. If multiple threads score multiple trees

113



in parallel, a thread can start scoring a tree with the high lower-bound before another

thread finishes scoring a tree and updates the current best score to a lower value. The

increase in a number of off-chip data transfers is the most significant factor for the

suboptimal speedup. If you spawn a larger number of threads, those threads need

to share L3 cache. This reduces the effective cache size per thread unless there is a

high degree of data sharing among the threads. Also, if a thread running on one chip

spawns its child thread on another chip, the child thread needs to read data from the

remote L3 cache or remote DRAM. We observe 93% and 13 times increases in the

number of off-chip data accesses and remote cache and DRAM accesses with 8 threads

(than a single-threaded case), respectively. The CPU utilization is mostly close to

800% but is lower than 800% at the beginning and the end of the computations. This

also contributes to the suboptimal speedup.

Simultaneous multithreading largely compensates the slowdown due to the in-

crease in off-chip data accesses, and COGNAC achieved 8.3 times speedup. CPI per

thread is 0.89. This translates to per core CPI of 0.45, which is higher than the single-

threaded case. Each core in the Nehalem processor can issue up to four instructions

per cycle, and this leads to the ideal CPI of 0.25. With simultaneous multithread-

ing, COGNAC achieves a reasonable fraction of the ideal CPI. This results show

the effectiveness of Intel TBB and simultaneous multithreading for nested irregular

applications. Using the two, we achieve high scalability with little additional work.

6.7 Summary

In this chapter, we study the parallelization of our COGNAC software package which

reconstructs a phylogenetic tree using gene order data. Using gene order data enables

scientists to infer a phylogenetic tree for distant genomes. However, reconstructing

a phylogenetic tree using gene order data is much more expensive than traditional

approaches based on nucleotide sequence data. COGNAC adopts our newly designed

114



disk covering method to reduce the number of tree topologies to be inspected. This

is effective in reducing the amount of computation but also reduces the degree of

parallelism. GRAPPA achieved high scalability by scoring different trees in paral-

lel, but COGNAC cannot achieve high scalability by simply scoring multiple tree

topologies in parallel. We exploit parallelism in multiple levels to provide sufficient

parallelism and use Intel TBB to reduce the programming complexity in managing

nested irregular parallelism. Using the combination of Intel TBB and simultaneous

multithreading, we achieve 8.3 times speedup on a system with 8 cores with little ad-

ditional effort. The result show that the complexity in parallel programming can be

significantly lowered by using proper system software and with architectural support.

115



CHAPTER VII

CONCLUSIONS

Multi-core processors and many-core accelerators deliver higher performance per unit

power consumption, but the superior power efficiency comes at the cost of higher soft-

ware development complexity. There are several reasons for the increase in program-

ming complexity. Some of those are unavoidable, but software tools and architectural

support still can substantially improve software productivity. Researchers already

have proposed multiple ideas, and the remaining question is identifying a right set of

tools and architectural primitives as developing new software tools or architectural

features involves additional cost. To answer the question, we need to understand the

future application requirements and also need to test such ideas using appropriate

benchmarks. We present the parallelization and the performance tuning of various

kernels and applications with widely varying computational characteristics for diverse

architectures in this dissertation. This chapter discusses major challenges in software

development for modern parallel computers based on our experiences and presents di-

rections to improve software productivity from an application- and algorithm-centric

viewpoint.

7.1 Major Challenges in software development for Modern
Parallel Computers

Parallel programming is difficult for several reasons. First, programmers need to

identify parallelism in their problem. This is not always easy, and many researchers

have published papers by designing parallel algorithms for seemingly sequential prob-

lems [?, 61]. We expect designing parallel algorithms for such problems will remain

as a challenging research topic. However, many computationally expensive problems

116



have easily identifiable parallelism—though there is a large gap between identifying

parallelism in high level and implementing efficient and scalable software. For exam-

ple, in JPEG2000, different code blocks can be encoded and decoded in parallel (in

the EBCOT stage), or different lines can be processed in parallel (in the DWT stage).

In reconstructing a phylogenetic tree, COGNAC can process different leaf disks in

parallel; score different topologies in parallel; and solve multiple median problems in

parallel. For a majority of computationally challenging workloads, identifying paral-

lelism is not very difficult.

Scheduling and mapping are major sources of the gap between the identification

of parallelism and the implementation of efficient and scalable code. Assigning a

set of computations to appropriate computing units in proper timings is cruical to

achieve load balancing and maximize the locality of computing. Without system

software support, scheduling and mapping require a significant amount of coding

effort especially for applications with nested and irregular parallelism—such as the

phylogenetic tree reconstruction problem in this dissertation.

Data synchronization is another issue. Data synchronization involves two issues:

identifying critical sections and guarding critical sections using proper data synchro-

nization mechanisms. The first problem involves finding shared data to be protected

and properly marking the start and the end of critical sections. These are not very

different from the challenges SQL programmers are facing. However, the situation

is much more challenging for programmers in the parallel computing domain. Using

database transactions is mostly not an option due to their high performance over-

head. There are a variety of mechanisms for data synchronization. There are different

types of locks. Some locks use a busy-waiting mechanism while other locks use a queue

based approach. Some locks allow multiple readers while other locks allow only a sin-

gle reader or writer. Some locks support nesting while other locks do not. Multiple

117



architectures support a different set of instructions to atomically update a single vari-

able with low performance overhead. Programmers can consider lock free algorithms

as well. Recently, Transactional Memory (TM) becomes a popular research topic,

and there are several open-source (software) TM implementations. Programmers are

asked to select different approaches for different cases, and this adds an additional

burden. Lock based approaches are popular, but those approaches involve deadlock

and livelock issues—especially with fine-grained locking. To avoid the issues, pro-

grammers often use only a small number of locks to guard all the critical sections in

their code, but this limits scalability. This again forces them to spend a significant

amount of time to minimize the size of critical sections. Atomic instructions work for

only limited cases, and software TM incurs too high performance overhead to be a

general solution. Lock free algorithms are hard to design and verify even for highly

skilled programmers.

Nondetermistic execution is also a problem. Parallel computers interleave in-

structions in different orders in different runs. This complicates debugging and code

verification. There are several ideas to support deterministic execution on parallel

computers (e.g. [73, 99, 24]), but such approaches incur additional performance over-

head, limit scalability, and also have not yet been reached their full maturity. For

debugging, nondetermism is problematic mainly because it is difficult to reproduce

a bug. However, if only debugging is a concern, we can afford relatively high per-

formance overhead. Multiple research papers are available in this direction (such as

[35, 85]). Nondeterminism is more problematic in writing correct code and verify-

ing the code. There are too many possible interleaving scenarios, and interleaving

scenarios in small granularities are very difficult to reason about. Yet, not all nonde-

terministic execution scenarios are equally bad. Also, we cannot completely remove

nondeterminism—even in sequential computing as input data is nondeterministic. If

we can limit the granularity of interleavings to the level that matches our high level

118



intuition, the problem can be significantly alleviated. Our MSF algorithm using TM

illustrates the point. Without TM, we need to reason about instruction level inter-

leavings, and this is very challenging even for expert programmers. If we place a high

level graph operation inside a transaction, we need to consider only interleavings that

match our high level intuition. This largely reduces the possible interleaving scenarios

and lowers programming and verification complexities.

Communication between a large number of computing units is also problematic.

For single core systems, data access latency varies only moderately. Single core sys-

tems also provide relatively high memory bandwidth in comparison to their number

crunching capability. For parallel computers, communication (bisection) bandwidth

does not scale as fast as the core count. Data access latency also varies more widely

than single core systems. GPU accelerators further increase programming complexity.

GPUs have an impressive number crunching capability, but data need to be off-loaded

to a GPU via a slower PCI-Express bus first to exploit the GPU (recall Chapter 2).

Programmers need to maximize the temporal locality and the spatial locality of their

computation. The loop merging algorithm for Discrete Wavelet transform in Chap-

ter 4 improves temporal locality, but this type of code modification is far from trivial.

Programmers also need to use block data transfers based on the analysis of data access

patterns to achieve high network bandwidth utilization and hide data access latency.

The Cell Broadband Engine delivers high bandwidth utilization owing to its block

data transfer mechanism (Chapter 2), but the processor also suffers from low software

development productivity. Programmers need to fine-tune data partitioning to min-

imize global communication especially for supercomputers and applications dealing

with large matrices and vectors. Minimizing global communication often becomes the

most difficult challenge in many supercomputing applications.

Addressing the data transfer issues for large scale supercomputers and communication-

intensive applications may remain as a job for highly skilled programmers. Yet,

119



emerging technologies—such as embedded DRAM cache (adopted in the IBM Power

7), 3D stacked DRAM, and CPU-GPU fusion chips—have strong potential to largely

solve the problem at least for systems with a single chip multiprocessor. With the

combination of embedded DRAM cache and hardware multithreading and for appli-

cations with a moderate memory footprint, data access latency or memory bandwidth

is not an issue. For applications with a larger memory footprint, emerging 3D stacked

DRAM can be a solution. AMD is expected to release CPU-GPU fusion chips in the

near future. Intel and NVIDIA are also expected to release fusion chips. With CPU-

GPU fusion chips, we do not need to off-load data using a low bandwidth and high

latency PCI-Express bus anymore.

The increasing diversity in modern parallel computer architectures adds additional

challenges to programmers. They first need to select a system for their problem, and

the selection heavily affects performance and programmability. In Chapter 2, we

present that design trade-offs in modern compter architectures affect performance

and programmability in different ways even for seemingly similar dense numerical

computations. Chapters 3, 5, and 6 also highlight the importance of selecting a right

programming model and an architecture for a problem of interest. However, identify-

ing a right system for an application of interest requires the deep understanding of the

application’s computational requirements and the capability of different programming

models, system software tools, and architectures. Fortunately, this is not a problem

for every parallel programmer. A small number of researchers and project leaders can

identify right systems for different classes of applications, and many programmers can

follow such guidelines.

Different architectures also require different performance optimization techniques

or even different high level algorithms—the GPU implementation in Chapter 2 is

an example. Heterogenous systems are even more challenging. Programmers need

to assign computational kernels to an appropriate part of the system and also tune

120



different kernels for different architectures. Wide vector units in accelerator archi-

tectures improve peak performance per watt, but it is very difficult to achieve a

significant fraction of the peak performance in many cases. Vector units in NVIDIA

GPUs and Intel architectures are also widely different. In NVIDIA GPUs, multiple

threads in a thread group share a wide vector unit (one vector lane per thread),

and only the threads in a same execution path can use vector lanes. A vector unit

can be partially exploited. In Intel architectures, one thread—without simultaneous

multithreading—monopolize a vector unit. In a give cycle, a vector unit (more pre-

cisely, a single pipeline stage of the vector unit) is either 100% utilized or 0% utilized.

With simultaneous multithreading, a vector unit can be 100% utilized in each cycle if

at least one of the threads sharing the vector unit has a vector instruction to execute.

Programmers need to consider these differences in software development.

7.2 System Software Support for Nested Irregular Paral-
lelism

There are several unavoidable factors that make parallel programming difficult. For

large scale supercomputers and applications with huge matrices and vectors, the high

level understanding of data access and communication patterns is crucially important

to develop scalable software. Programmers—with the MPI programming model—

need to manually control the mapping of computations to computing units and data

transfers between computing units. There has been very little success in automat-

ing this process. Yet, there are another class of applications—with nested irregular

parallelism—that can benefit a lot from system software support. Again, it is ex-

tremely difficult for compilers to automatically find the structure of parallelism in

such applications. However, if programmers expose the parallelism in their applica-

tion by marking parallelization points in their code, compilers can easily understand

the hierarchy of parallelism without complex dependency analysis. The hierarchical

121



nature of the parallelism in those applications also maps well with the hierarchi-

cal memory subsystem of modern parallel computers. The MapReduce programming

model demonstrated that proper system software support can significantly reduce pro-

gramming effort for a class of data-intensive applications. Our experience with Intel

TBB reveals another possibility for applications with nested irregular parallelism.

Yet, there are only a very limited number of programs that exploit irregular nested

parallelism. For example, Robinson et al. [106] presented experimental results using

benchmarks with only flat parallelism in their paper introducing Intel TBB. Yet,

Intel TBB’s main strength is in its support for nested parallelism. Also, IBM im-

plemented LU factorization, Fourier transform, and streaming and random access

benchmarks using X10 [5]—which is a HPCS language. HPCS languages’ support

for nested irregular parallelism and atomic blocks distinguishes those languages from

other alternatives (e.g. UPC). None of the four benchmarks is suitable to test such

features. If there were abundant benchmarks with nested irregular parallelism, they

would report the experimental results for those programs as well. We believe that

the current scarcity of such programs is not due to the lack of applications with such

computational characteristics but more due to other reasons. First, exploiting nested

irregular parallelism is too difficult without proper system software support. Second,

nested irregular parallelism is more common for commercial or emerging applications

than traditional scientific applications, but users of those applications are mostly

using desktop PCs with two or four cores. The payoff for using nested irregular par-

allelism is not very high for such systems. Third, there are not enough success stories

to attract more programmers. The core count in desktop PCs will increase fast. Ma-

jor software and hardware vendors are also working on system software tools—Intel’s

TBB and Microsoft’s TPL for shared memory systems and HPCS languages for large

clusters—to support irregular nested parallelism. Missing parts are benchmark pro-

grams to test such tools and success stories to entice more programmers. We provide

122



the phylogenetic tree reconstruction code using Intel TBB in this dissertation to fulfill

the requirements. In addition, we discuss several ideas to further improve those tools

in the remainder of this section.

The work stealing algorithm of Cilk [21] selects a victim thread in random and

steals work from the thread’s highest level non-empty work queue; the highest level

work queue corresponds to the coarsest parallelism. Randomly selecting a victim

thread ignores the hierarchical nature of memory subsystem. Stealing work from

the highest level work queue reduces communication but often increases memory

footprint. Stealing from close threads first can improve performance especially for

large scale parallel computers. If a thread steals work from another thread in the

same chip, the increase in communication may not be significant. In this case, stealing

work from a low level work queue may produce better results in many cases. If

a thread needs to steal work from distant thread (especially a thread in another

shared memory node), stealing from a high level work queue will be more desirable to

reduce communication. A scheduler can consider interconnection network bandwidth

utilization and cache usage in making decisions. Our phylogenetic tree reconstruction

code serves as a benchmark to test such ideas.

The final goal of our phylogenetic tree construction code is to reconstruct the

phylogenetic tree using a leadership class supercomputer. Our code currently con-

siders only inversion, but we are planning to adopt more biologically feasible—but

also computationally more expensive—models. Our code is written in a highly ex-

tensible form, and we also expect other researchers to use our code as a template

to test their algorithms. This involves several issues. We will provide enough par-

allelism to exploit all the cores in a leadership class supercomputer. However, we

want to run our code on desktop PCs or small clusters as well. A supercomputer

version of our code will provide over one million-way parallelism, but this will be

too much parallelism for a desktop PC. Manually adjusting a degree of parallelism

123



for every target system is not a viable option. Also, if we replace the current pair-

wise distance computation routine and the median solver with more computationally

expensive ones, the structure of parallelism and the amount of computing and com-

munication in each parallelization point change dramatically. The situation is much

more problematic if other researchers add their routines to our code. They may not

understand the structure of parallelism in our code. Also, different biologists may

use data with different characteristics. For example, biologists studying mammalian

nuclear genomes may use a small number of large genomes, while biologists studying

organellar genomes may use a large number of small genomes. This affects the struc-

ture of parallelism. Furthermore, the best parallelization strategy changes based on

the communication and thread management cost of a target system. This calls for

an auto-tuning approach. Assume that programmers provide abundant parallelism

and users provide typical input data sets. If system software can select appropriate

parallelization points through an auto-tuning process, this can significantly improve

software productivity.

Our phylogenetic tree construction code first reads the input genome data and

also updates the pairwise distances between the input genomes. Those data do not

change after they are first updated and are read repeatedly. If those data do not fit

within cache memory, they need to be read again and again from main memory. In

a NUMA system, reading data from local memory is faster than reading data from

remote memory. This is even more true for large scale clusters. If system software

provides a simple interface for programmers to mark read only and heavily read data

and automatically replicates the data and reads the data from the local copy, this

can improve performance with the minimum increase in programming complexity.

124



7.3 Transactional Memory

Data synchronization and nondeterministic execution are major factors that com-

plicate parallel programming—especially for irregular applications. Transactional

Memory (TM) cannot completely solve the problems, but TM can significantly al-

leviate the problems if TM has low performance overhead for most practical cases.

Programmers do not need to consider different data synchronization primitives. TM

also lowers the pressure to minimize the size of critical sections. Programmers need

to consider only transaction level interleavings, and this prunes out a very large frac-

tion of the interleaving scenarios and lowers the degree of nondeterminism. All these

combined, TM largely reduces the gap between high-level algorithm design and its

actual implementation.

However, software TM incurs high performance overhead if a large fraction of

the executed instructions are transactional loads and stores. Our experimental re-

sults for the new TM algorithm to compute a minimum spanning forest (Chapter 3)

highlight the point. Hardware TM has only moderate performance overhead even

for computations with a large number of transactional loads and stores as Dice et

al. [42] demonstrated with the Sun Rock processor. Yet, hardware TM has several

shortcomings. Hardware TM cannot handle transactions that overflow its capacity

and does not scale beyond the scalability limit of the cache coherency mechanism.

Providing forward progress guarantee in high contention scenarios is more costly for

hardware TM as well. Software TM can complement hardware TM, and we consider

this as the software TM’s role. To achieve high performance, programmers need to

reduce the size of very large transactions or decompose a very large transaction to

multiple smaller transactions. TM still needs to guarantee correctness regardless of

transaction sizes to allow programmers to incrementally tune their code. TM may

not provide low performance overhead on large scale clusters for applications with

a very low degree of locality. TM still needs to deliver reasonable performance—for

125



applications with hierarchical locality—if transactional loads and stores across shared

memory nodes are infrequent. TM also needs to provide forward progress guarantee

for extremely high contention scenarios though TM may not provide high performance

or scalability for those cases. Software TM can serve this role. Software TM needs to

provide mechanisms to guarantee correctness and forward progress while minimizing

the interference on the performance of hardware Transactional Memory primitives,

and we consider this as an important research topic.

7.4 Hybrid Data Transfer Mechanism

The Cell Broadband Engine architecture’s DMA based block data transfer mechanism

and the MPI programming model’s block data transfer mechanism are effective for

communication-intensive applications with high spatial locality and predictable data

access patterns. Moving one large data chunk is more efficient than transferring

many small data chunks in most parallel computers. This often leads to higher

bandwidth utilization as demonstrated in Chapters 2 and 4. We can fine-control data

transfers using a block data transfer mechanism to better exploit the locality in data

access patterns. Block data transfer mechanisms also have an advantage over cache

coherence protocol based data transfer mechanisms in scalability. Cache coherence

protocols guarantee the coherency of a cache line by allowing only one thread to

own the line for modification, but this incurs additional coherency traffic. This is

unnecessary overhead for thread local variables—if we ignore context switching or

thread migration. Read only variables do not require a mechanism to guarantee

coherency. Computations often consists of multiple phases with a barrier between

two phases. In many cases, flushing data at the end of each phase is sufficient to

avoid data races. In these cases, block data transfer mechanisms have a performance

advantage.

However, using a block data transfer mechanism requires additional coding. The

126



reward for additional coding effort in terms of performance is not significant for small

granularity irregular data accesses or infrequently executed parts of the code. A

memory subsystem that combines the two different data transfer mechanisms can

exploit the strengths of the two in a synergistic way. Programmers can fast prototype

their algorithms using only a cache coherence protocol based data transfer mecha-

nism and incrementally tune data transfers using a block data transfer mechanism.

IBM released a software based cache coherence library for the Cell Broadband Engine

architecture. Using this mechanism for prototyping and using DMA data transfers

only when it is needed to achieve high performance can improve productivity for

many applications. The NVIDIA Fermi architecture also has a hybrid memory sys-

tem with both cache memory and local (incoherent) scratch pad memory though its

cache memory is only semi-coherent—a cache line needs to be flushed to L2 cache to

guarantee coherency. We consider these as precursors of hybrid memory systems to

achieve high performance with the minimum increase in programming complexity.

7.5 Future Research Directions

We are interested in extending our parallelization work for the COGNAC software

package to extreme scale systems. Currently, COGNAC is based on inversion dis-

tance which compromises flexibility and biological plausibility to limit computational

complexity. We are working on designing a more biologically plausible distance metric

and algorithms to compute pairwise distances and median genomes for the metric.

This will significantly increase the amount of computing to simulate genome data.

We plan to address this increase by using a supercomputer with one million-way par-

allelism (such as the IBM Blue Waters). The programming challenges discussed in

this dissertation—such as managing nested irregular parallelism and addressing data

synchronization and communication issues—will become significantly more prominent

in this scale. Our future research will identify key computational challenges and the

127



role of system software and architectural support in scaling applications with nested

irregular parallelism to extreme scale computers.

7.6 Final Remarks

This dissertation presents parallelization and architecture specific performance tuning

for various kernels and emerging applications for a spectrum of programming models

and architectures. The diversity in programming models and architectures challenges

programmers as they need to identify a right set of programming models and ar-

chitectures for their applications and design and implement algorithms for different

systems. However, this dissertation also demonstrates that this diversity can signifi-

cantly improve software productivity if programmers use right tools in right places.

For example, using Transactional Memory largely reduces the difficulty in addressing

data synchronization issues in irregular graph algorithms. The hybrid combination

of a highly multithreaded system and a MapReduce cluster exploits the strengths of

the two in a synergistic way and solves large-scale complex network analysis prob-

lems at hand. System software support for nested irregular parallelism—such as Intel

TBB—largely reduces the challenges in parallelizing our COGNAC software package.

This dissertation also identifies that system software and architectural support

have strong potential to significantly reduce the complexity of parallel programming.

Understanding future applications and their computational challenges is crucially

important to realize the potential, and we provide feedback to the system software

and computer architecture communities by providing benchmarks and suggestions

especially for system software support for nested irregular parallelism, Transactional

Memory, and communication and data transfer mechanisms.

There are several unavoidable factors that complicate parallel programming. Those

will remain as tasks for researchers and programmers. Still, we believe that collab-

orative efforts among the researchers and developers in the application, algorithm,

128



system software, and computer architecture domains can significantly improve the

current practice and largely reduce the difficulty. This dissertation—by discussing the

relevant issues from an application- and algorithm-centric viewpoint—participates in

the collaborative efforts to solve the current parallel computing challenges.

129



REFERENCES

[1] “AMD CodeAnalyst,” 2009. http://developer.amd.com/cpu/CodeAnalyst.

[2] “PAPI,” 2009. http://icl.cs.utk.edu/papi.

[3] “The R project for statistical computing,” 2009. http://www.r-project.org/.

[4] “Welcome to Apache Hadoop!,” 2009. http://hadoop.apache.org/core.

[5] “X10-hpcc09,” 2009. http://x10.codehaus.org/hpcc09.

[6] Adams, M. D. and Kossentini, F., “Jasper: a software-based JPEG-2000
codec implementation,” in Proc. IEEE Int’l Conf. on Image Processing (ICIP),
(Vancouver, Canada), Sep. 2000.

[7] Albert, R., Jeong, H., and Barabasi, A.-L., “The diameter of the world
wide web,” Nature, vol. 401, pp. 130–131, 1999.

[8] Albert, R., Jeong, H., and Barabasi, A.-L., “Error and attack tolerance
of complex networks,” Nature, vol. 406, pp. 378–382, 2000.

[9] AMD Corporation, Software Optimization Guide for AMD Family 10h Proces-
sors, 3.06 ed., Apr. 2008.

[10] Ananian, C. S., Asanovic, K., Kuszmaul, B. C., Leiserson, C. E.,
and Lie, S., “Unbounded transactional memory,” in Proc. Int’l Conf. on High-
Performance Computer Architecture (HPCA), (San Francisco, CA), Feb. 2005.

[11] Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands,
P., Keutzer, K., Patterson, D. A., Plishker, W. L., Shalf, J.,
Williams, S. W., and Yelick, K. A., “The landscape of parallel computing
research: A view from berkeley,” Tech. Rep. UCB/EECS-2006-183, Electrical
Engineering and Computer Sciences, University of California at Berkeley, Dec.
2006.

[12] Bader, D. A., Agarwal, V., and Kang, S., “Computing transforms on the
IBM Cell Broadband Engine,” Parallel Computing, vol. 35, no. 3, pp. 119–137,
2009.

[13] Bader, D. A. and Cong, G., “Fast shared-memory algorithms for computing
the minimum spanning forest of sparse graphs,” J. of Parallel and Distributed
Computing, vol. 66, no. 11, 2006.

130



[14] Bader, D. A., Cong, G., and Feo, J., “On the architectural requirements
for efficient execution of graph algorithms,” in Proc. Int’l Conf. on Parallel
Processing (ICPP), (Oslo, Norway), Jun. 2005.

[15] Bader, D. A., Kanade, V., and Madduri, K., “SWARM: A parallel pro-
gramming framework for multi-core processors,” in Proc. Workshop on Mul-
tithreaded Architectures and Applications (MTAAP), (Long Beach, CA), Mar.
2007.

[16] Bader, D. A. and Madduri, K., “Designing multithreaded algorithms for
breadth-first search and st-connectivity on the Cray MTA-2,” in Proc. Int’l
Conf. on Parallel Processing (ICPP), (Columbus, OH), Aug. 2006.

[17] Bader, D. A. and Madduri, K., “A graph-theoretic analysis of the human
protein-interaction network using multicore parallel algorithms,” Parallel Com-
puting, vol. 34, no. 11, pp. 627–639, 2008.

[18] Bader, D. A. and Madduri, K., “SNAP, small-world network analysis and
partitioning: an open-source parallel graph framework for the exploration of
large-scale networks,” in Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS), (Miami, FL), Apr. 2008.

[19] Bienia, C., Kumar, S., Singh, J. P., and Li, K., “The parsec bench-
mark suite: characterization and architectural implications,” in Proc. Int’l
Conf. on Parallel Architectures and Compilation Techniques (PACT), (Toronto,
Canada), Oct. 2008.

[20] Bisciglia, C., Kimball, A., and Michels-Slettvet, S., “Lecture 5:
Graph Algorithms & PageRank,” 2007. http://code.google.com/edu/

submissions/mapreduce-minilecture/lec5-pagerank.ppt.

[21] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E.,
Randall, K. H., and Zhou, Y., “Cilk: an efficient multithreaded runtime
system,” ACM SIGPLAN Notices, vol. 30, no. 5, pp. 207–216, 1995.

[22] Blundell, C., Devietti, J., Lewis, E. C., and Martin, M. M. K., “Mak-
ing the fast case common and the uncommon case simple in unbounded trans-
actional memory,” in Proc. Int’l Symp. on Computer Architecture (ISCA), (San
Diego, CA), Jun. 2007.

[23] Blundell, C., Lewis, E. C., and Martin, M. M. K., “Deconstructing
transactional semantics: The subtleties of atomicity,” in Proc. Ann. Workshop
on Duplicating, Deconstructing, and Debunking (WDDD), (Madison, WI), Jun.
2005.

[24] Bocchino Jr., R. L., Adve, V. S., Adve, S. V., and Snir, M., “Parallel
programming must be deterministic by default,” in Proc. USENIX conf. on Hot
topics in parallelism. (HotPar), (Berkeley, CA), Mar. 2009.

131



[25] Bockenbach, O., Knaup, M., and Kachelriess, M., “Implementation of a
cone-beam backprojection algorithm on the Cell Broadband Engine processor,”
in Proc. SPIE Medical Imaging, (San Diego, CA), Feb. 2007.

[26] Bourque, G. and Pevzner, P. A., “Genome-scale evolution: Reconstructing
gene orders in the ancestral species,” Genome Research, vol. 12, pp. 26–36, 2002.

[27] Burt, P. J. and Anderson, E. H., “The Laplacian pyramid as a compact
image code,” IEEE Trans. Communications, vol. 31, no. 4, pp. 532–540, 1983.

[28] Cavalli-Sforza, L. L. and Edwards, A. W. F., “Phylogenetic analysis:
models and estimation procedures,” American J. of Human Genetics, vol. 19,
no. 3, pp. 233–257, 1967.

[29] Chakrabarti, D., Zhan, Y., and Faloutsos, C., “R-MAT: A recursive
model for graph mining,” in Proc. SIAM Int’l Conf. on Data Mining (SDM),
(Lake Buena Vista, FL), Apr. 2004.

[30] Charles, J., Jassi, P., Ananth, N. S., Sadat, A., and Fedorova, A.,
“Evaluation of the Intel Core i7 turbo boost feature,” in Proc. IEEE Int’l Symp.
on Workload Characterization (IISWC), (Austin, TX), Oct. 2009.

[31] Chaver, D., Prieto, M., Pinuel, L., and Tirado, F., “Parallel wavelet
transform for large scale image processing,” in Proc. Int’l Parallel and Dis-
tributed Processing Symp. (IPDPS), (Ft. Lauderdale, FL), Apr. 2002.

[32] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and
Skadron, K., “A performance study of general-purpose applications on graph-
ics processors using CUDA,” J. of Parallel and Distributed Computing, vol. 68,
no. 10, pp. 1370–1380, 2008.

[33] Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J., “Acceler-
ating compute-intensive applications with GPUs and FPGAs,” in Proc. IEEE
Symp. on Application Specific Processors (SASP), (Anaheim, CA), Jun. 2008.

[34] Chen, T., Raghavan, R., Dale, J., and Iwata, E., “Cell Broadband En-
gine Architecture and its first implementation-a performance view,” IBM J. of
Research and Development, vol. 51, no. 5, pp. 559–572, 2007.

[35] Choi, J.-D. and Srinivasan, H., “Deterministic replay of Java multithreaded
applications,” in Proc. SIGMETRICS Symp. on Parallel and Distributed Tools
(SPDT), (Welches, OR), 1998.

[36] Chung, J., Minh, C. C., Carlstrom, B. D., and Kozyrakis, C., “Par-
allelizing SPECjbb2000 with transactional memory,” in Proc. Workshop on
Transactional Memory Workloads (WTW), (Ottawa, Canada), Jun. 2006.

[37] Cohen, J., “Graph twiddling in a MapReduce world,” Computing in Science
and Engineering, vol. 11, no. 4, pp. 29–41, 2009.

132



[38] Costa, L. F., Rodrigues, F. A., Travieso, G., and Villas Boas, P. R.,
“Characterization of complex networks: A survey of measurements,” Advances
In Physics, vol. 56, no. 1, pp. 167–242, 2007.

[39] Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., and
Nussbaum, D., “Hybrid transactional memory,” in Proc. Int’l Conf. on Archi-
tecture Support for Programming Languages and Operating Systems (ASPLOS),
(San Jose, CA), Oct. 2006.

[40] Dean, J. and Ghemawat, S., “MapReduce: simplified data processing on
large clusters,” in Proc. USENIX Symp. on Operating System Design and Im-
plementation (OSDI), (San Francisco, CA), Dec. 2004.

[41] Dice, D., Herlihy, M., Lea, D., Lev, Y., Luchangco, V., Mesard, W.,
Moir, M., Moore, K., and Nussbaum, D., “Applications of the adaptive
transactional memory test platform,” in Proc. ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT), (Salt Lake City, UT), Feb. 2008.

[42] Dice, D., Lev, Y., Moir, M., and Nussbaum, D., “Early experience with
a commercial hardware transactional memory implementation,” in Proc. Int’l
Conf. on Architecture Support for Programming Languages and Operating Sys-
tems (ASPLOS), (Washington, DC), Mar. 2009.

[43] Dice, D., Shalev, O., and Shavit, N., “Transactional locking II,” in Proc.
Int’l Symp. on Distributed Computing (DISC), (Stockholm, Sweeden), Sep 2006.

[44] Faloutsos, M., Faloutsos, P., and Faloutsos, C., “On power-law re-
lationships of the internet topology,” in Proc. ACM Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIG-
COMM), (Cambridge, MA), Aug. 1999.

[45] Felsenstein, J., “Evolutionary trees from DNA sequences: a maximum like-
lihood approach,” J. of Molecular Evolution, vol. 17, pp. 368–376, 1981.

[46] Fertin, G., Labarre, A., Rusu, I., Tannier, E., and Vialette, S.,
Combinatorics of Genome Rearrangements. MIT press, 2009.

[47] Fitch, W. M., “Toward defining the course of evolution: minimum change for
a specific tree topology,” Systematic Zoology, vol. 20, pp. 406–416, 1971.

[48] Gepner, P., Fraser, D. L., and Kowalik, M. F., “Second generation
quad-core Intel Xeon processors bring 45 nm technology and a new level of per-
formance to HPC applications,” Lecture Notes in Computer Science, vol. 5101,
pp. 417–426, 2008.

[49] Guerraoui, R., Kapalka, M., and Vitek, J., “STMBench7: a benchmark
for software transactional memory,” in Proc. European Conf. on Computer Sys-
tems (EuroSys), (Lisbon, Portugal), Mar. 2007.

133



[50] Hammond, L., Wong, V., Chen, M., Carlstrom, B. D., Davis, J. D.,
Hertzberg, B., Prabhu, M. K., Wijaya, H., Kozyrakis, C., and
Olukotun, K., “Transactional memory coherence and consistency,” in Proc.
Int’l Symp. on Computer Architecture (ISCA), (Munchen, Germany), Jun.
2004.

[51] Harris, T., Marlow, S., Jones, S. P., and Herlihy, M., “Composable
memory transactions,” in Proc. ACM Symp. on Principles and Practice of Par-
allel Programming (PPoPP), (Chicago, IL), Jun. 2005.

[52] Hartigan, J. A., “Minimum mutation fits to a given tree,” Biometrics, vol. 29,
no. 1, pp. 53–65, 1973.

[53] Helman, D. R. and JáJá, J., “Prefix computations on symmetric multipro-
cessors,” J. of Parallel and Distributed Computing, vol. 61, no. 2, pp. 265–278,
2001.

[54] Herlihy, M., Luchangco, V., Moir, M., and Scherer III, W. N., “Soft-
ware transactional memory for dynamic-sized data structures,” in Proc. Ann.
Symp. on Principle of Distributed Computing (PODC), (Boston, MA), Jul.
2003.

[55] Herlihy, M. and Moss, J., “Transactional memory: Architectural support
for lock-free data structures,” in Proc. Int’l Symp. on Computer Architecture
(ISCA), (San Diego, CA), May 1993.

[56] Huson, D. H., Nettles, S. M., and Warnow, T. J., “Disk-covering, a fast-
converging method for phylogenetic tree reconstruction,” J. of Computational
Biology, vol. 6, no. 3/4, pp. 369–386, 1999.

[57] Huson, D. H., Vawter, L., and Warnow, T., “Solving large scale phylo-
genetic problems using DCM2,” in Proc. Int’l Conf. on Intelligent Systems for
Molecular Biology (ISMB), (Heidelberg, Germany), Aug. 1999.

[58] Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference
Manual, Nov. 2007.

[59] Ipek, E., Mutlu, O., Martinez, J. F., and Caruana, R., “Self-optimizing
memory controllers: A reinforcement learning approach,” ACM SIGARCH
Computer Architecture News, vol. 36, pp. 39–50, Jun. 2008.

[60] ISO and IEC, ISO/IEC 15444-1: Information technology-JPEG2000 image cod-
ing system-part 1: Core coding system, 2000.

[61] JáJá, J., An Introduction to Parallel Algorithms. Addison-Wesley Publishing
Company, 1992.

134



[62] Jimenez-Gonzalez, D., Martorell, X., and Ramirez, A., “Performance
analysis of Cell Broadband Engine for high memory bandwidth applications,” in
Proc. Int’l Symp. on Performance Analysis of Systems and Software (ISPASS),
(San Jose, CA), Apr. 2007.

[63] Kang, S. and Bader, D. A., “Optimizing JPEG2000 still image encoding
on the Cell Broadband Engine,” in Proc. Int’l Conf. on Parallel Processing
(ICPP), (Portland, OR), Sep. 2008.

[64] Kang, S. and Bader, D. A., “An efficient transactional memory algorithm
for computing minimum spanning forest of sparse graphs,” in Proc. ACM Symp.
on Principles and Practice of Parallel Programming (PPoPP), (Raleigh, NC),
Feb. 2009.

[65] Kang, S. and Bader, D. A., “Large scale complex network analysis us-
ing a hybrid combination of cloud and a highly multithreaded system,” in
Proc. Workshop on Multithreaded Architectures and Applications (MTAAP),
(Atlanta, GA), Apr. 2010.

[66] Kang, S., Bader, D. A., and Vuduc, R., “Understanding the design trade-
offs among current multicore systems for numerical computing,” in Proc. Int’l
Parallel and Distributed Processing Symp. (IPDPS), (Rome, Italy), May 2009.

[67] Kang, S., Tang, J., Schaeffer, S. W., and Bader, D. A., “Rec-DCM-
Eigen: Reconstructing a less parsimonious but more accurate tree in shorter
time.” submitted.

[68] Kendall, M. G., “A new measure of rank correlation,” Biometrika Trust,
vol. 30, no. 1, pp. 81–93, 1938.

[69] Kistler, M., Perrone, M., and Petrini, F., “Cell multiprocessor com-
munication network: Built for speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23,
2006.

[70] Krishnaswamy, D. and Orchard, M., “Parallel algorithms for the two-
dimensional discrete wavelet transform,” in Proc. Int’l Conf. on Parallel Pro-
cessing (ICPP), (Raleigh, NC), Aug. 1994.

[71] Kulkarni, M., Pingali, K., Ramanarayanan, G., Walter, B., Bala,
K., and Chew, L. P., “Optimistic parallelism benefits from data partitioning,”
in Proc. Int’l Conf. on Architecture Support for Programming Languages and
Operating Systems (ASPLOS), (Seattle, WA), Mar. 2008.

[72] Kutil, R., “A single-loop approach to simd parallelization of 2-D wavelet
lifting,” in Proc. Int’l Conf. on Parallel, Distributed, and Network-Based Pro-
cessing (PDP), (Montbeliard, France), Feb. 2006.

[73] Lee, E. A., “The problem with threads,” Tech. Rep. UCB/EECS-2006-1, Uni-
versity of California Berkeley, Jan. 2006.

135



[74] Lian, C.-J., Chen, K.-F., Chen, H.-H., and Chen, L.-G., “Analysis and
architecture design of block-coding engine for EBCOT in JPEG 2000,” IEEE
Trans. Circuits and Systems, vol. 13, no. 3, pp. 219–230, 2003.

[75] Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J., “NVIDIA
Tesla: A unified graphics and computing architecture,” IEEE Micro, vol. 28,
pp. 39–55, Mar. 2008.

[76] Lusk, E. and Yelick, K., “Languages for high-productivity computing: the
DARPA HPCS language project,” Parallel Processing Letters, vol. 17, no. 1,
pp. 89–102, 2007.

[77] Madduri, K., Ediger, D., Jiang, K., Bader, D. A., and Chavarŕıa-
Miranda, D., “A faster parallel algorithm and efficient multithreaded imple-
mentations for evaluating betweenness centrality on massive datasets,” Tech.
Rep. LBNL-1703E, Lawrence Berkeley National Laboratory, Apr. 2009.

[78] Marathe, V. J., Scherer III, W. N., and Scott, M. L., “Adaptive soft-
ware transactional memory,” in Proc. Int’l Symp. on Distributed Computing
(DISC), (Cracow, Poland), Mar. 2005.

[79] McKee, S. A., Wulf, W. A., Aylor, J. H., Klenke, R. H., Salinas,
M. H., Hong, S. I., and Weikle, D. A. B., “Dynamic access ordering for
streamed computations,” IEEE Trans. Computers, vol. 49, no. 11, pp. 1255–
1271, 2000.

[80] Meerwald, P., Norcen, R., and Uhl, A., “Parallel JPEG2000 image coding
on multiprocessors,” in Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS), (Ft. Lauderdale, FL), Apr. 2002.

[81] Mehlhorn, K. and Näher, S., “The LEDA platform of combinatorial and
geometric computing,” Communications of the ACM, vol. 38, no. 1, pp. 96–102,
1995.

[82] Meredith, J. S., Alam, S. R., and Vetter, J. S., “Analysis of a com-
putational biology simulation technique on emerging processing architectures,”
in Proc. IEEE Int’l Workshop on High Performance Computational Biology
(HICOMB), (Long Beach, CA), 2007.

[83] Minh, C. C., Chung, J., Kozyrakis, C., and Olukotun, K., “STAMP:
Stanford transactional applications for multi-processing,” in Proc. IEEE Int’l
Symp. on Workload Characterization (IISWC), (Seattle, WA), Sep. 2008.

[84] Minh, C. C., Trautmann, M., Chung, J., McDonald, A., Bronson,
N., Casper, J., Kozyrakis, C., and Olukotun, K., “An effective hybrid
transactional memory system with strong isolation guarantees,” in Proc. Int’l
Symp. on Computer Architecture (ISCA), (San Diego, CA), Jun. 2007.

136



[85] Montesinos, P., Hicks, M., King, S. T., and Torrellas, J., “Capo: a
software-hardware interface for practical deterministic multiprocessor replay,”
in Proc. Int’l Conf. on Architecture Support for Programming Languages and
Operating Systems (ASPLOS), (Washington, DC), Mar. 2009.

[86] Moore, K. E., Bobba, J., Moravan, M. J., Hill, M. D., and Wood,
D. A., “LogTM: Log-based transactional memory,” in Proc. Int’l Conf. on
High-Performance Computer Architecture (HPCA), (Austin, TX), Feb. 2006.

[87] Moret, B. M. E., Bader, D. A., and Warnow, T., “High-performance
algorithm engineering for computational phylogenetics,” J. of Supercomputing,
vol. 22, pp. 99–111, 2002.

[88] Moret, B. M. E. and Shapiro, H. D., DIMACS Monographs in Discrete
Mathematics and Theoretical Computer Science: Computational Support for
Discrete Mathematics 15, ch. An empirical assessment of algorithms for con-
structing a minimal spanning tree, pp. 99–117. American Mathematical Society,
1994.

[89] Moret, B. M. E., Siepel, A. C., Tang, J., and Liu, T., “Inversion medians
outperform breakpoint medians in phylogeny reconstruction from gene-order
data,” Lecture Note in Computer Science, vol. 2452, pp. 521–536, 2002.

[90] Moret, B. M. E., Tang, J., Wang, L.-S., and Warnow, T., “Steps toward
accurate reconstructions of phylogenies from gene-order data,” J. of Computer
and System Sciences, vol. 65, no. 3, pp. 508–525, 2002.

[91] Moret, B. M. E., Wyman, S., Bader, D. A., Warnow, T., and Yan,
M., “A new implementation and detailed study of breakpoint analysis,” in Proc.
Pacific Symp. on Biocomputing (PSB), (Big Island, HI), Jan. 2001.

[92] Muta, H., Doi, M., Nakano, H., and Mori, Y., “Multilevel parallelization
on the Cell/B.E. for a Motion JPEG 2000 encoding server,” in Proc. ACM Int’l
Conf. on Multimedia (MM), (Augsburg, Germany), Sep. 2007.

[93] Mutlu, O. and Moscibroda, T., “Enhancing the performance and fairness
of shared DRAM systems with parallelism-aware batch scheduling,” in Proc.
Int’l Symp. on Computer Architecture (ISCA), (Beijing, China), Jun. 2008.

[94] Natarajan, C., Christenson, B., and Briggs, F., “A study of perfor-
mance impact of memory controller features in multi-processor server environ-
ment,” in Proc. Workshop on Memory Performance Issues (WMPI), (Munich,
Germany), Jun. 2004.

[95] Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics. Oxford
University Press, 2000.

[96] Nickolls, J., Buck, I., Garland, M., and Skadron, K., “Scalable parallel
programming with CUDA,” ACM Queue, vol. 6, pp. 40–53, Mar. 2008.

137



[97] Nielsen, O. and Hegland, M., “Parallel performance of fast wavelet trans-
form,” Int’l J. of High Speed Computing, vol. 11, no. 1, pp. 55–73, 2000.

[98] NVIDIA Corporation, NVIDIA CUDA Compute Unified Device Architecture
Programming Guide, 2.0 ed., Jun. 2008.

[99] Olszewski, M., Ansel, J., and Amarasinghe, S., “Kendo: Efficient de-
terministic multithreading in software,” in Proc. Int’l Conf. on Architecture
Support for Programming Languages and Operating Systems (ASPLOS), (Wash-
ington, DC), Mar. 2009.

[100] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J.,
Lefohn, A. E., and Purcell, T. J., “A survey of general-purpose compu-
tation on graphics hardware,” Computer Graphics Forum, vol. 26, pp. 80–113,
Mar. 2007.

[101] Perfumo, C., Sonmez, N., Stipic, S., Unsal, O., Cristal, A., Har-
ris, T., and Valero, M., “The limits of software transactional memory
(STM):dissecting Haskell STM applications on a many-core environment,” in
Proc. ACM Int’l Conf. on Computing Frontiers (CF), (Ischia, Italy), May 2008.

[102] Polka, L. A., Kalyanam, H., Hu, G., and Krishnamoorthy, S., “Pack-
age technology to address the memory bandwidth challenge for tera-scale com-
puting,” Intel Technology Journal, vol. 11, no. 3, 2007.

[103] Rafique, N., Lim, W. T., and Thottethodi, M., “Effective management
of DRAM bandwidth in multicore processors,” in Proc. Int’l Conf. on Parallel
Architectures and Compilation Techniques (PACT), (Brasov, Romania), Sep.
2007.

[104] Rajwar, R., Herlihy, M., and Lai, K., “Virtualizing transactional mem-
ory,” in Proc. Int’l Symp. on Computer Architecture (ISCA), (Madison, WI),
Jun. 2005.

[105] Rixner, S., Dally, W. J., Kapasi, U. J., Mattson, P., and Owens,
J. D., “Memory access scheduling,” in Proc. Int’l Symp. on Computer Archi-
tecture (ISCA), (Vancouver, Canada), Jun. 2000.

[106] Robison, A., Voss, M., and Kukanov, A., “Optimization via reflection on
work stealing in TBB,” in Proc. Int’l Parallel and Distributed Processing Symp.
(IPDPS), (Miami, FL), 2008.

[107] Roshan, U. W., Warnow, T., Moret, B. M. E., and Williams, T. L.,
“Rec-I-DCM3: a fast algorithmic technique for reconstructing phylogenetic
trees,” in Proc. Computational Systems Bioinformatics Conf. (CSB), (Stan-
ford, CA), Aug. 2004.

138



[108] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk,
D. B., and Hwu, W. W., “Optimization principles and application perfor-
mance evaluation of a multithreaded GPU using CUDA,” in Proc. ACM Symp.
on Principles and Practice of Parallel Programming (PPoPP), (Salt Lake City,
UT), Feb. 2008.

[109] Ryoo, S., Rodrigues, C. I., Stone, S. S., Stratton, J. A., Ueng, S.,
Baghsorkhi, S. S., and Hwu, W. W., “Program optimization carving for
GPU computing,” J. of Parallel and Distributed Computing, vol. 68, no. 10,
pp. 1389–1401, 2008.

[110] Saidani, T., Piskorski, S., Lacassagne, L., and Bouaziz, S., “Paral-
lelization schemes for memory optimization on the Cell processor: a case study
of image processing algorithm,” in Proc. Workshop on memory performance
(MEDEA), (Brasov, Romania), Sep. 2007.

[111] Saitou, N. and Nei, M., “The neighbor-joining method: a new method for
reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4,
no. 4, pp. 406–425, 1987.

[112] Sankoff, D. and Blanchette, M., “Multiple genome rearrangement and
breakpoint phylogeny,” J. of Computational Biology, vol. 5, no. 3, pp. 555–570,
1998.

[113] Sankoff, D. and El-Mabrouk, N., “Genome rearrangement,” in Current
Topics in Computational Molecular Biology, pp. 135–156, MIT Press, 2002.

[114] Schenk, O., Christen, M., and Burkhart, H., “Algorithmic performance
studies on graphics processing units,” J. of Parallel and Distributed Computing,
vol. 68, no. 10, pp. 1360–1369, 2008.

[115] Scott, M. L., Spear, M. F., Dalessandro, L., and Marathe, V. J.,
“Delaunay triangulation with transactions and barriers,” in Proc. IEEE Int’l
Symp. on Workload Characterization (IISWC), (Boston, MA), Sep. 2007.

[116] Shriraman, A., Spear, M. F., H., H., Marathe, V. J., Dwarkadas,
S., and Scott, M. L., “An integrated hardware-software approach to flexible
transactional memory,” in Proc. Int’l Symp. on Computer Architecture (ISCA),
(San Diego, CA), Jun. 2007.

[117] Sweldens, W., “The lifting scheme: A construction of second generation
wavelets,” SIAM J. on Mathematical Analysis, vol. 29, pp. 511–546, Mar. 1998.

[118] Tang, J. and Moret, B. M. E., “Phylogenetic reconstruction from gene-
rearrangement data with unequal gene content,” in Proc. Int’l Workshop on
Algorithms and Data Structures (WADS), (Ottawa, Canada), Jul. 2003.

139



[119] Tang, J. and Moret, B. M. E., “Scaling up accurate phylogenetic recon-
struction from gene-order data,” Bioinformatics, vol. 19, no. 1, pp. 305–312,
2003.

[120] Taubman, D., “High performance scalable image compression with EBCOT,”
IEEE Trans. Image Processing, vol. 9, no. 7, pp. 1158–1170, 2000.

[121] Tremblay, M. and Chaudhry, S., “A third-generation 65nm 16-core 32-
thread plus 32-scout-thread CMT SPARC processor,” in Proc. Int’l Solid State
Circuits Conf. (ISSCC), (San Francisco, CA), Feb. 2008.

[122] Vaidyanathan, P. P., “Quadrature mirror filter banks, m-band extensions,
and perfect reconstruction techniques,” IEEE ASSP Magazine, vol. 4, no. 7,
pp. 4–20, 1987.

[123] Vijaykumar, T., Gopal, S., Smith, J. E., and Sohi, G., “Speculative
versioning cache,” in Proc. Int’l Conf. on High-Performance Computer Archi-
tecture (HPCA), (Las Vegas, NV), Jan. 1998.

[124] Volkov, V. and Demmel, J. W., “Benchmarking GPUs to tune dense linear
algebra,” in Proc. Int’l Conf. on High Performance Computing and Networking
(SC), (Austin, TX), Nov. 2008.

[125] von Praun, C., Bordawekar, R., and Cascaval, C., “Modeling opti-
mistic concurrency using quantitative dependence analysis,” in Proc. ACM
Symp. on Principles and Practice of Parallel Programming (PPoPP), (Salt Lake
City, UT), Feb. 2008.

[126] Watson, I., Kirkham, C., and Lujan, M., “A study of a transactional
parallel routing algorithm,” in Proc. Int’l Conf. on Parallel Architectures and
Compilation Techniques (PACT), (Brasov, Romania), Sep. 2007.

[127] Watts, D. J. and Strogatz, S. H., “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, pp. 440–442, 1998.

[128] Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Dem-
mel, J., “Optimization of sparse matrix-vector multiplication on emerging mul-
ticore platforms,” in Proc. Int’l Conf. on High Performance Computing and
Networking (SC), 2007.

[129] Yang, L. and Misra, M., “Coarse-grained parallel algorithms for multi-
dimensional wavelet transforms,” J. of Supercomputing, vol. 12, no. 1-2, pp. 99–
118, 1998.

[130] Zhang, Y., Rauchwerger, L., and Torrellas, J., “Hardware for specula-
tive run-time parallelization in distributed shared-memory multiprocessors,” in
Proc. Int’l Conf. on High-Performance Computer Architecture (HPCA), (Las
Vegas, NV), Jan. 1998.

140


