105 research outputs found

    Autonomous Discovery and Maintenance of Mobile Frees-Space-Optical Links

    Get PDF
    Free-Space-Optical (FSO) communication has the potential to play a significant role in future generation wireless networks. It is advantageous in terms of improved spectrum utilization, higher data transfer rate, and lower probability of interception from unwanted sources. FSO communication can provide optical-level wireless communication speeds and can also help solve the wireless capacity problem experienced by the traditional RF-based technologies. Despite these advantages, communications using FSO transceivers require establishment and maintenance of line-of-sight (LOS). We consider autonomous mobile nodes (Unmanned Ground Vehicles or Unmanned Aerial Vehicles), each with one FSO transceiver mounted on a movable head capable of scanning in the horizontal and vertical planes. We propose novel schemes that deal with the problems of automatic discovery, establishment, and maintenance of LOS alignment between these nodes with mechanical steering of the directional FSO transceivers in 2-D and 3-D scenarios. We perform extensive simulations to show the effectiveness of the proposed methods for both neighbor discovery and LOS maintenance. We also present a prototype implementation of such mobile nodes with FSO transceivers. The potency of the neighbor discovery and LOS alignment protocols is evaluated by analyzing the results obtained from both simulations and experiments conducted using the prototype. The results show that, by using such mechanically steerable directional transceivers and the proposed methods, it is possible to establish optical wireless links within practical discovery times and maintain the links in a mobile setting with minimal disruption

    Directional Link Management using In-Band Full-Duplex Free Space Optical Transceivers for Aerial Nodes

    Get PDF
    Free-space optical (FSO) communication has become very popular for wireless applications to complement and, in some cases, replace legacy radio-frequency for advantages like unlicensed band, spatial reuse, and enhanced security. Even though FSO can achieve very high bit-rate (tens of Gbps), range limitation due to high attenuation and weather dependency has always restricted its practical implementation to indoor application like data centers and outdoor application like Project Loon. Building-to-building communication, smart cars, and airborne drones are potential futuristic wireless communication sectors for mobile ad-hoc FSO networking. Increasing social media usage demands high-speed mobile connectivity for applications like video call and live video stream on the go. For these scenarios, implementation of in-band full-duplex FSO (IBFD-FSO) transceivers will potentially double the network capacity to improve performance and reliability of the communication link. In this work, we focus on implementing prototypes of FSO transceivers on mobile platform using both off-the-shelf and customized components. Current goal is to implement a prototype of IBFD-FSO transceiver using VCSEL as transmitter and PIN photodiode as receiver at 900 nm wavelength. We are considering atmospheric attenuation, FSO beam propagation model, geometry, and tiling of the components to optimize the link performance while keeping the package low-cost and mobile, ensuring connectivity to mass population. Eventually, our goal is to have communication between multiple airborne drones through IBFD-FSO transceivers by discovering each other and maintaining established link. Applications of this research is not only limited to the conceived idea of smart cities, but it can also have real impact on disaster management in times of wildfire or hurricane

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions

    Analysis and performance improvement of consumer-grade millimeter wave wireless networks

    Get PDF
    Millimeter-wave (mmWave) networks are one of the main key components in next cellular and WLANs (Wireless Local Area Networks). mmWave networks are capable of providing multi gigabit-per-second rates with very directional low-interference and high spatial reuse links. In 2013, the first 60 GHz wireless solution for WLAN appeared in the market. These were wireless docking stations under theWiGig protocol. Today, in 2019, 60 GHz communications have gained importance with the IEEE 802.11ad amendment with different products on the market, including routers, laptops and wireless Ethernet solutions. More importantly, mmWave networks are going to be used in next generation cellular networks, where smartphones will be using the 28 GHz band. For backbone links, 60 GHz communications have been proposed due to its higher directionality and unlicensed use. This thesis fits in this frame of constant development of themmWave bands to meet the needs of latency and throughput that will be necessary to support future communications. In this thesis, we first characterize the cost-effective design of COTS (commercial off-the-shelf) 60 GHz devices and later we improve their two main weaknesses, which are their low link distance and their non-ideal spatial reuse. It is critical to take into consideration the cost-effective design of COTS devices when designing networking mechanisms. This is why in this thesis we do the first-of-its-kind COTS analysis of 60 GHz devices, studying the D5000 WiGig Docking station and the TP-Link Talon IEEE 802.11ad router. We include static measurements such as the synthesized beam patterns of these devices or an analysis of the area-wide coverage that these devices can fulfill. We perform a spatial reuse analysis and study the performance of these devices under user mobility, showing how robust the link can be under user movement. We also study the feasibility of having flying mmWave links. We mount a 60 GHz COTS device into a drone and perform different measurement campaigns. In this first analysis, we see that these 60 GHz devices have a large performance gap for the achieved communication range as well as a very low spatial reuse. However, they are still suitable for low density WLANs and for next generation aerial micro cell stations. Seeing that these COTS devices are not as directional as literature suggests, we analyze how channels are not as frequency stable as expected due to the large amount of reflected signals. Ideally, frequency selective techniques could be used in these frequency selective channels in order to enlarge the range of these 60 GHz devices. To validate this, we measure real-world 60 GHz indoor channels with a bandwidth of 2 GHz and study their behavior with respect to techniques such as bitloading, subcarrier switch-off, and waterfilling. To this end, we consider a Orthogonal Frequency-Division Multiplexing (OFDM) channel as defined in the IEEE 802.11ad standard and show that in point of fact, these techniques are highly beneficial in mmWave networks allowing for a range extension of up to 50%, equivalent to power savings of up to 7 dB. In order to increase the very limited spatial reuse of these wireless networks, we propose a centralized system that allows the network to carry out the beam training process not only to maximize power but also taking into account other stations in order to minimize interference. This system is designed to work with unmodified clients. We implement and validate our system on commercial off-the-shelf IEEE 802.11ad hardware, achieving an average throughput gain of 24.67% for TCP traffic, and up to a twofold throughput gain in specific cases.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Andrés García Saavedra.- Secretario: Matilde Pilar Sánchez Fernández.- Vocal: Ljiljana Simi

    Seven Defining Features of Terahertz (THz) Wireless Systems: A Fellowship of Communication and Sensing

    Full text link
    Wireless communication at the terahertz (THz) frequency bands (0.1-10THz) is viewed as one of the cornerstones of tomorrow's 6G wireless systems. Owing to the large amount of available bandwidth, THz frequencies can potentially provide wireless capacity performance gains and enable high-resolution sensing. However, operating a wireless system at the THz-band is limited by a highly uncertain channel. Effectively, these channel limitations lead to unreliable intermittent links as a result of a short communication range, and a high susceptibility to blockage and molecular absorption. Consequently, such impediments could disrupt the THz band's promise of high-rate communications and high-resolution sensing capabilities. In this context, this paper panoramically examines the steps needed to efficiently deploy and operate next-generation THz wireless systems that will synergistically support a fellowship of communication and sensing services. For this purpose, we first set the stage by describing the fundamentals of the THz frequency band. Based on these fundamentals, we characterize seven unique defining features of THz wireless systems: 1) Quasi-opticality of the band, 2) THz-tailored wireless architectures, 3) Synergy with lower frequency bands, 4) Joint sensing and communication systems, 5) PHY-layer procedures, 6) Spectrum access techniques, and 7) Real-time network optimization. These seven defining features allow us to shed light on how to re-engineer wireless systems as we know them today so as to make them ready to support THz bands. Furthermore, these features highlight how THz systems turn every communication challenge into a sensing opportunity. Ultimately, the goal of this article is to chart a forward-looking roadmap that exposes the necessary solutions and milestones for enabling THz frequencies to realize their potential as a game changer for next-generation wireless systems.Comment: 26 pages, 6 figure

    Hybrid LoRa-IEEE 802.11s Opportunistic Mesh Networking for Flexible UAV Swarming

    Get PDF
    Unmanned Aerial Vehicles (UAVs) and small drones are nowadays being widely used in heterogeneous use cases: aerial photography, precise agriculture, inspections, environmental data collection, search-and-rescue operations, surveillance applications, and more. When designing UAV swarm-based applications, a key "ingredient" to make them effective is the communication system (possible involving multiple protocols) shared by flying drones and terrestrial base stations. When compared to ground communication systems for swarms of terrestrial vehicles, one of the main advantages of UAV-based communications is the presence of direct Line-of-Sight (LOS) links between flying UAVs operating at an altitude of tens of meters, often ensuring direct visibility among themselves and even with some ground Base Transceiver Stations (BTSs). Therefore, the adoption of proper networking strategies for UAV swarms allows users to exchange data at distances (significantly) longer than in ground applications. In this paper, we propose a hybrid communication architecture for UAV swarms, leveraging heterogeneous radio mesh networking based on long-range communication protocols—such as LoRa and LoRaWAN—and IEEE 802.11s protocols. We then discuss its strengths, constraints, viable implementation, and relevant reference use cases
    • …
    corecore