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Abstract: Unmanned Aerial Vehicles (UAVs) and small drones are nowadays being widely used
in heterogeneous use cases: aerial photography, precise agriculture, inspections, environmental
data collection, search-and-rescue operations, surveillance applications, and more. When designing
UAV swarm-based applications, a key “ingredient” to make them effective is the communication
system (possible involving multiple protocols) shared by flying drones and terrestrial base stations.
When compared to ground communication systems for swarms of terrestrial vehicles, one of the
main advantages of UAV-based communications is the presence of direct Line-of-Sight (LOS) links
between flying UAVs operating at an altitude of tens of meters, often ensuring direct visibility
among themselves and even with some ground Base Transceiver Stations (BTSs). Therefore, the
adoption of proper networking strategies for UAV swarms allows users to exchange data at distances
(significantly) longer than in ground applications. In this paper, we propose a hybrid communication
architecture for UAV swarms, leveraging heterogeneous radio mesh networking based on long-range
communication protocols—such as LoRa and LoRaWAN—and IEEE 802.11s protocols. We then
discuss its strengths, constraints, viable implementation, and relevant reference use cases.

Keywords: UAV swarm; mesh networks; LoRa; LoRaWAN; IEEE 802.11s; integration

1. Introduction

The diffusion and wide adoption of Unmanned Aerial Vehicles (UAVs) has grown
in a significant way in the last years due to the availability of inexpensive and “smarter”
Commercial-Off-The-Shelf (COTS) products by both world-leading UAV manufacturers
(e.g., DJI [1]) and other small companies, which develop ad hoc solutions for specific
scenarios. In the last five years, the price of a Ready-to-Fly (RTF) solution equipped with (i)
a Global Navigation Satellite System (GNSS), (ii) a 4K resolution camera fixed on a gimbal
(namely, a device for keeping an instrument stable and aligned with horizon, typically
consisting of rings pivoted at right angles), (iii) on-board advanced sensing elements (e.g.,
obstacle detection and anti-collision systems), and (iv) a reliable communication system
between the UAV and the terrestrial pilot (able to provide a real-time high-quality video
stream) reduced from more than 1000 USD (e.g., in 2015, the DJI Phantom 3 Pro UAV [2] had
an initial price of 1259 USD) to 400–500 USD (e.g., the new DJI Mini 2 [3] released in 2020
had a price of 449 USD). Moreover, this cost reduction boosted an impressive market growth
of the commercial drones sector, further enhanced by the current COVID-19 pandemic
situation, in which the adoption of UAVs for remote monitoring and enhanced services
provisioning exponentially increased [4]. While the commercial use of UAVs for aerial
photography and remote monitoring can rely on consolidated and reliable solutions (e.g.,
wireless communication systems among the drone and the pilot for Visual Line-of-Sight
(VLOS) operations), there are still several technical difficulties to overcome when dealing
with long-range UAV swarm applications, namely Beyond VLOS (BVLOS) operations,
where a multitude of UAVs may simultaneously be flying over a wide area and must be
connected to each other in order to coordinate and perform complex operations.
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Focusing on these heterogeneous scenarios, in this paper, we propose a hybrid oppor-
tunistic mesh networking approach based on Long Range (LoRa) [5] and IEEE 802.11s [6]
protocols for flying UAV swarms, involving both UAV-to-UAV and UAV-to-ground commu-
nications. This architecture allows multiple flying drones to exchange essential data—e.g.,
telemetry information—with each other or toward one or more ground control centers,
thus opening new possibilities for UAV-based applications over wide operational areas.
Long Range Wide Area Network (LoRaWAN [7] at a Medium Access Control (MAC) layer)
as well as LoRa (at the physical (PHY) layer) are attractive as they allow users to reach
long distances (on the order of several kilometers) in Line-of-Sight (LOS) applications [8,9],
e.g., inside the swarm. On the other end, IEEE 802.11 (Wi-Fi) [10] is widely adopted in a
multitude of applications and is often used for UAV-to-pilot real-time video broadcasting,
given its direct visibility-operating distance ranging from a few hundreds of meters up
to one or more kilometers. Nevertheless, in a complete LOS environment (such as that
between flying UAVs), the selection of an appropriate Wi-Fi implementation can allow
for high bandwidth data stream between multiple nearby UAVs, thus opening additional
possibilities given its proper features. Therefore, the use of IEEE 802.11s, which builds
upon IEEE 802.11, is very attractive.

In order to exploit the strengths of two communication protocols of interest and to
limit the impact of their constraints in the adoption of UAV swarms, a “meshification” of
LoRa- and IEEE 802.11s-based communication patterns (through opportunistic switching,
handling, and management mechanisms) may allow us to cover several use cases based on
the use of UAV swarms as well as to provide a good tradeoff between operational range and
available bandwidth. Then, combining different heterogeneous wireless communication
networks—namely, a LoRa-based communication layer for long distances and constrained
payload communications, and an IEEE 802.11s-based communication layer for mid-range
and unconstrained payload applications—will allow them to coexist. Hence, being on
two separate layers, a smart switching mechanism must be defined to choose the most
suitable network to be used in a certain time instant, also based on the task’s requirements
and network quality conditions (e.g., based on Received Signal Strength Index (RSSI)
and localization of flying neighbor UAVs or ground control stations). Therefore, the
proposed switching mechanism takes into account the capabilities and constraints of each
available communication protocol in terms of both operational range and admitted payload,
optimizing the performances in the considered application scenarios.

In order to avoid confusion, we preliminarily comment on how the term UAV will be
used in the remainder of this paper. In general terms, UAV is used to indicate various types
of remotely or autonomously piloted aerial vehicles, ranging from small quad-copters—also
denoted as drones and with a weight from hundreds of grams up to tens of kilograms—to
large-size aerial vehicles involved in military operations—with a weight up to thousands
of kilograms. In the following, the term UAV will refer to commonly and widely adopted
commercial drones having a Maximum TakeOff Weight (MTOW) of 25 kg and flying at
a maximum Above Ground Level (AGL) of 120 m, given the aerospace regulation rules
applied in both Europe (by the European Union Aviation Safety Agency (EASA) [11]) and
the US (by the Federal Aviation Administration (FAA) [12]).

The remainder of this paper is organized as follows. In Section 2, a literature overview
on UAV-oriented communication solutions and relevant research projects is presented,
analyzing their advantages and disadvantages. In Section 3, the communication protocols
adopted in the proposed hybrid architecture are detailed and analyzed, discussing their
strengths and limitations. Section 4 presents the proposed hybrid LoRa-IEEE 802.11s
opportunistic mesh networking approach, while in Section 5, the opportunistic network
interfaces switching mechanism is discussed. In Section 6, the theoretical and experimental
performance results are shown, while Section 7 discusses a few relevant use cases and
scenarios. Finally, in Section 8, we draw our conclusions and possible improvements for
the proposed system architecture.
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2. State-of-the-Art

Commercial UAVs actually use different wireless communication protocols to transmit
or receive essential data—e.g., a real-time First Point of View (FPV) video stream from
the drone—in order to provide an advanced flying experience to the pilot. Other data
transmitted wirelessly include drone’s telemetry data and video streams (downlink) and,
of course, the drone’s input commands sent from the Radio Controller (RC) handled by the
pilot (uplink).

Nowadays, modern commercial solutions often adopt the Wi-Fi protocol (in the
2.4 GHz and 5.8 GHz frequency bands) as the communication protocol between the UAV
and the RC, thus providing a bidirectional communication channel sufficiently reliable
to allow the pilot to fly in an obstacle-free environment for hundreds of meters. To
this end, it is possible that advanced UAVs use proprietary communication protocols or
Wi-Fi broadcast-based enhanced protocols, such as OcuSync [13] and LightBridge [14]
transmission protocols (both defined by DJI), able to guarantee a LOS operational range
of several kilometers. Instead, some high-end products are already working on Long-
Term Evolution (LTE) cellular networks for high-definition real-time FPV video feeds,
while telemetry and RC data are exchanged using different protocols (depending on the
transmitter and receiver manufacturer [15]) based on different signal modulations (e.g.,
Spektrum [16], FrSky ACCST [17], and Futaba [18]) but typically working on well-known
carrier frequencies—i.e., 2.4 GHz or other free Industrial, Scientific and Medical (ISM)
bands (e.g., 868 MHz in Europe). Unfortunately, most of these solutions are suitable
only for UAV-to-pilot mono-directional communications (with bidirectionality applying
only to a limited number of protocols), with different data sent depending the type of
communication protocol and considered applications.

Considering flying communications between UAVs, nowadays, they could rely on
(i) Wi-Fi-oriented protocols (at different carrier frequencies) for LOS short/mid-range
communication links; (ii) long-range protocols (e.g., LoRa) for communications over a
large area, still with LOS communication links; and (iii) cellular networks for Non-LOS
(NLOS) link-based applications, where a third-party cellular network is needed to establish
a communication between multiple flying UAVs.

Several studies have shown the possible adoption of LoRa-based protocols (e.g.,
LoRaWAN) for UAV communications, with different long-range applications, implementa-
tions, and use cases. A preliminary use of LoRaWAN is discussed in [19], where multiple
UAVs are used as flying LoRaWAN gateways (GWs) to provide a network coverage to
ground LoRaWAN-based end nodes and to exploit LoRaWAN only for ground-to-UAV
applications in emergency-like situations while the backbone network relies on Wi-Fi
(assuming LOS links). A similar approach is presented in [20], where multiple flying
UAVs, each one equipped with a LoRaWAN GW, cooperate to form a complex LoRaWAN-
oriented urban surveillance system to provide efficient and selective network coverage.
However, in all the cited works, LoRa-based communications are almost always used
for ground-to-UAV interactions among on-field end nodes and the LoRaWAN network
(composed of both flying UAVs, acting as GWs, and ground GWs) in order to efficiently
extend the coverage of the whole network for specific use cases in some operational regions.
Another UAV-enabled flying LoRaWAN networking approach was discussed in [21], with
a focus on disaster management applications, combining flying LoRaWAN GWs with
Wi-Fi communications from a UAV-to-ground Access Point (AP) and LoRaWAN end nodes,
with the goal to follow the emergency operators to collect data and positions. Even in
this scenario, LoRa-based communications are used for data collection from ground end
nodes, aiming at following the moving ground devices to guarantee a reliable network for
emergency applications.

A different scenario with UAV-to-ground LoRaWAN communications, in particular
as a secondary telemetry system, given the strength of LoRa modulation and LoRaWAN
protocol implementation, is presented in [22]. In detail, the authors showed that LoRaWAN
could be employed for communications among flying UAVs and the existing LoRaWAN
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ground network, in particular to transmit essential telemetry data (such as GNSS lati-
tude/longitude/altitude, drone speed, and heading direction) needed to safely handle a
UAV in the presence of a RC–UAV link failure. Moreover, the possible operational ranges
of this implementation are shown, investigating and simulating the behavior of LoRa RF
signals at different UAV speeds and distances among the UAV and the GW in an urban
environment. Unfortunately, the authors of [22] do not consider the use of LoRa for multi-
ple flying UAVs communications—to let the farthest drones using nearby flying UAVs as
relays broadcast their telemetry data to the LoRaWAN ground network—thus limiting the
possible use cases and effective operational ranges of the system. Another UAV-to-ground
LoRaWAN-based communication application has been proposed in [23], in which the use
of multiple UAVs with on-board sensors for air quality monitoring applications is discussed,
further providing additional system operational results. Even in this case, LoRa-based
communications are still used for UAV-to-ground communications without exploiting the
potential use of flying long-range communications for some specific scenarios.

Considering the adoption of Wi-Fi in UAV swarms, in [24], an integrated solution
for an autonomous flying Wireless Mesh Network (WMN), involving swarms of small
UAVs, was presented. In detail, UAVs build an IEEE 802.11s-based network to let two end
systems interact through intermediate airborne relays. These relays correspond to UAVs of
the swarm, and all UAVs act as APs. However, this solution is not applicable to scenarios
where the distance among the nodes will become larger than the maximum allowed to
keep an IEEE 802.11s connection active.

The concept of Flying Ad hoc NETworks (FANETs) was discussed in [25], where
additional link quality routing metrics were introduced and a network simulator-based
performance analysis was discussed. Algorithmic and theoretical aspects for autonomous
placement of relay nodes in a mesh network were investigated in [26]. In detail, the
authors aimed to maximize the network throughput, but mainly using flying UAVs as
coverage extenders for ground nodes and requiring knowledge of the three-dimensional
morphological conditions of the environment. Because of this, UAVs only act as relays for
data to be shared among ground stations instead of building a flying network for flying
data routing. A similar approach was presented in [27], where a WMN-based mobile Cloud
system for relay of intelligent information, based on Delay Tolerant Networking (DTN)
and caching capabilities, was presented. However, even in this case, the mesh network was
composed by ground nodes instead of flying drones.

A UAV-based emergency communication network for post-disaster management
was discussed in [28], where smartphones on the ground were used as relays through an
Android mobile App in turn handling UDP packets. Moreover, the authors equipped their
UAVs with a Raspberry Pi (RPi) as an on-board Wi-Fi-enabled device, thus organizing the
flying network not as a mesh one but as a chain of Wi-Fi nodes. In [29], the challenges of
a decentralized UAV swarm deployment in resource-constrained farming environments
were discussed. For similar works, the presented network does not cope with a real mesh
one but requires the election of a “central” drone, in charge of performing some additional
(and more complex) tasks with respect to the other UAVs composing the swarm.

In [30], a dynamic mesh network needed for data transfer among high mobility nodes
(i.e., RP runs a Better Approach To Mobile Ad Hoc Network advanced, B.A.T.M.A.N.
adv [31]) is presented. In detail, the authors discussed their experimental results in a
range between 0 m and 60 m, with a maximum effective 1-hop range of approximately
130 m. Nevertheless, their architecture requires multiple GWs connected with a ground
control center, thus remaining a ground mesh network with no aerial part. A simulated
double-layer mesh network, designed and evaluated for disaster recovery scenarios, was
proposed in [19], where UAVs act as GWs in a Wi-Fi ad hoc network for the traffic generated
between mobile LoRaWAN nodes and a remote ground station. Similar to other works,
even in this case, the only available network among the flying drones is based on the Wi-Fi
protocol, thus limiting the maximum distance between flying drones. In [32], a solution for
orchestrating and synchronizing a swarm of drones is proposed. In detail, their network
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focuses on a leader node (piloted by a human) that is followed by the remaining drones
composing the swarm, on the basis of the leader’s Wi-Fi signal strength. The authors
proposed operating a swarm of UAVs without relying on any existing infrastructure but
only on ad hoc communications. This approach is attractive if the drones need to strictly
follow their leader; at the opposite, it needs to be improved in the case when UAVs need
to fly independently from each other. Moreover, in order to relay data from the point of
interest to the ground control center, a certain number of intermediate UAVs (depending on
the distance) will be required rather than adopting long-range communication protocols.

Finally, the application of TempoSpatial-Software Defined Networking (TS-SDN) to
UAV networks, in order to extend their network coverage, was described in [33]. In order to
reach this goal, a network of stratospheric balloons can be used to extend network access as
well as involving ground stations and UAVs equipped with mechanically or electronically
steered beams to establish highly directional links, even to nearby peers. Moreover, the
authors simulate a scenario composed of more than 500 nodes to verify the behavior of
different routing protocols.

3. Disjoint IEEE 802.11s and LoRa-Based Wireless Mesh Networking

As introduced in Section 1, our goal is to combine LoRa and IEEE 802.11s protocols to
develop an innovative hybrid mesh architecture. For the sake of completeness, we provide an
overview of IEEE 802.11s and LoRa/LoRaWAN in Sections 3.1 and 3.2, respectively.

3.1. IEEE 802.11s Mesh Protocol

The growing interest in mesh networking in the last decade from both industrial and
academic entities has led to the definition of the IEEE 802.11s protocol [6,34], an IEEE 802.11
standard amendment [10] specifically addressed to mesh networks. In particular: (i) the
PHY layers of both IEEE 802.11 and IEEE 802.11s are the same; (ii) new routing procedures
are introduced at the MAC layer rather than at the network layer; and (iii) in order to make
routing efficient, wireless nodes must have accurate knowledge of the links connecting
them to their 1-hop neighbors. In detail, an IEEE 802.11s mesh network, also denoted
as Mesh Basic Service Set (MBSS), is composed of different logical components [35], as
highlighted in Figure 1: (i) mesh stations (mesh STAs), participating in the creation of
the MBSS (with no hierarchical structure), having the same computational capabilities,
and being involved into path selection and packet forwarding (thus leading to a very
simple self-organizing network); (ii) Mesh Access Points (MAPs), required to integrate
a MBSS with other types of networks and to provide access to external networks; and
(iii) mesh gates, corresponding to logical components enabling the integration between
MBSS and infrastructure BSS (thus enabling the communication between mesh STAs and
non-mesh STAs). Finally, in order to enable the communication with non-IEEE 802.11 Local
Area Networks (LANs), other logical components, denoted as Mesh Portal Points (MPPs),
should be used to enable interactions with external entities.

Comparing a traditional IEEE 802.11 network with an IEEE 802.11s-based mesh
network, the latter has some advantages: (i) it enables low-cost and rapid deployment,
providing coverage in scenarios where wired networking is difficult; (ii) it is scalable and
self-organizing, since, thanks to the routing algorithm adopted inside the mesh, the network
can quickly adapt to the presence of a new joining node; and (iii) it can provide greater
coverage, exploiting multi-hop forwarding. However, there are also some drawbacks:
(i) the wireless medium is, in general, less reliable than the wired medium, and (ii) the data
rate is a decreasing function of the number of hops.

In an IEEE 802.11s-based network, the topology formation phase is based on the
transmission of messages, denoted as beacons, carrying information about the network
itself. Then, the first phase of the mesh network’s creation is the discovery phase, which
could follow either a passive approach (scanning to receive on-the-air beacon frames) or an
active approach (transmitting probe frames). In this phase, each mesh STA transmits beacon
frames (used also for topology maintenance and synchronization) and responds with probe
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response frames when a probe request frame is received, thus advertising its presence to its
neighbors. As a side note, we highlight how one of the most important values exchanged
within beacons and probe response frames is the Mesh ID, used to identify a specific MBSS.
Then, once a mesh STA identifies the correct wireless node, the link is established and
maintained through the Mesh Peer (Link) Management (MPM) protocol [10], until mesh
STAs share a common profile.

Non-IEEE 802 LAN
MPP

Mesh Gate

Mesh Gate

Mesh Basic Service Set

Mesh STA

Mesh STA

Mesh STA

Mesh STA

Mesh Basic Service Set

Mesh STA

Mesh STA

Mesh STA

Infrastructure Basic Service Set

IEEE 802.11 STA IEEE 802.11 STA

IEEE 802.11 STAMAP

IEEE 802.11 / IEEE 802.3

Figure 1. Architecture of MBSS containing mesh STAs, IEEE 802.11 STAs, mesh gates, and MPPs, as
designed in the IEEE 802.11s standard [10].

Finally, IEEE 802.11s-based mesh networks can cope with different routing algorithms.
The default routing protocol for this kind of networks is the Hybrid Wireless Mesh Protocol
(HWMP) [36], providing both proactive and reactive path selection and being based on
the Ad hoc On-Demand Distance Vector (AODV) [37] routing protocol. To be precise,
the AODV protocol is properly adapted to supporting MAC layer routing and giving a
tree-oriented mechanism, where a mesh STA (generally working as an MPP) forwards
control messages to other mesh STAs. Nevertheless, other solutions, based on AODV and
the Optimized Link State Routing (OLSR) protocol [38], can be adopted. Among them, the
most relevant are B.A.T.M.A.N. [31] and Babel [39,40].

One of the motivations for the use of IEEE 802.11s-based mesh networking inside UAV
swarms is direct visibility among flying UAVs, especially if flying at high altitude (namely,
at an altitude over 50 m). This allows Wi-Fi radio signals to propagate without any physical
obstacle (e.g., trees, buildings, walls, etc.) and almost abiding by the Free Space Path Loss
(FSPL) law (i.e., Friis formula) for radio signal propagation in LOS environments [41,42].
Note also that, when flying over urban areas, residential Wi-Fi APs may interfere. Hence,
increasing the UAV’s flight altitude could further limit the detrimental effect of urban
(terrestrial) Wi-Fi networks on the IEEE 802.11s mesh-based networking in the UAV swarm
and could increase the operational range, given a limited noise floor on the Wi-Fi carrier
frequency spectrum. In any case, the adoption of mesh networking in UAV-centric scenarios
should either consider the inner features of these mobile environments—e.g., their volatility
because of limited battery energy, frequent topological changes, etc.—and thus consider
how mesh-oriented protocols perform in situations where, for limited time intervals, loops
and non-optimal paths among the drones may appear. Even if this may be seen as a
limitation, it still represents an interesting research field due to the current adoption of
UAVs in heterogeneous scenarios and their increasing involvement in various production
sectors.

Additionally, as UAV environments are volatile because of several issues such as
battery limitations, topological changes are frequent. When using the protocols mentioned
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above (AODV or OLSR, for instance), loops and nonoptimal paths between UAVs may
occur for a given time. I think this potential limitation (or others thought by the authors)
can be included in the description.

In such an IEEE 802.11s mesh network, flying drones close to each other (within a
certain distance, ranging from a few hundreds of meters up to one or more kilometers)
can directly communicate with each other using the IEEE 802.11s protocol. With reference
to Figure 2, an IEEE 802.11s-based mesh network may involve different types of communi-
cation nodes and may be structured by the following logical layers Lx (note that nodes at
L0 may be either terrestrial or aerial but higher layers, such as L1, L2, etc., are associated
with aerial nodes, i.e., UAVs):

• one (or more) root nodes at L0 and connected to the Internet (e.g., through a terrestrial
Wi-Fi AP, a LoRaWAN network interface, or a UAV with an on-board LTE cellular
network connection);

• one (or more) intermediate nodes connected to an upper-layer node (e.g., at L1, an
upper layer is one of the available root nodes located at L0) and, in turn, providing
connectivity to lower-layer intermediate nodes, also denoted as “leaf” nodes;

• one (or more) leaf nodes, exploiting the network connectivity offered by upper-layer
intermediate nodes and not acting as relays for any other UAV.

Figure 2. IEEE 802.11s mesh network-enabled UAV swarm with a single “root node” connected to
the Internet, involving nodes located at different layers and with different roles.

With reference to the layered mesh network shown in Figure 2, a structured mesh
network could be considered to have at least one root node that, in the case of a UAV swarm,
resides at L0 and may be connected to a ground IEEE 802.11s AP, thus providing an Internet
connectivity to the other swarm flying UAVs. Hence, given the operational range of the
IEEE 802.11s protocol, which can be increased and extended toward a certain area through
the adoption of directional antennas, it is possible to use the IEEE 802.11s protocol also to
connect flying UAVs with the ground station, thus establishing a high-speed bidirectional
connection among these entities and providing an Internet connectivity to the whole UAV
swarm.

3.2. LoRa and LoRaWAN Protocols

LoRaWAN is a long-range communication protocol [43] often used to create Low
Power Wide Area Networks (LPWANs) with a transmission range from about 300 m up to
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about 15 km. In Figure 3, we map LoRa and LoRaWAN on the ISO/OSI layered model:
LoRa is a proprietary modulation (patented by Semtech Corporation [5], the only LoRa
transceiver chip manufacturer) based on Chirp Spread Spectrum (CSS) and associated
with the PHY layer, while LoRaWAN is a MAC layer protocol, which relies on LoRa at the
PHY layer and implements an open network architecture regulated by the LoRa Alliance.
Moreover, LoRaWAN defines the network media access layer rules, authentication method,
device profile, and data encryption.

Figure 3. LoRaWAN and LoRa ISO/OSI model layers.

3.2.1. LoRa Protocol

LoRa modems modulate symbols into increasing and decreasing frequency chirps,
denoted as up-chirps and down-chirps, respectively. Then, each LoRa transmission has a
Preamble and a Start-of-Frame-Delimiter (SFD), which precede the payload data in order to al-
low the LoRa receiver to correctly decode the incoming transmission. In turn, Preamble and
SFD have different polarities [44,45], so they use up-chirps and down-chirps, respectively,
depending on these polarity settings (further details are provided in Section 4.2).

Depending on the geographical region of the system [46] and the PHY protocol defini-
tion, it is possible to partially manually tune the following LoRa modulation parameters:

• Carrier Frequency (CF), used for both transmission and listening operations and de-
pending on the operational region: in Europe, the LoRa operational CF is the EU
863–870 MHz ISM band, while in US, the 902–928 MHz ISM band is used.

• Bandwidth (BW), representing the width of the power spectrum density of LoRa RF
signal. It is typically set to 125 kHz, but can be increased up to 250 kHz or even
500 kHz in some regions by setting specific modulations parameters.

• Coding Rate (CR), defining the Forward Error Correction (FEC) rate of the channel
code used at the PHY layer in order to limit the detrimental impact of RF interference.
In particular, it affects the symbol airtime: decreasing the CR increases the symbol
overhead (the control redundancy increases) and extends the transmission airtime.
The default value of the CR is equal to 4/5.

• Spreading Factor (SF), representing the chirp spreading parameter and defining how
many chirps are sent per second. It ranges from SF7 and SF12. In detail, a large
SF increases the symbol airtime and the energy consumption, thus improving the
communication range but reducing the available data rate and the messages’ payload
size [47].

• Transmission Power (TP), identifying the energy irradiated by the LoRa node’s antenna.
It can range from −4 dBm to +20 dBm, but different regions could have different
power limits (for example, in Europe, the upper bound is +14 dBm).

• Chirp Polarity (IQ), defining the polarity of the transmitted chirps. In detail, the
polarity is often defined by the specific protocol implementation (e.g., LoRaWAN
GWs transmit packets to end nodes using an inverted polarity modulation, so that
these messages are discarded by neighbor GWs, while end devices transmit packets
using non-inverted polarity in order to be received by multiple GWs).
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• Sync Word, a 1-byte value parameter defined by the last two up-chirps of the LoRa’s
Preamble and used to differentiate LoRa networks using the same frequency bands [48].
Therefore, any device configured with a given Sync Word will discard any incoming
transmission if the Sync Word does not match its own. More precisely, default values
assumed by the Sync Word byte value for private LoRa networks are 0x12 for Semtech
SX127x devices and 0x1424 for SX126x devices; instead, public LoRa networks (such
as LoRaWAN or The Things Network, TTN [7]) will be represented by values equal to
0x34 for Semtech SX127x devices and to 0x3444 for SX126x devices [49].

Therefore, the choice of LoRa modulation parameters heavily affects its operational
ranges, power consumption, message payload sizes, and medium utilization, thus limiting
the number of active devices in the operational area. Proper selection of the values of the
LoRa modulation parameters is crucial.

3.2.2. LoRaWAN Protocol

In addition to the concepts discussed in Section 3.2, LoRaWAN defines different rules
needed to create a multi-star network topology composed by several LoRaWAN end nodes
and GWs, while its MAC layer is based on the ALOHA protocol [50]. The GWs, in turn,
act as bridges between on-field LoRaWAN devices and upper-layer components, such as
LoRaWAN Network Servers (NSs) and Application Servers (ASs), thus being connected
with IP-based networks and delivering data from end nodes to high layer systems and
vice-versa.

LoRaWAN end devices can be separated in three different classes—namely Classes A, B,
and C—according to the behavior of the end node in terms of downlink/uplink transmis-
sion schedule from a GW to the end node itself. All LoRaWAN end nodes must possess
Class A features, whereas Class B and Class C devices extend these features. We now
provide a few details about each class.

• Class A devices should support bidirectional communication but with a specific
limitation: uplink (transmit) messages can be sent at any time by the end device,
while downlink (receive) messages can be received only during two specific reception
windows at specific time instants (just after an uplink transmission) before going
back to sleep, as shown at the top of Figure 4. More in detail, after a first time
interval RXdelay−1 after the end of the uplink transmission interval TX, a Class A
device will open a short receive window RX1 listening to the same frequency band
used to transmit (uplink) the previous message. Then, if no downlink message is
received during this interval, the end device opens a second receive window (RX2)
after a second fixed time interval RXdelay−2 (calculated from the end of TX) on a
specific frequency band known by the end devices and gateways [51]. However, it is
noteworthy to highlight that, despite RXdelay−1 and RXdelay−2 being generally set to
1 s and 2 s, respectively, they may assume region-specific values and can be configured
by the LoRaWAN network operator [52]. Class A end devices guarantee the lowest
energy consumption.

• Class B devices are suitable for more downlink-demanding activities, since additional
regularly scheduled, fixed-time receive windows are defined in the LoRaWAN net-
work in addition to those of Class A, as shown in the middle of Figure 4. More in
detail, a time-synchronized beacon BCN is broadcast periodically by the network
via the LoRaWAN GWs, and Class B end devices must periodically receive one of
these BCNs in order to align their internal clock with the LoRaWAN NS—beacons
are transmitted by LoRaWAN GWs every Tbeacon = 128 s, with this beaconing period
representing a tradeoff between GW transmit duty cycle’s minimization and end de-
vice’s power consumption [53]. Therefore, on the basis of the beacon timing reference,
Class B devices can periodically open additional receive windows defined as ping
slots (PNGs), any of which may be used by the LoRaWAN NS to initiate a downlink
communication and with a ping slot periodicity Tping ∈ [1, 128] s.
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• Class C devices are appropriate for downlink-intensive scenarios, keeping their recep-
tion windows open unless they are transmitting—this strongly increases their power
consumption but offers the lowest latency for communication between LoRaWAN NS
and end devices. As a side effect, the use of portable batteries for Class C devices is
typically unfeasible. We remark that a LoRaWAN end device cannot simultaneously
belong to Class B and Class C [54]. More in detail, Class C end devices perform as
Class A ones—implementing the same receive windows RX1 and RX2—keeping,
however, their RX2 window open until their next TX uplink window: this allows
Class C devices to receive downlink messages during their RX2 window at almost
any time. Finally, between the end of TX and the beginning of RX1, an additional
short receive window RXadd (at the RX2 frequency and data rate) is also opened.

Figure 4. LoRaWAN class behaviors.

In order to transmit and receive data over LoRAWAN networks, LoRaWAN end
nodes must be registered and enabled on the AS of the LoRaWAN network provider,
which manages the LoRaWAN GWs. A LoRaWAN-enabled device can join the network
in two ways: with the Over-The-Air-Activation (OTAA) method or with the Activation-
By-Personalization (ABP) method. While both approaches are effective, OTAA is more
secure, since each time the end node sends a join-request packet; it receives a join-accept
with (i) the network identifier (NetID), (ii) a 32-bit identifier of the end device within the
network (DevAddr), and (ii) a security nonce value (AppNonce), which will be used by
the device to generate a network’s session key (NwkSKey) and an application session key
(AppSKey) in a secure way. Oppositely, an ABP-activated device is internally equipped with
DevAddr, AppSkey, and NwkSkey, which will be sent over the LoRaWAN network at each
transmission, in order to identify the transmitting node itself.

As discussed in Section 3.2.1, each LoRa transmission is associated with a specific
SF defining the airtime duration of the symbols and other signal features. Focusing on
the LoRa EU 868 MHz band, SF7 allows for higher data rates and the shortest symbol
airtime while SF12 guarantees the highest sensitivity (the weakest signal that a receiver
is able to identify and process) and longest transmission range at the cost of lowest data
rate and highest energy consumption. One of the main aspects to be taken into account is
the maximum packet payload allowed for each SF. The LoRaWAN Network layer (NET)
typically uses a 13-byte packet header for the protocol operation: this is a nonnegligible
value that, at high SFs, significantly affects the maximum available payload. More precisely,
the maximum payload size is reached with SF7, which allows for a maximum of 222 bytes
of data inside a single LoRa packet. The minimum, instead, is reached with SF12, with a
maximum of 51 bytes for user data. In Table 1, we summarized the values of payload limit,
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data rate, bitrate, receiver sensitivity, and typical operational range associated with each SF.
In all cases, a bandwidth of 125 kHz at a CF equal to 868 MHz is considered.

Table 1. LoRaWAN transmission parameters on the basis of the adopted SF. In all cases, the band-
width is 125 kHz and the CF is set to 868 MHz.

Spreading
Factor [SF]

Data Rate
[DR] [55]

Bitrate
[Bit/Sec]

Range
[km]

RX Sensitivity
[dBm]

Max Payload
[Bytes]

12 0 290 12+ −136 51
11 1 440 10 −133 51
10 2 980 8 −132 51
9 3 1760 6 −129 115
8 4 3125 4 −126 222
7 5 5470 2 −123 222

The LoRaWAN protocol in Europe uses 8 uplink channels (from end nodes to GWs)
defined inside the EU 863–870 MHz free ISM band. These uplink channels can also be used
as downlink channels on the first receiving window. There exists also a ninth uplink channel,
defined at 868.8 MHz frequency and using a Frequency-Shift Keying (FSK) modulation,
and a ninth downlink channel, defined at 869.525 MHz frequency and used only for the
second receiving window. In order to better highlight the frequency availability in Europe,
in Figure 5, we show a graphical representation of uplink and downlink channels defined
in the EU 863-870 MHz free ISM band.

Figure 5. Available LoRaWAN uplink and downlink channels defined in the EU 863-870 MHz frequency spectrum.

In terms of network utilization, LoRaWAN abides by the following policy rules to be
strictly followed to guarantee fair utilization:

• any LoRaWAN-enabled device has a daily maximum cumulative airtime of 30 s for
uplink messages;

• any LoRaWAN-enabled device has a maximum of 10 daily downlink messages (in-
cluding also acknowledgment (ACK) messages).

Moreover, the transmission airtime strictly depends on both SF and messages pay-
load [56]: as an example, a fixed 10-byte payload translates to up to 20 daily uplink
messages with SF12 or around 500 daily uplink messages with SF7. Additionally, Lo-
RaWAN devices must abide by the band duty cycle [57], which depends on the regional
area of use and is defined as the maximum time percentage usage of a channel [58]. For
the EU 868 MHz free band, the duty cycle goes from 0.1% to 10%, depending on the used
channel. This means that, every time a device transmits over a LoRaWAN channel, it cannot
transmit on the channel for a certain amount of time, which depends on the performed
transmission airtime. Finally, another constraint that LoRaWAN devices must satisfy is
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related to the maximum transmit power, which, for the EU868 band, is set to +14 dBm, as
defined by the European Telecommunications Standards Institute (ETSI).

Given the discussed features of LoRa and LoRaWAN protocols (especially the long
-ange transmissions in direct LOS conditions), these protocols become attractive in scenar-
ios involving UAV-to-UAV and UAV-to-ground communications, especially in all those
scenarios where a Wi-Fi AP is not available or the operational area is too large (and cannot
be covered) for a mesh network among flying UAVs based on IEEE 802.11s.

4. Proposed Hybrid Mesh Network

The hybrid network architecture proposed in this work is based on two overlaid mesh
layers based on different communication protocols, namely IEEE 802.11s and a novel LoRa-
based mesh protocol. The switching mechanism between the two layers and their hybrid
use are detailed in Section 5, with a description of the various network configurations that
can be implemented. In the current section, the proposed architectures of IEEE 802.11s and
LoRa-based layers are discussed, highlighting suitable implementations.

4.1. IEEE 802.11s Mesh Network Layer Implementation

The deployment of an IEEE 802.11s mesh network based on the concepts discussed
in Section 3.1 could be based on the adoption of the IEEE 802.11s protocol, where multi-
ple network entities are combined together in order to create a structured IEEE 802.11s
mesh network.

In order to associate IEEE 802.11s entities with flying UAVs, one can map the root node
with the IEEE 802.11s MPP, in turn connected to the ground through an IEEE 802.11s GW
AP. Then, intermediate and leaf nodes can be seen as MPs, able to connect and reconfigure
their links towards close MPs in order to keep the mesh network active. Alternatively, in
order to include in the IEEE 802.11s mesh network other inexpensive IEEE 802.11-enabled
UAV nodes (as STAs), some MPs could act as MAPs, thus providing network connectivity
to particular types, of leaf nodes. In order to better clarify this association, in Figure 6 a
reference scenario is shown.

Figure 6. UAV IEEE 802.11s-enabled mesh nodes roles.

Therefore, adopting this approach, it is possible to let the swarm dynamically adapt to
moving nodes (i.e., UAVs) joining the mesh network and looking for the “best” neighbor
node with which to connect, in turn evaluated and elected through an opportunistic
selection mechanism based on heterogeneous parameters and indicators and described
in Section 5.1.

4.2. Proposed LoRa-Based Access and Mesh Networking

We assume that data exchange exploits: (i) LoRa communications, operating at SF7,
125 kHz bandwidth, and inverted polarity, in order to mitigate the interference between
raw LoRa messages among UAVs and terrestrial LoRaWAN networks and (ii) LoRaWAN
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messages between end nodes and GWs. Based on the discussion for signal polarity
in Section 3.2.1 and owing to the fact that most of the traffic in LoRaWAN networks is given
by uplink packets, in the proposed raw LoRa implementation, polarity inversion is adopted
in order to minimize packet collisions between raw LoRa packets and LoRaWAN messages.

As an additional discussion point, the decision to adopt SF7 may be motivated by the
following several reasons.

• SF7 allows us to maximize the payload size: 222 bytes for LoRaWAN and 240 bytes
for LoRa communications.

• SF7 guarantees the highest bitrate and the shortest symbol airtime, thus minimizing
effective channel utilization rate and packet collisions and maximizing the number of
operating devices and, therefore, exchanged messages.

• SF7 is particularly suited for mobile devices equipped with LoRa-enabled radio
transceivers, such as flying UAVs (typically flying in a speed range between 20 km/h
and 70 km/h, and is less affected by the Doppler shift effect [59]). Oppositely,
higher SFs (e.g., SF12) are more affected by the Doppler shift effect, in particular
at speeds higher than 40 km/h, where the higher packet loss makes the communica-
tion unreliable.

• SF7 represents the best choice even considering that the duty cycle policy defined for
the EU 863–870 MHz band [57] requires that each transmission act is followed by an
off-period without any new transmission. Given that this off-period heavily depends
on the transmission airtime, then the chosen SF has an important role: SF7 has the
lowest off-period between consecutive messages, given the lower symbol time.

Another key characteristic of LoRa—and, thus, of LoRaWAN—that could be exploited
is related to the fact that no specific association is needed between an end node and a GW,
or among two end nodes, since each LoRa-enabled device listens for incoming messages
sent by neighbor devices (forwarding LoRa-modulated packets) using the same frequency
and modulation parameters. This highlights how LoRa could be useful for and is applicable
to long-range broadcasting applications, in which one or more nodes send their messages
in-air and nearby devices can hear them. In other words, this corresponds to a point-to-
multipoint communication. Moreover, if compared with typical cellular networks, it is clear
how LoRa uplink and downlink operations have almost the same link budget. Hence, if a
device can receive a LoRa message from a nearby device, it can also send a LoRa message
that can be heard by the originator node. In the end, this feature paves the way for the
use of LoRa for the definition of enhanced broadcasting mechanisms between flying UAVs
over a very wide area.

Focusing on the broadcasting mechanism, we propose a Time Division Multiple
Access (TDMA) scheduling of the LoRa PHY Access layer through consecutive “slots”.
In turn, each slot is characterized by a transmission window structured as follows: (i) a
Listen-Before-Talk (LBT) mechanism, associated with a random delay interval Tdelay (if
needed), and (ii) the LoRa message’s transmission time TXLoRa, depending on the adopted
SF (e.g., SF7) and on the amount of symbols (thus, the amount of bytes) to be transmitted.
Then, the transmission window is followed by a listening window RXLoRa, during which
the node listens to the LoRa channel for incoming messages broadcast by other UAVs
withinthe transmission range. For the sake of clarity, in Figure 7, a graphical representation
of the proposed TMDA-oriented LoRa-based broadcasting mechanism is shown.
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Figure 7. Proposed TDMA-scheduled LoRa-based broadcasting mechanism to be applied in UAV-to-
UAV communications. In detail, Tdelay is the initial random delay introduced in order to minimize
the possible packet collision on the LoRa PHY layer, TXLoRa is the packet’s transmission time, and
RXLoRa is the listening window on the medium.

Actually, the time duration has been defined neither for the receiver window RXLoRa
nor for the initial random delay TXdelay. However, RXLoRa should be at least longer than
the duty cycle transmission off-period, which depends on the transmitted message’s length,
airtime, and ETSI band duty cycle policy [60]. Moreover, the receiver window duration
should also depend on the amount of active UAVs in the swarm and on the number of
messages: it should be optimized in order to minimize the possible packets collisions of
the LoRa PHY layer. Again, these parameters have an impact on the system payload’s
capabilities, since the interval between messages defines the available output messages
and, therefore, the aggregated payload capacity of the system.

In general, the SF could be properly tuned in order to improve the overall performance.
On the basis of a preliminary experimental performance evaluation on the LoRa communi-
cation range for UAV application, discussed in Section 6, it is possible to anticipate that SF7
represents a viable choice for many application scenarios—this is also why SF7 has been
selected at the beginning of this subsection.

4.2.1. LoRa-Based UAV-to-UAV Mesh Communication

As highlighted before, while LoRa can be used for point-to-point communication
and LoRaWAN for star topology networks with many end nodes and at least one central
GW, there is not a well-defined LoRa-based mesh network standard. This is likely due
to the constraints of LoRa, making it unsuitable for mesh networking with multi-hop
communications. This has been confirmed both theoretically and experimentally. An
example is given in [61], where a hybrid LoRaWAN-LoRa mesh network with LoRa relay
nodes is proposed, aiming to extend the operating range of the LoRaWAN star topology.
However, this study does not consider mobile nodes and interfering signals, such as in the
UAV-to-UAV application scenario of interest to us, in which a large amount of LoRa nodes
is involved. Another research activity is defined in [62], where a network testbed composed
of a larger (with respect to the study shown in [61]) amount of nodes is considered and
the current limitations of a possible LoRa-based mesh network are investigated. Moreover,
in [62], the authors observed a strong performance degradation—in terms of latency with
respect to a traditional LoRaWAN star topology network. A last reference work is [63],
where a LoRaWAN alternative implementation supporting mesh networking was proposed,
suggesting an alternative GW implementation, in order to support multi-channels LoRa RF
signal communications, to limit packets collisions, and to increase the number of supported
nodes. Despite this high-level description, no theoretical or experimental results of the
proposed modified LoRaWAN-mesh protocol were discussed, thus limiting its applicability
for a LoRa-based UAV mesh network.
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In order to overcome some of the limitations highlighted in the above cited works
and to provide additional functionalities to let LoRa and IEEE 802.11s protocols coexist on
mobile nodes (i.e., UAVs), our proposed hybrid approach tries also to cope with the high
latency and low data rate of LoRa (playing a critical role in the whole system definition),
adopting a SF equal to SF7. Moreover, in order to minimize the air time of the transmitted
messages through the LoRa network interface and to maximize the payload capacity of the
network, our solution adopts the TDMA-oriented access mechanism presented in Figure 7,
with alternating transmitting and listening windows with different lengths, taking also
into account the number of active UAVs in the swarm. As discussed in Section 4.2, each
node implements a LBT mechanism in which, first, if an activity is detected on the channel,
a node randomly delays its transmission; then, at the end of the random delay, it transmits;
and, finally, it establishes a receiving window, which has to be set on the basis of the number
of flying UAVs.

More in detail, each packet transmitted on the LoRa-based broadcast mesh network
has a two-fold goal.

1. Broadcast the UAV’s position data (GNSS) and ground connection status (if any): these
data are needed to create a robust mesh network (both with IEEE 802.11s and LoRa)
and to evaluate the position of nearby moving UAVs and their ground connections (if
available) in order to establish which will be the next node in the case of link failure
or out-of-range position.

2. Transmit content data and LoRa mesh configuration data: the first are data sent from a
UAV toward another UAV in the swarm—thus an addressing mechanism is needed
inside the swarm—or to the ground control center, while the second are essential data
for mesh configuration (e.g., nearby nodes for each UAV, paths, etc.) that should be
updated upon a change in the surrounding environment (given the mobile nature of
the system).

Given LoRa constraints, in order to avoid packet collisions, the above data must
be aggregated in the same packet, thus requiring the definition of a proper encoding
mechanism to easily allow UAVs in the swarm to evaluate the data and to minimize
channel use. As can be easily understood, this may require us to use the maximum payload
inside each packet in order to avoid using the channel for multiple messages, thus reducing
packet collisions and resource utilization.

A graphical representation of the proposed packet structure is shown in Figure 8,
while the single fields composing the packet are detailed in the following:

• IDtxnode: a 1-byte unique identifier of the UAV, able to identify up to 256 entities. In
our proposed solution, only 254 identifiers can be used, since values 0 and 255 are
reserved for specific uses.

• CONtype: a 1-byte identifier indicating the ground connection of the node, if available.
In detail, it can assume the following values:

– 0 (default value), if the node is not connected to the ground;
– 1, if the node is connected to the ground through an IEEE 802.11s AP;
– 2, if the node is connected to the ground through a LoRaWAN link; and
– 3, if the node is connected to the ground through an intermediate IEEE 802.11s

AP on-board a nearby UAV.

• GNSSdata: a 10-byte field, in detail containing the latitude (GNSSlat, 4 bytes), the
longitude (GNSSlng, 4 bytes), and the auxiliary altitude (GNSSalt, 2 bytes), encoded
as float and short int.

• IDrxnode: similarly to the IDtxnode field, it is a 1-byte unique identifier representing a
preliminary field needed for data transmissions between flying UAVs (both unicast
and broadcast) and to the ground center and able to assume only 254 values (0 refers
to the ground control center, while 255 refers to a broadcast communication between
all flying UAVs).
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• MESHconfigdata: a variable-size field (2÷ 6 bytes) containing different information,
such as (i) the number of hops crossed by the messages, (ii) the last hop identifier, and
(iii) other parameters needed to update the created LoRa mesh network.

• PAYLOAD: a variable-size field (0÷ 200 bytes, given the LoRaWAN constraints at
SF7) representing the actual data payload that a UAV needs to transmit to other UAVs.

Figure 8. LoRa mesh packet structure, data, and field sizes.

The packet structure shown in Figure 8 is used both (i) for the mesh initial setup,
where the PAYLOAD field can be used to broadcast the initial configuration data together
with CONtype and MESHconfigdata fields, and (ii) for the LoRa mesh network’s update and
data communication between UAVs.

4.2.2. UAV-to-Ground Communications through LoRaWAN

While raw LoRa protocol can be used for UAV-to-UAV communications, as discussed
in Section 4.2.1, LoRaWAN could instead be used for UAV-to-ground communications
in order to exploit already existing LoRaWAN networks, such as The Things Network
(TTN) [7]. The wide coverage of such networks, together with the achievable operational
range, guarantees a UAV-to-ground communication alternative to an IEEE 802.11s link
for essential data exchange, useful in all those cases where IEEE 802.11s is not effective
or out of range. However, this LoRaWAN-oriented solution has drawbacks, especially
because its constraints discussed in Section 3.2.2, namely (i) the strict downlink policy, (ii)
the limited data rate, and (iii) the duty cycle, almost neglect any real-time communication
among LoRaWAN devices, thus limiting this use case only to essential data transmission.

4.2.3. LoRa and LoRaWAN Communications Deployment

In order to support the data transmission patterns detailed in Sections 4.2.1 and 4.2.2,
two approaches can be followed:

• (i) use of a single COTS board, equipped with two distinct LoRa modems, or (ii) the
adoption of two distinct boards, each one equipped with a single LoRa modem, in
order to reserve one modem for UAV-to-UAV raw LoRa-based broadcasting and the
other modem for UAV-to-ground communications via LoRaWAN;

• use of a single COTS board with a single LoRa modem, used, according to a time
division strategy, by switching between LoRa-based broadcasting (UAV-to-UAV) and
LoRaWAN (UAV-to-Ground).

More in detail, the first approach is more expensive, in terms of price, since a complex
board with two LoRa modems or two single modem boards are needed, and in terms of
hardware’s weight and physical space, which are limited on a typical-sized UAV. However,
this approach can guarantee the best performance, since there is no off-period due to the
network switch (as with a single modem) and thus any software re-initialization phases
among the interfaces. Additionally, since each modem is dedicated to one network, they
can be used in parallel at the same time. Oppositely, in the second approach, only one
of the two networks is active at a time and switching time must be taken into account,
thus reducing the effective operational time and the total system capacity. A graphical
comparison between these approaches is shown in Figure 9.
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Figure 9. Single modem-based (top) and dual modem-based (bottom) approaches for joint LoRa (UAV-to-UAV) and
LoRaWAN (UAV-to-ground) connections.

We remark that root nodes—acting as coordinators in the LoRa mesh network and
being the only UAVs connected to the ground control center though LoRaWAN—are the
only ones that need to switch between LoRa and LoRaWAN connectivity. Therefore, only
these root nodes would face the performance limits with a single-modem implementation.
To this end, a possible solution to reduce performance degradation can be the predefinition
of the LoRa mesh network’s root nodes, thus deploying a dual modem-based solution
on them to both communicate to the ground (through LoRaWAN) and between UAVs
(through the LoRa mesh network layer), as shown in Figure 10.

Figure 10. Dual LoRa modem-based implementation for root nodes.

5. Combined Opportunistic Mesh Networking

As highlighted in Section 4, the use of two different network layers allows for the cre-
ation of a hybrid network involving multiple possible configurations, with heterogeneous
use of IEEE 802.11s links and LoRa-based communications. To this end, the key element
enabling the definition of such a hybrid multi-protocol mesh network is the selection mech-
anism between them, which should properly select the appropriate network by evaluating
several parameters representative of the requirements of a UAV swarm. In the following,
the proposed selection mechanism is described in Section 5.1, while Sections 5.2 and 5.3
focus on possible UAV-to-UAV and UAV-to-ground network configurations, respectively.

5.1. Network Selection Mechanism

One of the main advantages of flying communications, as discussed in Section 1, is
the almost direct LOS between UAVs, which allows for a wide operating range even with
protocols typically used for short-range communications. Behind the IEEE 802.11s mesh
built-in link creation mechanism [64], often based on link quality and path-based cost
functions, when dealing with a mobile mesh network (as a UAV swarm), there are several
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parameters to take care of in order to establish reliable communications and ensure seamless
connectivity. In the following, the parameters considered in our proposed opportunistic
hybrid architecture are detailed.

5.1.1. Network Communication Interface Type

As detailed in Section 4, each flying UAV broadcasts the data packets described
in Section 4.2.1 through the LoRa network interface, advertising its established connection
type (if any). On the basis of the best performance, in terms of data rate and reliability, each
UAV always puts a first priority to the IEEE 802.11s connectivity for both UAV-to-UAV and
UAV-to-ground communications. Then, if the current node cannot join the IEEE 802.11s
mesh network (e.g., it is too far from either ground or UAV-transported APs), it considers
the use of its LoRaWAN interface to communicate with the ground. If even LoRaWAN
communications are not possible, then a raw LoRa communication with other close UAVs
is considered, using the mesh networking approach presented in Section 4.2 for both UAV-
to-UAV and UAV-to-ground communications.

5.1.2. GNSS Position of the APs

Since a UAV can freely move inside the swarm (if not otherwise for some reason) and
one of the parameters broadcast in the packet shown in Figure 8 is its GNSS position, a
useful selection parameter to be considered in evaluating which node to connect to is the
GNSS position of nearby mesh points, either being ground or UAV-based MPPs. Therefore,
a flying UAV can choose which ground AP to connect to on the basis of (i) its knowledge
of AP positions and (ii) its flight direction in order to preliminarily prepare to switch to
a different AP, thus limiting the network off-period due to AP outage. Moreover, GNSS
positions are also useful for flying communication, since a UAV always chooses as first
priority its nearest AP-equipped UAV, thus prioritizing an IEEE 802.11s connection with
respect to a LoRa one. Again, given the continuous broadcasting of UAV positions, in an
advanced implementation of the proposed opportunistic mechanism, the flying directions
of nearby UAVs could also be evaluated in order to optimize and prepare the handover.
Finally, in the GNSS information, even nearby UAV altitudes could be used as a decision
parameter, since UAVs flying higher have a higher probability to have direct LOS with
both ground APs and nearby UAV-transported APs, thus minimizing the number of hops
to reach an AP.

5.1.3. RSSI of Nearby Nodes

An alternative to GNSS data for all those scenarios where GNSS is unreliable or
not available—e.g., in indoor environments as well as with UAVs flying between high
buildings—could be the RSSI retrieved by each network interface actively listening for
transmissions from nearby nodes. Therefore, the RSSI might be expected to choose the best
node among the neighbors, thus representing a good link quality’s selection mechanism.

5.1.4. Network’s Hierarchical Value of Nearby Nodes

Another parameter that is broadcasted together with the other mesh parameters is
the network layer of the UAV. More precisely, it represents the depth of the UAV inside
the mesh network, as shown in Figure 2, and it may thus be considered a “must” indicator.
As an example, among different IEEE 802.11s mesh point UAVs with almost the same
RSSI and located at almost the same distance, the current UAV, looking for nearby nodes,
chooses the one with the best hierarchical indicator (i.e., smallest depth) inside the hybrid
mesh network, thus minimizing the overall path cost depending on the number of hops
that the data transmission will traverse.

5.1.5. Amount and Type of Data to Be Transmitted

The last parameter that can be considered is related to the type and amount of data to
be forwarded from the source UAV to the destination node (UAV or terrestrial). Since LoRa
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and LoRaWAN can be used only for low data rates and very high latency communications,
it is natural to assume that particular applications not complying with these constraints
(e.g., real-time video transmission) cannot rely on these long-range protocols. In these cases,
the creation of mesh networks with nearby nodes can be made only via the IEEE 802.11s
network layer.

5.1.6. Summary

As a general summary on the selection parameters outlined above, a reference sce-
nario involving the best neighboring AP selection mechanism is shown in Figure 11, where
a flying drone is “sensing” multiple possible mesh points and is estimating which is
the best one to establish a connection with. Besides link quality/availability, the deci-
sion needs to take into account the flight plan of the UAV and the parameters described
in Sections 5.1.1÷5.1.5.

Figure 11. Dynamic best AP selection operated by a flying UAV, aiming at establishing connection.

5.2. UAV-to-UAV Communications

In the proposed hybrid mesh architecture, UAV-to-UAV communications occur through
two layers: (i) an IEEE 802.11s mesh network layer and (ii) a LoRa-based mesh layer. How-
ever, multi-hop communications between UAVs can occur in a third way, based on both
IEEE 802.11s and LoRa links between UAVs. In the following, IEEE 802.11s- and LoRa-
based UAV-to-UAV communications are discussed in Sections 5.2.1 and 5.2.2, respectively,
while a hybrid approach is detailed in Section 5.2.3.

5.2.1. IEEE 802.11s-Enabled UAV-to-UAV Communications

Communications between multiple flying UAVs achieve the highest performance
through the use of the IEEE 802.11s mesh networking that, depending on the adopted
equipment, can support data rates on the order of several Megabit per second (Mbps). In
detail, the IEEE 802.11s mesh network’s setup and configuration are carried out following
the protocol definition; then activating the path selection mechanism described in Section
5.1; and finally considering routing between multiples UAVs acting as MPs or, in case of the
root node, as a MPP, as discussed in Section 4.1. Therefore, routing is based on the network
interface’s MAC address of each device—as defined in the IEEE 802.11s specification—
jointly used together with the assigned drone ID, which can be used as internal parameter
for routing data between both LoRa and IEEE 802.11s layers. An example of a flying
IEEE 802.11s mesh network among UAVs is shown in Figure 12. In this figure, the IDs of
the UAVs are explicitly indicated, together with the cost of each link, defined on the basis
of (i) the number of hops needed to reach the root node, (ii) the link’s data rate, and (iii) the
link’s signal RSSI.
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Figure 12. IEEE 802.11s-enabled communications between UAVs.

5.2.2. LoRa-Enabled UAV-to-UAV Communications

In order to complement the IEEE 802.11s mesh network, proposed in Section 5.2.1,
used for UAV-to-UAV short-range high data rate communications, our proposed LoRa-
based broadcast mesh network can be used for long-range communications (up to several
tens of kilometers in direct LOS) as well as for essential data communications (e.g., UAVs
telemetry) in urban environments, where IEEE 802.11s signals, despite LOS visibility
between UAVs, could be affected by interference and signal shadowing, thus limiting their
operational ranges. Therefore, essential data could still be retrieved using the LoRa-based
meshed network, where nearby UAVs act as LoRa relays inside the network, allowing long-
range communications between swarm nodes, as defined in Section 4.2. An illustrative
representation of such a LoRa-based mesh network configuration is shown in Figure 13.

Figure 13. LoRa-enabled communications between UAVs.

5.2.3. Hybrid Configuration-enabled UAV-to-UAV Communications

With reference to Sections 5.2.1 and 5.2.2, it is clear how IEEE 802.11s and LoRa have
their own advantages and disadvantages: IEEE 802.11s suits low latency, high data rate, and
short-to-mid range communications, while LoRa supports very long transmission ranges
but with a very limited data rate and high latency. Therefore, an effective combination of
these technologies should guarantee an optimized tradeoff between operational ranges
and data rates.

Given the two layers discussed and detailed in Section 4, a hybrid adoption of these
network layers by the UAVs in a swarm could involve multiple IEEE 802.11s “local” mesh
networks between close UAVs, in turn connecting together with disjoint (far) IEEE 802.11s
meshed networks through the LoRa layer. This leads to the implementation of a wide area
hybrid mesh network where all the UAVs can forward at least a minimum amount of data
to each other without the need for a ground infrastructure. An illustrative representation
of the overall architecture is shown in Figure 14.
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Figure 14. Hybrid-meshed network for communications between UAVs.

5.3. UAV-to-Ground Communications

Considering UAV-to-ground communications, in our proposed infrastructure two
different solutions can be identified: (i) an IEEE 802.11s-based UAV-to-ground connection,
discussed in Section 5.3.1, and (ii) a LoRaWAN-based one, detailed in Section 5.3.2. Both of
these solutions involve flying UAV mesh root nodes, in charge of collecting data from the
remaining flying UAVs of the swarm and transmitting it to the ground control center.

5.3.1. IEEE 802.11s-Enabled Ground-Connected UAV Swarms

Given a reference scenario in which at least one UAV flies within the communication
range of a ground control station’s Wi-Fi AP, such an UAV could establish a bidirectional
connection with the AP itself using (i) a traditional STA-AP IEEE 802.11 Wi-Fi connection
or (ii) an advanced IEEE 802.11s connection (in case multiple APs are available). Therefore,
the UAV connected to the ground via Wi-Fi first broadcasts to all nearby swarm nodes its
connection status and then assumes the root node role inside the flying mesh configuration,
thus providing a bidirectional connectivity among the ground center and the other UAVs.
To this end, such a network configuration could be represented as in Figure 15, where two
root nodes act as flying GWs for the intermediate UAVs (with reference to Figure 2).

Figure 15. Wi-Fi-enabled ground connected UAV swarm.

5.3.2. LoRaWAN-Enabled Ground-Connected UAV Swarm

A second approach to provide ground connectivity to the swarm’s UAVs is through
the LoRaWAN protocol. If compared with the IEEE 802.11s-based approach described
in Section 5.3.1, a LoRaWAN-based approach will be characterized by an increased com-
munication range of at least one order of magnitude, thus supporting new operational
scenarios, which will be discussed in more detail in Section 7. On a practical side, a UAV
swarm could use LoRaWAN both to interact with the ground control center and to simply
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send essential data (e.g., UAVs telemetry) to a LoRaWAN AS, joining an existing open
LoRaWAN network (e.g., TTN). This is possible even in the presence of more than one UAV
acting as a root node inside the swarm, thus providing a bidirectional connectivity between
the ground center and the flying UAVs composing the hybrid mesh network. To better
clarify this long-range approach, in Figure 16, an illustrative scenario is shown, with two
root nodes acting as flying GWs for all the other UAVs that cannot directly communicate
with the ground.

Figure 16. LoRaWAN-enabled ground connected UAV swarm.

6. Theoretical and Experimental Performance Evaluation

In order to further motivate our proposed hybrid approach, in Section 6.1, we evalu-
ate the theoretical performance (in terms of operational range) of the network protocols
discussed in Section 3 in a comparative way with respect to literature works: more pre-
cisely, in Sections 6.1.1 and 6.1.2, we focus on LoRa and IEEE 802.11s, respectively. Then,
in Section 6.2, we detailed our experimental campaign on LoRa-based communications,
using a commercial UAV and an on-board LoRaWAN transceiver to identify the UAV-to-
ground communication range—we do not report any experimental result on IEEE 802.11-
based communications as these have been extensively investigated in the literature; for
this reason, we focused on LoRa-based communications.

6.1. Theoretical Performance Analysis
6.1.1. LoRa Communication Operating Range Estimation

Given the mobile nature of the proposed hybrid architecture and the interest in the use
of the LoRa protocol for inter-UAV communications in a networking range between 5 km
and 15 km, a preliminary performance estimation initially focused on the reliability and
the communication range of LoRa-based communications with at least one node moving in
the considered environment. In detail, in [59], various scenarios (i.e., urban, suburban, and
an almost obstacle-free environment) were considered, highlighting how SF12 allows a
user to achieve a packet delivery ratio equal to 85% in both urban and suburban scenarios
(within a range of 5 km) and then decreasing to about 70% when increasing the range from
5 km up to 15 km (and depending on the environment). In [65], the authors focused on
LOS LoRa communication range evaluation, achieving a point-to-point (between a hill
and a nearby flat-land) range of more than 12 km with a small packet loss ratio. Moreover,
another range estimation was given by TTN Mapper [66], that allows users to monitor,
evaluate, and analyze all the data provided by the community, thus highlighting which are
the real capabilities of a LoRa-based communication in various real-world scenarios. To
this end, among the plethora of data, the most interesting ones are those related to extreme
LOS conditions, with the transmitting node mounted over a helium-filled balloon and
reaching a propagation range up to hundreds of kilometers, achieving an astonishing LoRa
communication range of about 832 km [67].
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6.1.2. IEEE 802.11s-Based Communication Operating Range

With regard to in-air data transmission among drones through the IEEE 802.11s
protocol, in the literature, some investigations were conducted in order to estimate how
it could fit different coverage needs. The adoption of IEEE 802.11s networking in a UAV
swarm is investigated in [68], where an open area with no obstacle and no interference is
assumed. In this context, the use of 2.4 GHz and 5.8 GHz Wi-Fi was able to provide a high
data rate link between the AP and the UAV within a radius of several hundreds of meters
(up to 200 m at 300 Mbps PHY data rate on a 2.4 GHz Wi-Fi link), also depending on the
adopted radio equipment and link direction (uplink or downlink). Additionally, in [68], the
authors show that, using a lower PHY data rate, a longer communication distance could
be reached (up to 500 m at 54 Mbps PHY data rate), further expanding the IEEE 802.11s
operational ranges of both UAV-to-UAV and UAV-to-ground communications proposed
in our hybrid mesh network model. Another IEEE 802.11s-based UAV network, where a
UAV acts as AP for ground STA nodes, is presented in [28], showing a throughput of about
40 Mbps over a 200 m2 area and considering multiple hops inside the network.

Taking into account the results in [68] and [28] and the a typical home Wi-Fi network
operational range, the application of this technology for both UAV-to-UAV and UAV-to-
ground communications should be possible for short-to-mid range LOS communications.

6.2. Experimental Performance Analysis: LoRaWAN UAV-to-Ground Operating Range
Evaluation

We first investigated a LoRaWAN communication link between a flying UAV and the
ground control center, as discussed in Section 4.2.2. To this end, a processing board with
a LoRaWAN interface was placed over a drone, with the main task of collecting GNSS
latitude, longitude, and altitude. Then, these messages were periodically sent through
the LoRaWAN interface in order to observe and estimate which terrestrial LoRaWAN
GWs could successfully receive these messages. Hence, these data transfers allow us
to further determine the in-air distance between each terrestrial GW and the originator
UAV. In detail, a DJI Phantom 4 Professional [69] was adopted as a UAV platform, as
shown in Figure 17a, while a TTGO T-Beam [70], shown in Figure 17b, was used as a
LoRa-compliant communication board. This board was chosen thanks to the presence of a
Semtech SX1276 LoRa modem (suitable for EU 868 MHz LoRa channels frequency) [71],
a u-blox NEO-6M GNSS module [72], an ESP32 Wi-Fi and Bluetooth Low Energy (BLE)
System-on-Chip (SoC) [73], and the full support to TTN [7]. Finally, the communication
board was attached under the drone’s frame and powered using a standard 3.7 V 3500 mAh
MR18650 Li-Ion battery.

(a) (b) (c)
Figure 17. Chosen UAV and LoRa board adopted for the experimental performance evaluation campaigns. (a) DJI Phantom
4 Professional. (b) TTGO T-Beam LoRa board. (c) TTGO T-Beam LoRa development platform attached to the DJI drone as
its custom payload.

The experimental tests were performed in a semi-urban environment in Sabbioneta,
Italy, with multiple low buildings, in the absence of mountains or hills. Then, the flight
was carried out on 4 December 2020, during a cloudy day with almost no wind, an air
humidity of about 80%, and a temperature around 3 °C. More in detail, the UAV’s GNSS
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position was fixed during the ascending, hovering, and descending phases; during the
flight, the drone was maintained in a hovering status at a fixed altitude of 100 m for 12 min,
slowly rotating itself on the yaw axis. On the communication side, the LoRa-enabled board
was set to automatically send a LoRaWAN message with SF7 and message interval equal
to 10 s, containing the current GNSS data (longitude, latitude, altitude, and Horizontal
Dilution Of Precision (HDOP)). Finally, the endpoint applications attached to the TTN’s AS
were integrated with the TTN Mapper component in order to decode the receive message
payloads and to plot the data over a map showing the LoRaWAN GWs that correctly
received at least one message—allowing us to easily estimate the distances among the UAV
and the different GWs.

The used testbed allows us to achieve interesting results, since the exchanged packets
are received from GWs far away from the flying UAV. In total, 72 messages were sent from
the UAV-mounted LoRa-enabled board during the ascending, flight, and descending phases.
The messages were received by 14 LoRaWAN GWs registered (with known positions) on
TTN, consequently allowing us to estimate the distances between these GWs and the UAV,
together with the number of packets successfully received by each GWs and the percentage
of correctly received packets. The results of this range evaluation are shown in Figure 18,
where the messages received by the TTN GWs are shown on top of a TTN Mapper’s map.
Moreover, the messages are listed in Table 2, where the GWs are classified by the number
of packets successfully received.

Figure 18. TTN Mapper output.

Analyzing the experimental results, the majority of the GWs that received messages
sent from the originator UAV are located, on the average, within a circular range with
radius between 30 km and 60 km, with a few GWs placed even more than 75 km away
from the transmitter. Unfortunately, the only known nearby GW (identified as 6), located
at about 4 km from the UAV, is an indoor GW located at the fifth floor of a building:
this could explain the relatively low packet reception rate of the GW 6 achieved during
the performance evaluation. Despite the absence of statistical meaning of the obtained
results—due to the very small number of messages sent from the UAV—this preliminary
evaluation highlights the applicability of LoRaWAN to UAV swarms, since the resulting
communication range turned out to be much longer than the expected 10–15 km range.
Moreover, given that LoRaWAN-based communications do not entail a specific association
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between the end node (the UAV) and a GW, the transmitted messages can be received by
any nearby GWs and, thus, can be successfully processed, making the final correct packet
delivery ratio in our experimental evaluation equal to 95.83%, which is an acceptable value.
Hence, with respect to the UAV-to-ground LoRaWAN-based communication discussed
in Section 4.2.2, the combined use of a LoRa-IEEE 802.11s-based mesh network for multiple
flying UAV communications, together with multiple root nodes communicating though
LoRaWAN to the ground, is feasible. This allows us to limit multi-hop communications
between flying UAVs, which is a very limiting factor for LoRa-based mesh networking.

Table 2. LoRaWAN UAV-to-ground range test results.

GW Number (#) GW Distance (km) Average RSSI (dBm) Received Packets (with
Respect to Sent Packets) Received Packets (%)

1 68.199 −113.72 69 of 72 95.83
2 75.040 −110.16 69 of 72 95.83
3 49.936 −110.05 61 of 72 84.72
4 31.505 −113.13 60 of 72 83.33
5 67.339 −107.98 57 of 72 79.17
6 3.933 −107.09 56 of 72 77.78
7 61.193 −113.73 49 of 72 68.06
8 44.330 −116.53 40 of 72 55.56
9 51.385 −118.86 35 of 72 48.61

10 48.904 −117.10 30 of 72 41.67
11 50.691 −118.25 12 of 72 16.67
12 68.206 −116.20 5 of 72 6.94
13 59.384 −114.75 4 of 72 5.56
14 58.800 −118.67 3 of 72 4.17

We remark that our experimental evaluation was performed with the UAV placed
at a quite high altitude but still inside the legal height allowed by the EASA, which is
limited to a maximum value equal to 120 m. Moreover, looking at the packets transmitted
during the ascending and descending phases, all the packets transmitted at an altitude
higher than 35 m were received by at least one nearby GW, suggesting that the same
packet reception rate should be easily achieved for almost any flying altitude above 35 m,
with a more realistic flying elevation set between 50 m and 60 m, in order to obtain LOS
communications in almost all directions.

During the experimental evaluation, two aspects were not analyzed: (i) the impact of
the mobility, in particular with a UAV linear speed between 20 km/h and 50 km/h, and
(ii) the impact of messages with maximum size payload. The mobility of the UAV should
partially limit the reception rate given the studies discussed in [59]. However, given the
typical speeds of a UAV, their effects on LoRa communications should be negligible for
payload sizes smaller than the maximum value (which corresponds to the longest message
airtime). Moreover, taking into account other researches in [59], given that SF is set to SF7,
the possible effects on communication should be negligible.

As a final note, only UAV-to-ground evaluations have been performed, integrating
a public LoRaWAN network (i.e., TTN) to investigate LoRa RF signal transmission and
the corresponding reception distance. However, the proposed hybrid mesh network
infrastructure should achieve a similar performance for UAV-to-UAV communications, with
the only limitation due to the small LoRa antennas mounted on top of UAVs. Nevertheless,
the considered setting should allow us to cover an operational region with a radius between
5 km and 15 km, thus enabling a long-range communication useful for several scenarios
and use cases.
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7. Use Cases

In order to motivate the design and implementation of the opportunistic mesh net-
working approach discussed in Section 5, the following relevant use cases for the proposed
hybrid mesh architecture are discussed.

7.1. Border Surveillance

Consider a border surveillance scenario with an extensive perimeter (e.g., tens of
kilometers) to be monitored. Multiple drones would then be required, each one assigned to
a specific zone to be monitored and in charge of executing different tasks [74]. Among these
tasks, recording (as a video stream) inside the drone’s on-board memory is a relevant one.
When a critical situation appears (e.g., in a smart city context or for citizens safety [75]) and
cannot be managed by a single drone, then a subset of the swarm needs to reach the critical
situation area [76]. This “rescue operation” can be performed thanks to the fact that the
localization of each UAV is precisely identified through GNSS information, which is in turn
broadcast by each drone through the LoRa-based mesh network at certain time instants
(given the duty cycle of the LoRa protocol) [77]. On the basis of this knowledge, the swarm’s
subset can reach the on-site drone while recording the flight operations. Once on the critical
area, the UAVs can coordinate with each other by relying on the high-speed IEEE 802.11s
mesh network. For example, they could transfer all their (recorded) video streams to a
“sherpa” UAV—elected statically or dynamically—which, in turn, will be in charge of
reaching a terrestrial Wi-Fi AP to download all the video streams to the ground control
center [78,79]. Hence, in scenarios such as this one, long-range low-data-rate protocols can
be suitable only for position information broadcasting while resource-demanding services
(e.g., video streams) should be left to faster communication interfaces possibly equipping
the swarm’s UAVs—e.g., IEEE 802.11s, as well as 4G/5G cellular networks.

7.2. Smart Agriculture

An alternative use case corresponds to a smart agricultural scenario, with spread lots
(far from each other) to be periodically monitored in an unobtrusive way [80,81]. This
can occur through flying drones that collect data from on-field sensors (through wireless
data transmission from sensors to UAVs) and through on-board sensors (e.g., hyper-
spectral cameras). Then, in order to avoid drones flying for long distances (between
their assigned agricultural lot and the the farmer’s house), the swarm can self-organize
(in an opportunistic way and based on the data format to be collected and reported to
the farmer’s house) intermediate mesh networks [82,83]. Therefore, small data can be
transmitted through a LoRa-based mesh network while large data to be transferred in a
short time can rely on the IEEE 802.11s-based network. This opens to innovative trajectory
and task planning, aiming at maximizing the data collection rate and at minimizing the
“redundant” time wasted while in static flight waiting for information transfer. For example,
this can rely on the adoption of Mission Management Tools (MMTs) [84] and Decision
Support Systems (DSSs) [85], thus opening up to the possibility of processing data both
locally or in the cloud [86].

7.3. BVLOS Instrumental Flight Backup Telemetry

Nowadays, BVLOS flights often rely on direct communication between the UAV
and the pilot (on the ground), using the protocol described in Section 2. However, this
communication scheme is often disturbed when flying in the presence of obstacles (e.g.,
buildings, trees, hills, etc.) [87]. To overcome these limitations, manufacturers equip their
UAVs with LTE modems to enable cellular connectivity and to provide FPV real-time
video feeds and telemetry data to the pilots [88,89]. Nevertheless, some BVLOS flights
do not require a real-time video stream but simply the UAV’s telemetry data (e.g., GNSS
coordinates, altitude, speed, orientation, batteries status, etc.) in order to (i) monitor the
UAV on different map layers (e.g., satellite or topographic maps, to know where buildings
or structures are located) and (ii) to perform complex operations without a UAV’s LOS
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visibility. Therefore, the use of M (M ≥ 1) intermediate UAVs connecting indirectly
(through IEEE 802.11s or LoRa intermediate links) the BVLOS UAV and its pilot can
represent a valid alternative in those cases in which, for example, cellular connectivity is
not fully available or reliable, thus providing a robust backup tool to keep track of flying
UAVs performing partially automated BVLOS operations in difficult environments [90].
Therefore, despite LTE-based downlink (between the pilot and the UAV) and uplink
(from the UAV to the pilot) communications should abide by certain requirements on
data rate, reliability, and latency [91,92] for different types of data (i.e., command and
control data, and application data), in a use case such as the current one, the constraints
affecting the uplink telemetry data transmission would be more “relaxed.” In particular,
this information forwarding can be performed occasionally or if the default communication
mechanism fails, thus acting as a backup solution for the adopted low rate and long-range
communication protocols.

7.4. Long-Range UAV Swarms Coordination and Communications

The proposed hybrid mesh network opens new possibilities for long-range UAV
swarm coordination and communications, letting many UAVs communicate together
and with one or more ground control centers placed over a wide operating region [93].
Ground-connected UAVs could act as swarm coordinators, communicating with the other
swarm UAV new-mission instructions (e.g., new positions to reach or be maintained).
Moreover, the proposed mesh networking scheme could simply be used to keep track of
the UAV’s positions in order to provide the control center with an updated overview of
the swarm topology [94]. The control center, in turn, could send to the coordinators—and,
then, to specific UAVs—the information needed to restore the desired swarm formation.
However, given the constraint of LoRa-based communications, the amount of data that
can be transmitted between in-flight UAVs located over a large area is limited to essential
information, such as positions to be reached, mission tasks, and other limited swarm-related
information.

8. Conclusions

In this paper, we proposed a hybrid LoRa/IEEE 802.11s-based mesh networking
architecture to be adopted in UAV swarms to enable data transmission among the drones
and ground control centers. The proposed architecture aims to exploit the strengths
of the component protocols, namely IEEE 802.11s, LoRa, and LoRaWAN. An effective
network protocol selection mechanism is then needed to select the right interface. In detail,
protocol selection is based on multiple parameters, both available internally in the flying
node as well as periodically exchanged by the swarm nodes, including signal indicators
and the nature of the type to be transferred. Our considerations indicate a combined
operational range between 5 km and 15 km, using LoRa (for long-range communications)
and IEEE 802.11s (for short-range LOS communications). As a consequence, the proposed
hybrid architecture allows us to reach different data rates based on the environmental
conditions and the scenario to be targeted. Among the system constraints, the effective
transmission capabilities of the architecture are limited by the adopted protocols constraints,
which, in the case of LoRa/LoRaWAN communications, significantly limit the possible use
cases to low-data-rate applications. Moreover, given the mobile nature of UAVs, which also
have a limited battery energy, such a hybrid network could often incur topology changes
and, thus, network reconfigurations, which could cause temporary network outage. Finally,
we considered performance evaluation and we discussed a few representative use cases,
highlighting how the combined use of heterogeneous communication protocols is effective
in various scenarios. The proposed architecture can be further enhanced, especially in the
context of the interface selection mechanism, which could be improved with an Artificial
Intelligence (AI)-based approach. This is the subject of current ongoing research activities.
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FSPL Free-Space Path Loss
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HQ High Quality
HWMP Hybrid Wireless Mesh Protocol
IQ Chirp Polarity
ISM Industrial, Scientific, and Medical
LAN Local Area Network
LBT Listen-Before-Talk
LoRa Long Range
LoRaWAN Long-Range Wide Area Network
LOS Line-of-Sight
LPWAN Low Power Wide Area Network
LTE Long-Term Evolution
MAC Medium Access Control
MAP Mesh Access Point
MBSS Mesh Basic Service Set
MMT Mission Management Tool
MPM Mesh Peer (Link) Management
MPP Mesh Portal Point
MTOW Maximum TakeOff Weight
NLOS Non-LOS
NS Network Server
OLSR Optimized Link State Routing Protocol
OTAA Over-The-Air-Activation
PHY Physical layer
RC Radio Controller
RF Radio Frequency
RPi Raspberry Pi
RSSI Received Signal Strength Index
RTF Ready-to-Fly
RX Reception
SF Spreading Factor
SFD Start-Frame-Delimiter
SoC System-on-Chip
STA Station
TDMA Time Division Multiple Access
TP Transmission Power
TS-SDN TempoSpatial-Software Defined Networking
TTN The Things Network
TX Transmission
UAV Unmanned Aerial Vehicle
VLOS Visual Line of Sight
WMN Wireless Mesh Network
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Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 73–88, doi:10.1007/978-3-319-16546-2_7.

87. Fang, S.X.; O’Young, S.; Rolland, L. Development of Small UAS Beyond-Visual-Line-of-Sight (BVLOS) Flight Operations: System
Requirements and Procedures. Drones 2018, 2, doi:10.3390/drones2020013.

88. Ivancic, W.D.; Kerczewski, R.J.; Murawski, R.W.; Matheou, K.; Downey, A.N. Flying Drones Beyond Visual Line of Sight Using
4G LTE: Issues and Concerns. In Proceedings of the 2019 Integrated Communications, Navigation and Surveillance Conference
(ICNS), 2019; doi:10.1109/icnsurv.2019.8735278.

89. Nguyen, H.C.; Amorim, R.; Wigard, J.; Kovacs, I.Z.; Mogensen, P. Using LTE Networks for UAV Command and Control Link:
A Rural-Area Coverage Analysis. In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), 2017;
doi:10.1109/vtcfall.2017.8287894.

https://www.ieee802.org/802_tutorials/06-November/802.11s_Tutorial_r5.pdf
https://www.mesh-net.co.uk/lora-line-sight-range-test/
https://ttnmapper.org/
https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-in-single-experiment-1
https://www.thethingsnetwork.org/article/lorawan-world-record-broken-twice-in-single-experiment-1
https://doi.org/10.1109/ITU-WT.2016.7805730
https://www.dji.com/phantom-4-pro/info
http://www.lilygo.cn/prod_view.aspx?TypeId=50033&Id=1163
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276
https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1276
https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
https://www.u-blox.com/sites/default/files/products/documents/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf
https://www.espressif.com/en/products/socs/esp32/resources
https://doi.org/10.3389/frobt.2021.616950
https://doi.org/10.3390/smartcities3030052
https://doi.org/10.1007/978-94-024-2021-0_26
https://doi.org/10.1109/TVT.2020.3003356
https://doi.org/10.1109/TSUSC.2019.2904855
https://doi.org/10.1109/MCOM.2017.1600587CM
https://doi.org/10.3390/s20072028
https://doi.org/10.1109/JSEN.2021.3049471
https://doi.org/10.2139/ssrn.3713675
https://doi.org/10.1109/MetroAgriFor.2019.8909228
https://doi.org/10.1016/j.compag.2020.105256
https://doi.org/10.1007/978-3-319-16546-2_7
https://doi.org/10.3390/drones2020013
https://doi.org/10.1109/icnsurv.2019.8735278
https://doi.org/10.1109/vtcfall.2017.8287894


Drones 2021, 5, 26 33 of 33

90. Zhong, C.; Zhao, Z.; Luo, C.; Cenk Gursoy, M.; Qiu, Q.; Caicedo, C.; Basti, F.; Solomon, A. A Cost-Benefit Analysis to Achieve
Command and Control (C2) Link Connectivity for Beyond Visual Line of Sight (BVLOS) Operations. In Proceedings of the 2020
Integrated Communications Navigation and Surveillance Conference (ICNS), 2020; doi:10.1109/icns50378.2020.9222956.

91. IEEE Communications Society—Aerial Communications Emerging Technology Initiative. 3GPP UAV Communication Re-
quirement. 2020. Available online: https://aceti.committees.comsoc.org/2020/05/20/3gpp-uav-communication-requirement/
(accessed on 1 April 2021).

92. Third Generation Partnership Project (3GPP). Enhanced LTE Support for Aerial Vehicles. TR 36.777, Third Generation Partnership
Project (3GPP), 2018. Available online: https://www.3gpp.org/ftp//Specs/archive/36_series/36.777/ (accessed on 1 April
2021).

93. Tortonesi, M.; Stefanelli, C.; Benvegnu, E.; Ford, K.; Suri, N.; Linderman, M. Multiple-UAV coordination and communications in
tactical edge networks. IEEE Commun. Mag. 2012, 50, 48–55, doi:10.1109/MCOM.2012.6316775.

94. Olivieri de Souza, B.J.; Endler, M. Evaluating Flight Coordination Approaches of UAV Squads for WSN Data Collection Enhancing
the Internet Range on WSN Data Collection. J. Internet Serv. Appl. 2020, 11, doi:10.1186/s13174-020-00125-4.

https://doi.org/10.1109/icns50378.2020.9222956
https://aceti.committees.comsoc.org/2020/05/20/3gpp-uav-communication-requirement/
https://www.3gpp.org/ftp//Specs/archive/36_series/36.777/
https://doi.org/10.1109/MCOM.2012.6316775
https://doi.org/10.1186/s13174-020-00125-4

	Introduction
	State-of-the-Art
	Disjoint IEEE 802.11s and LoRa-Based Wireless Mesh Networking
	IEEE 802.11s Mesh Protocol
	LoRa and LoRaWAN Protocols
	LoRa Protocol
	LoRaWAN Protocol


	Proposed Hybrid Mesh Network
	IEEE 802.11s Mesh Network Layer Implementation
	Proposed LoRa-Based Access and Mesh Networking
	LoRa-Based UAV-to-UAV Mesh Communication
	UAV-to-Ground Communications through LoRaWAN
	LoRa and LoRaWAN Communications Deployment


	Combined Opportunistic Mesh Networking
	Network Selection Mechanism
	Network Communication Interface Type
	GNSS Position of the APs
	RSSI of Nearby Nodes
	Network's Hierarchical Value of Nearby Nodes
	Amount and Type of Data to Be Transmitted
	Summary

	UAV-to-UAV Communications
	IEEE 802.11s-Enabled UAV-to-UAV Communications
	LoRa-Enabled UAV-to-UAV Communications
	Hybrid Configuration-enabled UAV-to-UAV Communications

	UAV-to-Ground Communications
	IEEE 802.11s-Enabled Ground-Connected UAV Swarms
	LoRaWAN-Enabled Ground-Connected UAV Swarm


	Theoretical and Experimental Performance Evaluation
	Theoretical Performance Analysis
	LoRa Communication Operating Range Estimation
	IEEE 802.11s-Based Communication Operating Range

	Experimental Performance Analysis: LoRaWAN UAV-to-Ground Operating Range Evaluation

	Use Cases
	Border Surveillance
	Smart Agriculture
	BVLOS Instrumental Flight Backup Telemetry
	Long-Range UAV Swarms Coordination and Communications

	Conclusions
	References

