329,442 research outputs found

    Mobile setup for synchrotron based in situ characterization during thermal and plasma-enhanced atomic layer deposition

    Get PDF
    We report the design of a mobile setup for synchrotron based in situ studies during atomic layer processing. The system was designed to facilitate in situ grazing incidence small angle x-ray scattering (GISAXS), x-ray fluorescence (XRF), and x-ray absorption spectroscopy measurements at synchrotron facilities. The setup consists of a compact high vacuum pump-type reactor for atomic layer deposition (ALD). The presence of a remote radio frequency plasma source enables in situ experiments during both thermal as well as plasma-enhanced ALD. The system has been successfully installed at different beam line end stations at the European Synchrotron Radiation Facility and SOLEIL synchrotrons. Examples are discussed of in situ GISAXS and XRF measurements during thermal and plasma-enhanced ALD growth of ruthenium from RuO4 (ToRuS™, Air Liquide) and H2 or H2 plasma, providing insights in the nucleation behavior of these processes

    Redesigning the 'choice architecture' of hospital prescription charts: a mixed methods study incorporating in situ simulation testing.

    Get PDF
    Objectives: To incorporate behavioural insights into the user-centred design of an inpatient prescription chart (Imperial Drug Chart Evaluation and Adoption Study, IDEAS chart) and to determine whether changes in the content and design of prescription charts could influence prescribing behaviour and reduce prescribing errors. Design: A mixed-methods approach was taken in the development phase of the project; in situ simulation was used to evaluate the effectiveness of the newly developed IDEAS prescription chart. Setting: A London teaching hospital. Interventions/methods: A multimodal approach comprising (1) an exploratory phase consisting of chart reviews, focus groups and user insight gathering (2) the iterative design of the IDEAS prescription chart and finally (3) testing of final chart with prescribers using in situ simulation. Results: Substantial variation was seen between existing inpatient prescription charts used across 15 different UK hospitals. Review of 40 completed prescription charts from one hospital demonstrated a number of frequent prescribing errors including illegibility, and difficulty in identifying prescribers. Insights from focus groups and direct observations were translated into the design of IDEAS chart. In situ simulation testing revealed significant improvements in prescribing on the IDEAS chart compared with the prescription chart currently in use in the study hospital. Medication orders on the IDEAS chart were significantly more likely to include correct dose entries (164/164 vs 166/174; p=0.0046) as well as prescriber's printed name (163/164 vs 0/174; p<0.0001) and contact number (137/164 vs 55/174; p<0.0001). Antiinfective indication (28/28 vs 17/29; p<0.0001) and duration (26/28 vs 15/29; p<0.0001) were more likely to be completed using the IDEAS chart. Conclusions: In a simulated context, the IDEAS prescription chart significantly reduced a number of common prescribing errors including dosing errors and illegibility. Positive behavioural change was seen without prior education or support, suggesting that some common prescription writing errors are potentially rectifiable simply through changes in the content and design of prescription charts

    The Saturnian Kilometric Radiation before the Cassini Grand Finale

    Full text link
    The Saturnian Kilometric Radiation (SKR) is radiated from the auroral regions surrounding the kronian magnetic poles, above the ionosphere up to a few planetary radii. It directly compares to the auroral radio emissions emanating from other planetary magnetospheres such as the Earth and the giant planets. Our knowledge on SKR relied on remote observations of Voyager (flybys in 1980 and 1981) and Ulysses (distant observations in the 1990s) until Cassini started to orbit Saturn in 2004. Since then, it has been routinely observed from a large set of remote locations, but also in situ for the first time at a planet other than Earth. This article reviews the state of the art of SKR average remote properties, the first insights brought by in situ passes within its source region, together with some remaining questions before the Cassini Grand Finale and its close-in polar orbits.Comment: Refereed article; Proceedings of the 8th International Workshop on Planetary, Solar and Heliospheric Radio Emissions (PRE VIII), Seggauberg, Austria, Oct. 25-27, 201

    Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream

    Get PDF
    Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 −) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30 min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3 − isotopes to help interpret the drivers of variable NO3 − and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 − and FDOM concentrations. An observed decrease in NO3 − concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 − (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 − variability of 1–2 μmol l−1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 − and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (−4 to 1% for NO3 − and −3 to −14% for DOC), but resulted in much larger differences for daily yields (−66 to +27% for NO3 − and −88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 − and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems

    Characterization of a thermoplastic polyimidesulfone

    Get PDF
    The detailed characterization of an experimental thermoplastic polyimidesulfone adhesive based on 3,3 prime-diaminodiphenylsulfone and 3,3 prime,4,4 prime-benzophenone tetracarboxylic dianhydride was studied. Model compounds were also examined. Thermal cyclization of the amide-acid to the imide was studied by a variety of techniques including DSC, TGA, MS, in situ diffuse reflectance-FTIR, and flow mearsurement. Characterizations were continued during the processing of adhesive tapes and the fabrication, bonding, and testing of lap shear specimens. Results provide fundamental insights into the role of cure chemistry, and the effects of residual solvent and volatile produces on processing and performance. These insights and the resulting chemical models should lead to more efficient processing cycles for these and other related thermoplastic adhesive systems

    The Evolution of Senses: My Research Journey into the Nervous System of Cnidaria

    Get PDF
    Our understanding of the evolutionary history of animals is improving, but knowledge of the ancient sensory systems that early animals used to interact with their environments is still largely unknown. Using molecular cloning and in situ hybridization staining procedures, I was able to test the hypothesis that some senses evolved prior to the evolution of animals with bilateral symmetry. My data provides evidence that cnidarians can taste using genes that are closely related to human taste receptors. This finding changes our current understanding of when tasteevolved by hundreds of millions of years. The in situ hybridization results also demonstrated co-localization, or overlap, of the expression of taste and photosensitivity genes, which provides preliminary evidence that cnidarians use a polymodal sensory-motor (PSM) neuron to sense light and chemical cues (“tastes”) to coordinate their feeding behavior. The cDNA constructs I have produced will also provide further biochemical insights into their function. My long-term research projects have taught me about the process of making scientific discoveries, and I hope to continue conducting research throughout my career

    Imaging cell lineage with a synthetic digital recording system

    Get PDF
    Cell lineage plays a pivotal role in cell fate determination. Chow et al. demonstrate the use of an integrase-based synthetic barcode system called intMEMOIR, which uses the serine integrase Bxb1 to perform irreversible nucleotide edits. Inducible editing either deletes or inverts its target region, thus encoding information in three-state memory elements, or trits, and avoiding undesired recombination events. Using intMEMOIR combined with single-molecule fluorescence in situ hybridization, the authors were able to identify clonal structures as well as gene expression patterns in the fly brain, enabling both clonal analysis and expression profiling with intact spatial information. The ability to visualize cell lineage relationships directly within their native tissue context provides insights into development and disease
    corecore