955 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Stability of interconnected impulsive systems with and without time-delays using Lyapunov methods

    Full text link
    In this paper we consider input-to-state stability (ISS) of impulsive control systems with and without time-delays. We prove that if the time-delay system possesses an exponential Lyapunov-Razumikhin function or an exponential Lyapunov-Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time-delays and we prove that the whole network is uniformly ISS under a small-gain and a dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems - a Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples

    Minimal data rate stabilization of nonlinear systems over networks with large delays

    Get PDF
    Control systems over networks with a finite data rate can be conveniently modeled as hybrid (impulsive) systems. For the class of nonlinear systems in feedfoward form, we design a hybrid controller which guarantees stability, in spite of the measurement noise due to the quantization, and of an arbitrarily large delay which affects the communication channel. The rate at which feedback packets are transmitted from the sensors to the actuators is shown to be arbitrarily close to the infimal one.Comment: 16 pages; references have now been adde

    New Results on Impulsive Functional Differential Equations with Infinite Delays

    Get PDF
    We investigate the stability for a class of impulsive functional differential equations with infinite delays by using Lyapunov functions and Razumikhin-technique. Some new Razumikhin-type theorems on stability are obtained, which shows that impulses do contribute to the system’s stability behavior. An example is also given to illustrate the importance of our results

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    On the stability of impulsive functional differential equations with infinite delays

    Get PDF
    In this paper, the stability problem of impulsive functional differential equations with infinite delays is considered. By using Lyapunov functions and the Razumikhin technique, some new theorems on the uniform stability and uniform asymptotic stability are obtained. The obtained results are milder and more general than several recent works. Two examples are given to demonstrate the advantages of the results

    Impulsive stabilization of stochastic functional differential equations

    Get PDF
    AbstractThis paper investigates impulsive stabilization of stochastic delay differential equations. Both moment and almost sure exponential stability criteria are established using the Lyapunov–Razumikhin method. It is shown that an unstable stochastic delay system can be successfully stabilized by impulses. The results can be easily applied to stochastic systems with arbitrarily large delays. An example with its numerical simulation is presented to illustrate the main results

    Existence, uniqueness and stability results of impulsive stochastic semilinear neutral functional differential equations with infinite delays

    Get PDF
    This article presents the results on existence, uniqueness and stability of mild solutions of impulsive stochastic semilinear neutral functional differential equations without a Lipschitz condition and with a Lipschitz condition. The results are obtained by using the method of successive approximations
    • …
    corecore