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Abstract

This article presents the results on existence, uniqueness and stability of mild solu-

tions of impulsive stochastic semilinear neutral functional differential equations without

a Lipschitz condition and with a Lipschitz condition. The results are obtained by using

the method of successive approximations.

2000 Mathematical Subject Classification: 93E15,60H15,35R12.

Keywords: Existence, Uniqueness, Stability, Successive approximation, Bihari’s in-

equality.

1 Introduction

Neutral differential equations arise in many area of science and engineering and have

received much attention in the last decades. The ordinary neutral differential equation is

used extensively to study the theory of aeroelasticity [10] and lossless transmission lines

(see [4] and the references therein). Partial neutral differential equations with delays are

motivated from stabilization of lumped control systems and the theory of heat conduction

in materials (see [7; 8] and the references therein). Hernandez and O’Regan [6] studied

some partial neutral differential equations by assuming a temporal and spatial regularity

type condition for the function t → g(t, xt). In [15; 4], the authors studied several existence

results of stochastic differential equations (SDEs) with unbounded delays.

Recently impulsive differential equations have been used to model problems (see[11; 19]).

Considerable work in the field of fixed impulsive type equations may be found in [1; 7; 16]

and the references therein. The study of impulsive stochastic differential equations (ISDEs)

is a new area of research and few publications on that subject can be found. Jun Yang et

al.[9], studied the stability analysis of ISDEs with delays. Zhigno Yang et al.[21], studied the

exponential p- stability of ISDEs with delays. In [17; 18], R. Sakthivel and J. Luo studied
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the existence and asymptotic stability in p-th moment of mild solutions to ISDEs with and

without infinite delays through fixed point theory. Motivated by [13; 14], we generalize the

existence and uniqueness of the solution to impulsive stochastic partial neutral functional

differential equations (ISNFDEs) under non-Lipschitz conditions and under Lipschitz con-

ditions. Moreover, we study the stability through the continuous dependence on the initial

values by means of a corollary of Bihari’s inequality. Further, we refer [3; 5; 12; 20].

This paper is organized as follows. In Section 2, we recall briefly the notation, definitions,

lemmas and preliminaries which are used throughout this paper. In Section 3, we study the

existence and uniqueness of ISNFDEs by relaxing the linear growth conditions. In Section

4, we study stability through the continuous dependence on the initial values. Finally in

Section 5, an example is given to illustrate our results.

2 Preliminaries

In this article, we will examine impulsive stochastic semilinear neutral functional differential

equations of the form

d
[

x(t) + g(t, xt)
]

=
[

A
[

x(t) + g(t, xt)
]

+ f(t, xt)
]

dt + a(t, xt)dw(t), t 6= tk, 0 ≤ t ≤ T,

∆x(tk) = x(t+k ) − x(t−k ) = Ik(x(tk)), t = tk, k = 1, 2, . . . m, (2.1)

x(t) = ϕ ∈ Db
B0

((−∞, 0],X),

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear

operators {S(t), t ≥ 0} with D(A) ⊂ X.

Let X, Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear

operators mapping Y into X. For convenience, we shall use the same notations ‖.‖ to

denote the norms in X, Y and L(Y,X) without any confusion. Let (Ω, B, P ) be a complete

probability space with an increasing right continuous family {Bt}t≥0 of complete sub σ-

algebra of B. Let {w(t) : t ≥ 0} denote a Y -valued Wiener process defined on the probability

space (Ω, B, P ) with covariance operator Q, that is

E < w(t), x >Y < w(s), y >Y = (t ∧ s) < Qx, y >Y , for all x, y ∈ Y ,

where Q is a positive, self-adjoint, trace class operator on Y . In particular, we denote by

w(t), t ≥ 0, a Y - valued Q- Wiener process with respect to {Bt}t≥0.

In order to define stochastic integrals with respect to the Q- Wiener process w(t), we

introduce the subspace Y0 = Q1/2(Y ) of Y which, endowed with the inner product

< u, v >Y0
=< Q−1/2u,Q−1/2v >Y is a Hilbert space. We assume that there exists a

complete orthonormal system {ei}i≥1 in Y , a bounded sequence of nonnegative real numbers
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λi such that Qei = λiei, i = 1, 2, . . . , and a sequence {βi}i≥1 of independent Brownian

motions such that

< w(t), e >=
∞

∑

n=1

√

λi < ei, e > βi(t), e ∈ Y,

and Bt = Bw
t , where Bw

t is the sigma algebra generated by {w(s) : 0 ≤ s ≤ t}. Let

L0
2 = L2(Y0,X) denote the space of all Hilbert- Schmidt operators from Y0 into X. It turns

out to be a separable Hilbert space equipped with the norm ‖µ‖2
L0

2

= tr((µQ1/2)(µQ1/2)∗)

for any µ ∈ L0
2. Clearly for any bounded operators µ ∈ L(Y,X) this norm reduces to

‖µ‖2
L0

2

= tr(µQµ∗).

We now make the system (2.1) precise: Let A : X → X be the infinitesimal generator

of a strongly continuous semigroup {S(t), t ≥ 0} defined on X. Let ℜ+ = [0,∞) and

let the functions f : ℜ+ × D̂ → X; a : ℜ+ × D̂ → L(Y,X) be Borel measurable and

let g : ℜ+ × D̂ → X be continuous. Here D̂ = D((−∞, 0],X) denotes the family of all

right piecewise continuous functions with left-hand limit ϕ from (−∞, 0] to X. The phase

space D((−∞, 0],X) is assumed to be equipped with the norm ‖ϕ‖t = sup
−∞<θ≤0

|ϕ(θ)|.

We also assume that Db
B0

((−∞, 0],X) denotes the family of all almost surely bounded,

B0-measurable, D̂- valued random variables. Further, let BT be a Banach space of all Bt-

adapted processes ϕ(t, w) which are almost surely continuous in t for fixed w ∈ Ω with norm

defined for any ϕ ∈ BT by

‖ϕ‖BT
= ( sup

0≤t≤T
E‖ϕ‖2

t )
1/2.

Furthermore, the fixed moments of time tk satisfy 0 < t1 < . . . < tm < T , where x(t+k )

and x(t−k ) represent the right and left limits of x(t) at t = tk, respectively. And ∆x(tk) =

x(t+k )− x(t−k ), represents the jump in the state x at time tk with Ik determining the size of

the jump.

Lemma 2.1.[2] Let T > 0, u0 ≥ 0, and let u(t), v(t) be continuous functions on [0, T ]. Let

K : ℜ+ → ℜ+ be a concave continuous and nondecreasing function such that K(r) > 0 for

r > 0. If

u(t) ≤ u0 +

∫ t

0
v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(

G(u0) +

∫ t

0
v(s)ds

)

for all such t ∈ [0, T ] that

G(u0) +

∫ t

0
v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r
1

ds
K(s) , r ≥ 0 and G−1 is the inverse function of G. In particular, if u0 = 0

and
∫

0+
ds

K(s) = ∞, then u(t) = 0 for all 0 ≤ t ≤ T .
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In order to obtain the stability of solutions, we use the following extended Bihari’s

inequality

Lemma 2.2.[13] Let the assumptions of Lemma 2.1 hold. If

u(t) ≤ u0 +

∫ T

t
v(s)K(u(s))ds for all 0 ≤ t ≤ T,

then

u(t) ≤ G−1
(

G(u0) +

∫ T

t
v(s)ds

)

for all such t ∈ [0, T ] that

G(u0) +

∫ T

t
v(s)ds ∈ Dom(G−1),

where G(r) =
∫ r
1

ds
K(s) , r ≥ 0 and G−1 is the inverse function of G.

Corollary 2.3.[13] Let the assumptions of Lemma 2.1 hold and v(t) ≥ 0 for t ∈ [0, T ]. If

for all ǫ > 0, there exists t1 ≥ 0 such that for 0 ≤ u0 < ǫ,
∫ T
t1

v(s)ds ≤
∫ ǫ
u0

ds
K(s) holds. Then

for every t ∈ [t1, T ], the estimate u(t) ≤ ǫ holds.

Lemma 2.4.[3] For any r ≥ 1 and for arbitrary L0
2- valued predictable process Φ(·)

sup
s∈[0,t]

E‖

∫ s

0
Φ(u)dw(u)‖2r

X = (r(2r − 1))r
(

∫ t

0
(E‖Φ(s)‖2r

L0
2

)ds
)r

.

Definition 2.1. A semigroup {S(t), t ≥ 0} is said to be uniformly bounded if ‖S(t)‖ ≤ M

for all t ≥ 0, where M ≥ 1 is some constant. If M < 1, then the semigroup is said to be a

contraction semigroup.

Definition 2.2. A stochastic process {x(t), t ∈ (−∞, T ]}, (0 < T < ∞) is called a mild

solution of the equation (2.1) if

(i) x(t) is Bt- adapted;

(ii) x(t) satisfies the integral equation

x(t) =



































ϕ(t), t ∈ (−∞, 0],

S(t)
[

ϕ(0) + g(0, ϕ)
]

− g(t, xt) +

∫ t

0
S(t − s)f(s, xs)ds

+
∫ t
0 S(t − s)a(s, xs)dw(s) +

∑

0<tk<t

S(t − tk)Ik(x(tk)), a.s t ∈ [0, T ].

(2.2)

3 Existence and uniqueness

In this section, we discuss the existence and uniqueness of mild solutions of the system

(2.1). We use the following hypotheses to prove our results.
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Hypotheses:

(H1) : A is the infinitesimal generator of a strongly continuous semigroup S(t), whose

domain D(A) is dense in X.

(H2) : For each x, y ∈ D̂ and for all t ∈ [0, T ], such that,

‖f(t, xt) − f(t, yt)‖
2 ∨ ‖a(t, xt) − a(t, yt)‖

2 ≤ K(‖x − y‖2
t ),

where K(·) is a concave non-decreasing function from ℜ+ to ℜ+, such that K(0) =

0, K(u) > 0, for u > 0 and
∫

0+
du

K(u) = ∞.

(H3) : Assuming that there exists a positive number Lg such that Lg < 1
10 , for any x, y ∈ D̂

and for t ∈ [0, T ], we have

‖g(t, xt) − g(t, yt)‖
2 ≤ Lg ‖x − y‖2

t ,

(H4) : The function Ik ∈ C(X,X) and there exists some constant hk such that

‖Ik(x(tk)) − Ik(y(tk))‖
2 ≤ hk ‖x − y‖2

t , for each x, y ∈ D̂, k = 1, 2 . . . ,m.

(H5) : For all t ∈ [0, T ], it follows that f(t, 0), g(t, 0), a(t, 0), Ik (0) ∈ L2, for k = 1, 2 . . . ,m

such that

‖f(t, 0)‖2 ∨ ‖g(t, 0)‖2 ∨ ‖a(t, 0)‖2 ∨ ‖Ik(0)‖
2 ≤ κ0,

where κ0 > 0 is a constant.

Let us now introduce the successive approximations to equation (2.2) as follows

xn(t) =















































ϕ(t), t ∈ (−∞, 0], for n = 0, 1, 2, . . . ,

S(t)
[

ϕ(0) + g(0, ϕ)
]

− g(t, xn
t ) +

∫ t

0
S(t − s)f(s, xn−1

s )ds

+
∫ t
0 S(t − s)a(s, xn−1

s )dw(s) +
∑

0<tk<t

S(t − tk)Ik(x
n−1(tk)),

a.s t ∈ [0, T ], for n = 1, 2, . . . .

(3.1)

x0(t) = S(t)ϕ(0), t ∈ [0, T ], for n = 0, (3.2)

with an arbitrary non-negative initial approximation x0 ∈ BT .

Theorem 3.1. Let the assumptions (H1) − (H5) hold, then the system (2.1) has unique

mild solution x(t) in BT and

E{ sup
0≤t≤T

‖xn(t) − x(t)‖2} → 0 as n → ∞

where {xn(t)}n≥1 are the successive approximations (3.1).
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Proof : Let x0 ∈ BT be a fixed initial approximation to (3.1). To begin with under

assumptions (H1) - (H5), Qi > 0, i = 1, . . . , 7, are some constants, we observe that ‖S(t)‖ ≤

M for some M ≥ 1 and all t ∈ [0, T ]. Then for any n ≥ 1, we have,

E ‖xn(t)‖2 ≤ 5M2E ‖ϕ(0) + g(0, ϕ)‖2

+10E
[

‖g(t, xn
t ) − g(t, 0)‖2 + ‖g(t, 0)‖2

]

+10TM2E

∫ t

0

[

‖f(s, xn−1
s ) − f(s, 0)‖2 + ‖f(s, 0)‖2

]

ds

+10M2E

∫ t

0

[

‖a(s, xn−1
s ) − a(s, 0)‖2 + ‖a(s, 0)‖2

]

ds

+10M2mE

m
∑

k=1

[

‖Ik(x
n−1(tk)) − Ik(0)‖

2 + ‖Ik(0)‖
2
]

.

Thus,

E ‖xn‖2
t ≤

Q1

1 − 10Lg
+

10M2(T + 1)

1 − 10Lg
E

∫ t

0
K(‖xn−1‖2

s)ds

+
10M2m

∑m
k=1 hk

1 − 10Lg

{

E‖xn−1‖2
t

}

,

where, Q1 = 10M2
(

E‖ϕ(0)‖2 + LgE‖ϕ‖2
0

)

+ 10
(

1 + M2T (T + 1) + M2m
∑m

k=1 hk

)

κ0.

Given that K(·) is concave and K(0) = 0, we can find a pair of positive constants a and

b such that

K(u) ≤ a + bu, for all u ≥ 0.

Then we have,

E ‖xn‖2
t ≤ Q2 +

10M2(T + 1)b

1 − 10Lg

∫ t

0
E‖xn−1‖2

sds (3.3)

+
10M2m

∑m
k=1 hk

1 − 10Lg
{E

∥

∥xn−1
∥

∥

2

t
}, n = 1, 2, . . .

where, Q2 = Q1

1−10Lg
+ 10M2(T+1)Ta

1−10Lg
,

since

E
∥

∥x0(t)
∥

∥

2
≤ M2E ‖ϕ(0)‖2 = Q3 < ∞. (3.4)

Thus E ‖xn‖2
t < ∞ for all n = 1, 2, . . . and t ∈ [0, T ]. This proves the boundedness of

{xn}.

Let us next show that {xn} is Cauchy in BT . For this consider,

E
∥

∥xn+1(t) − xn(t)
∥

∥

2
≤ 4LgE‖xn+1 − xn‖2

t

+4M2(T + 1)

∫ t

0
K(E‖xn − xn−1‖2

s)ds

+4M2m

m
∑

k=1

hkE‖xn − xn−1‖2
t .
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Thus,

E
∥

∥xn+1 − xn
∥

∥

2

t
≤

4M2(T + 1)

1 − 4Lg

∫ t

0
K(E‖xn − xn−1‖2

s)ds (3.5)

+
4M2m

∑m
k=1 hk

1 − 4Lg
E‖xn − xn−1‖2

t .

Set

Ψn(t) = sup
t∈[0,T ]

E‖xn+1 − xn‖2
t . (3.6)

Then, we have in the view of (3.5),

Ψn(t) ≤
4M2(T + 1)

1 − 4Lg

∫ t

0
K(Ψn−1(s))ds (3.7)

+
4M2m

∑m
k=1 hk

1 − 4Lg
Ψn−1(t), 0 ≤ t ≤ T.

Choose T1 ∈ [0, T ) such that

C1

∫ t

0
K

(

Ψn−1(s)
)

ds ≤ C1

∫ t

0
Ψn−1(s)ds, n = 1, 2, . . . for all 0 ≤ t ≤ T1.

Moreover,

∥

∥x1(t) − x0(t)
∥

∥

2
= ‖S(t)g(0, ϕ) −

[

g(t, x1
t ) − g(t, x0

t )
]

− g(t, x0
t )

+

∫ t

0
S(t − s)f(s, x0

s)ds +

∫ t

0
S(t − s)a(s, x0

s)dw(s)

+
∑

0<tk<t

S(t − tk)Ik(x
0(tk))‖

2.

Then, we get

E
∥

∥x1 − x0
∥

∥

2

t
≤ Q4 +

12Lg + 12M2m
∑m

k=1 hk

1 − 6Lg
E‖x0‖2

t

+
12M2(T + 1)

1 − 6Lg

∫ t

0
K(E ‖x0‖2

s)ds.

If we take the supremum over t, and use (3.4), we get

Ψ0(t) = sup
t∈[0,T ]

E
∥

∥x1 − x0
∥

∥

2

t
≤ Q5 +

12M2(T + 1)

1 − 6Lg

∫ t

0
K(Q3)ds

≤ Q6. (3.8)

Now, for n = 1 in (3.7) we get

Ψ1(t) ≤ C1

∫ t

0
K(Ψ0(s))ds + C2Ψ0(t), 0 ≤ t ≤ T1
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where C1 = 4M2(T1+1)
1−4Lg

and C2 =
4M2m

Pm
k=1

hk

1−4Lg
.

Therefore,

Ψ1(t) ≤ C1

∫ t

0
Ψ0(s)ds + C2Ψ0(t)

≤ C1

∫ t

0
Q6 ds + C2Q6

≤
(

C1 + C2

)

T1Q6.

Now, for n = 2 in (3.7), we get

Ψ2(t) ≤ C1

∫ t

0
K(Ψ1(s))ds + C2Ψ1(t)

≤ C1

∫ t

0
(C1 + C2

)

s Q6 ds + C2(C1 + C2

)

T1Q6

≤
(

C1 + C2

)2 T 2
1

2!
Q6.

Thus by applying mathematical induction in (3.7) and using the above work we get

Ψn(t) ≤

(

C1 + C2

)n
T n

1

n!
Q6. n ≥ 0, t ∈ [0, T1].

Note that for any m > n ≥ 0, we have,

sup
t∈[0,T1]

E ‖xm(t) − xn(t)‖2 ≤

+∞
∑

r=n

sup
t∈[0,T1]

E
∥

∥xr+1 − xr
∥

∥

2

t

≤
+∞
∑

r=n

(

C1 + C2

)r
T r

1

r!
Q6

→ 0 as n → ∞. (3.9)

This shows that {xn} is Cauchy in BT . Then the standard Borel- Cantelli lemma argument

can be used to show that xn(t) → x(t) uniformly in t on [0, T1]. By iteration, the existence

of solution of (2.1) on [0, T ] can be obtained.

Now, we prove the uniqueness of the solution (2.2). Let x1, x2 ∈ BT be two solutions to

(2.2) on some interval (−∞, T ]. Then, for t ∈ (−∞, 0], the uniqueness is obvious and for

0 ≤ t ≤ T , we have

E ‖x1(t) − x2(t)‖
2 ≤ 4

[

Lg + M2m

m
∑

k=1

hk

]

E‖x1 − x2‖
2
t

+4M2(T + 1)

∫ t

0
K(E‖x1 − x2‖

2
s)ds.

Thus,

E ‖x1 − x2‖
2
t ≤

4M2(T + 1)

1 − Q7

∫ t

0
K(E‖x1 − x2‖

2
s)ds,
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where, Q7 = 4
[

Lg + M2m
∑m

k=1 hk

]

.

Thus, Bihari’s inequality yields that

sup
t∈[0,T ]

E ‖x1 − x2‖
2
t = 0, 0 ≤ t ≤ T.

Thus, x1(t) = x2(t), for all 0 ≤ t ≤ T . Therefore, for all −∞ < t ≤ T , x1(t) = x2(t) a.s.

This completes the proof. �

4 Stability

In this section, we study the stability through the continuous dependence on initial

values.

Definition 4.1. A mild solution x(t) of the system (2.1) with initial value φ is said to be

stable in the mean square if for all ǫ > 0, there exists δ > 0 such that

E‖x(t) − x̂(t)‖2 ≤ ǫ whenever E‖φ − φ̂‖2 < δ, for all t ∈ [0, T ] (4.1)

where x̂(t) is another mild solution of the system (2.1) with initial value φ̂.

Theorem 4.1. Let x(t) and y(t) be mild solutions of the system (2.1) with initial values ϕ1

and ϕ2 respectively. If the assumptions of Theorem 3.1 are satisfied, then the mild solution

of the system (2.1) is stable in the mean square.

Proof: By the assumptions, x(t) and y(t) are two mild solutions of equations (2.1) with

initial values ϕ1 and ϕ2, respectively, so that for 0 ≤ t ≤ T we have

x(t) − y(t) = S(t)
(

[

ϕ1(0) − ϕ2(0)
]

+
[

g(0, ϕ1) − g(0, ϕ2)
]

)

−
[

g(t, xt) − g(t, yt)
]

+

∫ t

0
S(t − s)

[

f(s, xs) − f(s, ys)
]

ds +

∫ t

0
S(t − s)

[

a(s, xs) − a(s, ys)
]

dw(s)

+
∑

0<tk<t

S(t − tk)
[

Ik(x(tk)) − Ik(y(tk))
]

.

So, estimating as before, we get

E‖x(t) − y(t)‖2 ≤ 6M2
(

1 + Lg

)

E‖ϕ1 − ϕ2‖
2

+6
(

Lg + M2m

m
∑

k=1

hk

)

E‖x − y‖2
t

+6M2(T + 1)

∫ t

0
K(E‖x − y‖2

s)ds,

Thus,

E‖x − y‖2
t ≤

6M2
(

1 + Lg

)

1 − 6
(

Lg + M2m
∑m

k=1 hk

)E‖ϕ1 − ϕ2‖
2

+
6M2(T + 1)

1 − 6
(

Lg + M2m
∑m

k=1 hk

)

∫ t

0
K(E‖x − y‖2

s)ds.
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Let K1(u) = 6M2(T+1)

1−6
(

Lg+M2m
Pm

k=1
hk

)K(u) where K is a concave increasing function from

ℜ+ to ℜ+ such that K(0) = 0, K(u) > 0 for u > 0 and
∫

0+
du

K(u) = +∞. So, K1(u) is a

concave function from ℜ+ to ℜ+ such that K1(0) = 0, K1(u) ≥ K(u), for 0 ≤ u ≤ 1 and
∫

0+
du

K1(u) = +∞. Now for any ǫ > 0, ǫ1
∆
= 1

2 ǫ, we have lim
s→0

∫ ǫ1

s

du

K1(u)
= ∞. Thus, there is

a positive constant δ < ǫ1, such that
∫ ǫ1
δ

du
K1(u) ≥ T .

From Corollary 2.4, let

u0 =
6M2

(

1 + Lg

)

1 − 6
(

Lg + M2m
∑m

k=1 hk

)E‖ϕ1 − ϕ2‖
2,

u(t) = E‖x − y‖2
t , v(t) = 1,

so that when u0 ≤ δ ≤ ǫ1 we have

∫ ǫ1

u0

du

K1(u)
≥

∫ ǫ1

δ

du

K1(u)
≥ T =

∫ T

0
v(s)ds.

Hence, for any t ∈ [0, T ], the estimate u(t) ≤ ǫ1 holds. This completes the proof. �

Remark 4.1.

If m = 0 in (2.1), then the system behaves as stochastic partial neutral functional dif-

ferential equations with infinite delays of the form







d
[

x(t) + g(t, xt)
]

=
[

A
[

x(t) + g(t, xt)
]

+ f(t, xt)
]

dt + a(t, xt)dw(t), 0 ≤ t ≤ T,

x(t) = ϕ ∈ Db
B0

((−∞, 0],X).

(4.2)

By applying Theorem 3.1 under the hypotheses (H1)−(H3), (H5) the system (4.2) guarantees

the existence and uniqueness of the mild solution.

Remark 4.2.

If the system (4.2) satisfies the Remark 4.1, then by Theorem 4.1, the mild solution of

the system (4.2) is stable in the mean square.

5 An example

We conclude this work with an example of the form

d
[

u(t, x) +

∫ π

0
b(y, x)u(tsint, y)dy

]

=
[ ∂2

∂x2

[

u(t, x) +

∫ π

0
b(y, x)u(tsint, y)dy

]

+ H(t, u(tsint, x))
]

dt

+ σ G(t, u(tsint, x))dβ(t), t 6= tk, 0 ≤ t ≤ T, 0 ≤ x ≤ π (5.1)
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together with the initial conditions

u(t+k ) − u(t−k ) = (1 + bk)u(x(tk)), t = tk, k = 1, 2, . . . m, (5.2)

u(t, 0) = u(t, π) = 0 (5.3)

u(t, x) = Φ(t, x), 0 ≤ x ≤ π, −∞ < t ≤ 0. (5.4)

Let X = L2([0, π]) and Y = R1, the real number σ is the magnitude of continuous noise,

β(t) is a standard one dimension Brownian motion, Φ ∈ Db
B0

((−∞, 0],X), bk ≥ 0 for

k = 1, 2, . . . ,m and
∑m

k=1 bk < ∞.

Define A an operator on X by Au = ∂2u
∂x2 with the domain

D(A) =
{

u ∈ X

∣

∣

∣

∣

u and
∂u

∂x
are absolutely continuous,

∂2u

∂x2 ∈ X, u(0) = u(π) = 0
}

.

It is well known that A generates a strongly continuous semigroup S(t) which is compact,

analytic and self adjoint. Moreover, the operator A can be expressed as

Au =
∞
∑

n=1

n2 < u, un > un, u ∈ D(A),

where un(ζ) = ( 2
π )

1

2 sin(nζ), n = 1, 2, . . ., is the orthonormal set of eigenvectors of A, and

S(t)u =

∞
∑

n=1

e−n2t < u, un > un, u ∈ X.

We assume that the following condition hold:

(i): The function b is measurable and
∫ π

0

∫ π

0
b2(y, x)dydx < ∞.

(ii): Let the function ∂
∂tb(y, x) be measurable, let b(y, 0) = b(y, π) = 0, and let

Lg =
[

∫ π

0

∫ π

0

( ∂

∂t
b(y, x)

)2
dydx

]
1

2

< ∞.

Assuming that conditions (i) and (ii) are verified, then the problem (5.1) − (5.4) can

be modeled as the abstract impulsive stochastic semilinear neutral functional differential

equation of the form (2.1), as follows

g(t, xt) =

∫ π

0
b(y, x)u(tsint, y)dy, f(t, xt) = H(t, u(tsint, x)),

a(t, xt) = σ G(t, u(tsint, x)) and Ik(x(tk)) = (1 + bk)u(x(tk)) for k = 1, 2, . . . m.

The next results are consequences of Theorem 3.1 and Theorem 4.1, respectively.

Proposition 5.1. If (H1) − (H5) hold, then there exists a unique mild solution u for the

system (5.1) − (5.4).
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Proposition 5.2. If all the hypotheses of Proposition 5.1 hold, then the mild solution u for

the system (5.1) − (5.4) is stable in the mean square.
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